At the moment we only support in the host the IOMMU page sizes which
the guest is aware of, which is 4KB/64KB/16MB. However P9 does not support
16MB IOMMU pages, 2MB and 1GB pages are supported instead. We can still
emulate bigger guest pages (for example 16MB) with smaller host pages
(4KB/64KB/2MB).
This allows the physical IOMMU pages to use a page size smaller or equal
than the guest visible IOMMU page size.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The other TCE handlers use page shift from the guest visible TCE table
(described by kvmppc_spapr_tce_iommu_table) so let's make H_STUFF_TCE
handlers do the same thing.
This should cause no behavioral change now but soon we will allow
the iommu_table::it_page_shift being different from from the emulated
table page size so this will play a role.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We now have interrupts hard-disabled when coming back from
kvmppc_hv_entry_trampoline, so this changes the comment to reflect
that.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Although Linux doesn't use PURR and SPURR ((Scaled) Processor
Utilization of Resources Register), other OSes depend on them.
On POWER8 they count at a rate depending on whether the VCPU is
idle or running, the activity of the VCPU, and the value in the
RWMR (Region-Weighting Mode Register). Hardware expects the
hypervisor to update the RWMR when a core is dispatched to reflect
the number of online VCPUs in the vcore.
This adds code to maintain a count in the vcore struct indicating
how many VCPUs are online. In kvmppc_run_core we use that count
to set the RWMR register on POWER8. If the core is split because
of a static or dynamic micro-threading mode, we use the value for
8 threads. The RWMR value is not relevant when the host is
executing because Linux does not use the PURR or SPURR register,
so we don't bother saving and restoring the host value.
For the sake of old userspace which does not set the KVM_REG_PPC_ONLINE
register, we set online to 1 if it was 0 at the time of a KVM_RUN
ioctl.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds a new KVM_REG_PPC_ONLINE register which userspace can set
to 0 or 1 via the GET/SET_ONE_REG interface to indicate whether it
considers the VCPU to be offline (0), that is, not currently running,
or online (1). This will be used in a later patch to configure the
register which controls PURR and SPURR accumulation.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
A radix guest can execute tlbie instructions to invalidate TLB entries.
After a tlbie or a group of tlbies, it must then do the architected
sequence eieio; tlbsync; ptesync to ensure that the TLB invalidation
has been processed by all CPUs in the system before it can rely on
no CPU using any translation that it just invalidated.
In fact it is the ptesync which does the actual synchronization in
this sequence, and hardware has a requirement that the ptesync must
be executed on the same CPU thread as the tlbies which it is expected
to order. Thus, if a vCPU gets moved from one physical CPU to
another after it has done some tlbies but before it can get to do the
ptesync, the ptesync will not have the desired effect when it is
executed on the second physical CPU.
To fix this, we do a ptesync in the exit path for radix guests. If
there are any pending tlbies, this will wait for them to complete.
If there aren't, then ptesync will just do the same as sync.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When a vcpu priority (CPPR) is set to a lower value (masking more
interrupts), we stop processing interrupts already in the queue
for the priorities that have now been masked.
If those interrupts were previously re-routed to a different
CPU, they might still be stuck until the older one that has
them in its queue processes them. In the case of guest CPU
unplug, that can be never.
To address that without creating additional overhead for
the normal interrupt processing path, this changes H_CPPR
handling so that when such a priority change occurs, we
scan the interrupt queue for that vCPU, and for any
interrupt in there that has been re-routed, we replace it
with a dummy and force a re-trigger.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The current partition table unmap code clears the _PAGE_PRESENT bit
out of the pte, which leaves pud_huge/pmd_huge true and does not
clear pud_present/pmd_present. This can confuse subsequent page
faults and possibly lead to the guest looping doing continual
hypervisor page faults.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The standard eieio ; tlbsync ; ptesync must follow tlbie to ensure it
is ordered with respect to subsequent operations.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the HV KVM guest entry/exit code adds the timebase offset
from the vcore struct to the timebase on guest entry, and subtracts
it on guest exit. Which is fine, except that it is possible for
userspace to change the offset using the SET_ONE_REG interface while
the vcore is running, as there is only one timebase offset per vcore
but potentially multiple VCPUs in the vcore. If that were to happen,
KVM would subtract a different offset on guest exit from that which
it had added on guest entry, leading to the timebase being out of sync
between cores in the host, which then leads to bad things happening
such as hangs and spurious watchdog timeouts.
To fix this, we add a new field 'tb_offset_applied' to the vcore struct
which stores the offset that is currently applied to the timebase.
This value is set from the vcore tb_offset field on guest entry, and
is what is subtracted from the timebase on guest exit. Since it is
zero when the timebase offset is not applied, we can simplify the
logic in kvmhv_start_timing and kvmhv_accumulate_time.
In addition, we had secondary threads reading the timebase while
running concurrently with code on the primary thread which would
eventually add or subtract the timebase offset from the timebase.
This occurred while saving or restoring the DEC register value on
the secondary threads. Although no specific incorrect behaviour has
been observed, this is a race which should be fixed. To fix it, we
move the DEC saving code to just before we call kvmhv_commence_exit,
and the DEC restoring code to after the point where we have waited
for the primary thread to switch the MMU context and add the timebase
offset. That way we are sure that the timebase contains the guest
timebase value in both cases.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
smp_send_stop can lock up the IPI path for any subsequent calls,
because the receiving CPUs spin in their handler function. This
started becoming a problem with the addition of an smp_send_stop
call in the reboot path, because panics can reboot after doing
their own smp_send_stop.
The NMI IPI variant was fixed with ac61c11566 ("powerpc: Fix
smp_send_stop NMI IPI handling"), which leaves the smp_call_function
variant.
This is fixed by having smp_send_stop only ever do the
smp_call_function once. This is a bit less robust than the NMI IPI
fix, because any other call to smp_call_function after smp_send_stop
could deadlock, but that has always been the case, and it was not
been a problem before.
Fixes: f2748bdfe1 ("powerpc/powernv: Always stop secondaries before reboot/shutdown")
Reported-by: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The NMI IPI handler for a receiving CPU increments nmi_ipi_busy_count
over the handler function call, which causes later smp_send_nmi_ipi()
callers to spin until the call is finished.
The stop_this_cpu() function never returns, so the busy count is never
decremeted, which can cause the system to hang in some cases. For
example panic() will call smp_send_stop() early on which calls
stop_this_cpu() on other CPUs, then later in the reboot path,
pnv_restart() will call smp_send_stop() again, which hangs.
Fix this by adding a special case to the stop_this_cpu() handler to
decrement the busy count, because it will never return.
Now that the NMI/non-NMI versions of stop_this_cpu() are different,
split them out into separate functions rather than doing #ifdef tricks
to share the body between the two functions.
Fixes: 6bed323762 ("powerpc: use NMI IPI for smp_send_stop")
Reported-by: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Split out the functions, tweak change log a bit]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The OPAL RTC driver does not sleep in case it gets OPAL_BUSY or
OPAL_BUSY_EVENT from firmware, which causes large scheduling
latencies, up to 50 seconds have been observed here when RTC stops
responding (BMC reboot can do it).
Fix this by converting it to the standard form OPAL_BUSY loop that
sleeps.
Fixes: 628daa8d5a ("powerpc/powernv: Add RTC and NVRAM support plus RTAS fallbacks")
Cc: stable@vger.kernel.org # v3.2+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The current code extracts the physical address for UE errors and then
hooks it up into memory failure infrastructure. On successful
extraction of physical address it wrongly sets "handled = 1" which
means this UE error has been recovered. Since MCE handler gets return
value as handled = 1, it assumes that error has been recovered and
goes back to same NIP. This causes MCE interrupt again and again in a
loop leading to hard lockup.
Also, initialize phys_addr to ULONG_MAX so that we don't end up
queuing undesired page to hwpoison.
Without this patch we see:
Severe Machine check interrupt [Recovered]
NIP: [000000001002588c] PID: 7109 Comm: find
Initiator: CPU
Error type: UE [Load/Store]
Effective address: 00007fffd2755940
Physical address: 000020181a080000
...
Severe Machine check interrupt [Recovered]
NIP: [000000001002588c] PID: 7109 Comm: find
Initiator: CPU
Error type: UE [Load/Store]
Effective address: 00007fffd2755940
Physical address: 000020181a080000
Severe Machine check interrupt [Recovered]
NIP: [000000001002588c] PID: 7109 Comm: find
Initiator: CPU
Error type: UE [Load/Store]
Effective address: 00007fffd2755940
Physical address: 000020181a080000
Memory failure: 0x20181a08: recovery action for dirty LRU page: Recovered
Memory failure: 0x20181a08: already hardware poisoned
Memory failure: 0x20181a08: already hardware poisoned
Memory failure: 0x20181a08: already hardware poisoned
Memory failure: 0x20181a08: already hardware poisoned
Memory failure: 0x20181a08: already hardware poisoned
Memory failure: 0x20181a08: already hardware poisoned
...
Watchdog CPU:38 Hard LOCKUP
After this patch we see:
Severe Machine check interrupt [Not recovered]
NIP: [00007fffaae585f4] PID: 7168 Comm: find
Initiator: CPU
Error type: UE [Load/Store]
Effective address: 00007fffaafe28ac
Physical address: 00002017c0bd0000
find[7168]: unhandled signal 7 at 00007fffaae585f4 nip 00007fffaae585f4 lr 00007fffaae585e0 code 4
Memory failure: 0x2017c0bd: recovery action for dirty LRU page: Recovered
Fixes: 01eaac2b05 ("powerpc/mce: Hookup ierror (instruction) UE errors")
Fixes: ba41e1e1cc ("powerpc/mce: Hookup derror (load/store) UE errors")
Cc: stable@vger.kernel.org # v4.15+
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The NPU has a limited number of address translation shootdown (ATSD)
registers and the GPU has limited bandwidth to process ATSDs. This can
result in contention of ATSD registers leading to soft lockups on some
threads, particularly when invalidating a large address range in
pnv_npu2_mn_invalidate_range().
At some threshold it becomes more efficient to flush the entire GPU
TLB for the given MM context (PID) than individually flushing each
address in the range. This patch will result in ranges greater than
2MB being converted from 32+ ATSDs into a single ATSD which will flush
the TLB for the given PID on each GPU.
Fixes: 1ab66d1fba ("powerpc/powernv: Introduce address translation services for Nvlink2")
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Tested-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There is a single npu context per set of callback parameters. Callers
should be prevented from overwriting existing callback values so
instead return an error if different parameters are passed.
Fixes: 1ab66d1fba ("powerpc/powernv: Introduce address translation services for Nvlink2")
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Mark Hairgrove <mhairgrove@nvidia.com>
Tested-by: Mark Hairgrove <mhairgrove@nvidia.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The pnv_npu2_init_context() and pnv_npu2_destroy_context() functions
are used to allocate/free contexts to allow address translation and
shootdown by the NPU on a particular GPU. Context initialisation is
implicitly safe as it is protected by the requirement mmap_sem be held
in write mode, however pnv_npu2_destroy_context() does not require
mmap_sem to be held and it is not safe to call with a concurrent
initialisation for a different GPU.
It was assumed the driver would ensure destruction was not called
concurrently with initialisation. However the driver may be simplified
by allowing concurrent initialisation and destruction for different
GPUs. As npu context creation/destruction is not a performance
critical path and the critical section is not large a single spinlock
is used for simplicity.
Fixes: 1ab66d1fba ("powerpc/powernv: Introduce address translation services for Nvlink2")
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Mark Hairgrove <mhairgrove@nvidia.com>
Tested-by: Mark Hairgrove <mhairgrove@nvidia.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Don't do this via custom code, instead now that we have support in the
arch hotplug/hotunplug code, rely on those routines to do the right
thing.
The existing flush doesn't work because it uses ppc64_caches.l1d.size
instead of ppc64_caches.l1d.line_size.
Fixes: 9d5171a8f2 ("powerpc/powernv: Enable removal of memory for in memory tracing")
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch adds support for flushing potentially dirty cache lines
when memory is hot-plugged/hot-un-plugged. The support is currently
limited to 64 bit systems.
The bug was exposed when mappings for a device were actually
hot-unplugged and plugged in back later. A similar issue was observed
during the development of memtrace, but memtrace does it's own
flushing of region via a custom routine.
These patches do a flush both on hotplug/unplug to clear any stale
data in the cache w.r.t mappings, there is a small race window where a
clean cache line may be created again just prior to tearing down the
mapping.
The patches were tested by disabling the flush routines in memtrace
and doing I/O on the trace file. The system immediately
checkstops (quite reliablly if prior to the hot-unplug of the memtrace
region, we memset the regions we are about to hot unplug). After these
patches no custom flushing is needed in the memtrace code.
Fixes: 9d5171a8f2 ("powerpc/powernv: Enable removal of memory for in memory tracing")
Cc: stable@vger.kernel.org # v4.14+
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Reza Arbab <arbab@linux.ibm.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 95846ecf9d ("pid: replace pid bitmap implementation with IDR
API") changed last field of /proc/loadavg (last pid allocated) to be off
by one:
# unshare -p -f --mount-proc cat /proc/loadavg
0.00 0.00 0.00 1/60 2 <===
It should be 1 after first fork into pid namespace.
This is formally a regression but given how useless this field is I
don't think anyone is affected.
Bug was found by /proc testsuite!
Link: http://lkml.kernel.org/r/20180413175408.GA27246@avx2
Fixes: 95846ecf9d ("pid: replace pid bitmap implementation with IDR API")
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Gargi Sharma <gs051095@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running KVM guests on Power8 we can see a lockup where one CPU
stops responding. This often leads to a message such as:
watchdog: CPU 136 detected hard LOCKUP on other CPUs 72
Task dump for CPU 72:
qemu-system-ppc R running task 10560 20917 20908 0x00040004
And then backtraces on other CPUs, such as:
Task dump for CPU 48:
ksmd R running task 10032 1519 2 0x00000804
Call Trace:
...
--- interrupt: 901 at smp_call_function_many+0x3c8/0x460
LR = smp_call_function_many+0x37c/0x460
pmdp_invalidate+0x100/0x1b0
__split_huge_pmd+0x52c/0xdb0
try_to_unmap_one+0x764/0x8b0
rmap_walk_anon+0x15c/0x370
try_to_unmap+0xb4/0x170
split_huge_page_to_list+0x148/0xa30
try_to_merge_one_page+0xc8/0x990
try_to_merge_with_ksm_page+0x74/0xf0
ksm_scan_thread+0x10ec/0x1ac0
kthread+0x160/0x1a0
ret_from_kernel_thread+0x5c/0x78
This is caused by commit 8c1c7fb0b5 ("powerpc/64s/idle: avoid sync
for KVM state when waking from idle"), which added a check in
pnv_powersave_wakeup() to see if the kvm_hstate.hwthread_state is
already set to KVM_HWTHREAD_IN_KERNEL, and if so to skip the store and
test of kvm_hstate.hwthread_req.
The problem is that the primary does not set KVM_HWTHREAD_IN_KVM when
entering the guest, so it can then come out to cede with
KVM_HWTHREAD_IN_KERNEL set. It can then go idle in kvm_do_nap after
setting hwthread_req to 1, but because hwthread_state is still
KVM_HWTHREAD_IN_KERNEL we will skip the test of hwthread_req when we
wake up from idle and won't go to kvm_start_guest. From there the
thread will return somewhere garbage and crash.
Fix it by skipping the store of hwthread_state, but not the test of
hwthread_req, when coming out of idle. It's OK to skip the sync in
that case because hwthread_req will have been set on the same thread,
so there is no synchronisation required.
Fixes: 8c1c7fb0b5 ("powerpc/64s/idle: avoid sync for KVM state when waking from idle")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On boot we save the configuration space of PCIe bridges. We do this so
when we get an EEH event and everything gets reset that we can restore
them.
Unfortunately we save this state before we've enabled the MMIO space
on the bridges. Hence if we have to reset the bridge when we come back
MMIO is not enabled and we end up taking an PE freeze when the driver
starts accessing again.
This patch forces the memory/MMIO and bus mastering on when restoring
bridges on EEH. Ideally we'd do this correctly by saving the
configuration space writes later, but that will have to come later in
a larger EEH rewrite. For now we have this simple fix.
The original bug can be triggered on a boston machine by doing:
echo 0x8000000000000000 > /sys/kernel/debug/powerpc/PCI0001/err_injct_outbound
On boston, this PHB has a PCIe switch on it. Without this patch,
you'll see two EEH events, 1 expected and 1 the failure we are fixing
here. The second EEH event causes the anything under the PHB to
disappear (i.e. the i40e eth).
With this patch, only 1 EEH event occurs and devices properly recover.
Fixes: 652defed48 ("powerpc/eeh: Check PCIe link after reset")
Cc: stable@vger.kernel.org # v3.11+
Reported-by: Pridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When setting up a CPU, we "push" (activate) a pool VP for it.
However it's an error to do so if it already has an active
pool VP.
This happens when doing soft CPU hotplug on powernv since we
don't tear down the CPU on unplug. The HW flags the error which
gets captured by the diagnostics.
Fix this by making sure to "pull" out any already active pool
first.
Fixes: 243e25112d ("powerpc/xive: Native exploitation of the XIVE interrupt controller")
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If there is no d-cache-size property in the device tree, l1d_size could
be zero. We don't actually expect that to happen, it's only been seen
on mambo (simulator) in some configurations.
A zero-size l1d_size leads to the loop in the asm wrapping around to
2^64-1, and then walking off the end of the fallback area and
eventually causing a page fault which is fatal.
Just default to 64K which is correct on some CPUs, and sane enough to
not cause a crash on others.
Fixes: aa8a5e0062 ('powerpc/64s: Add support for RFI flush of L1-D cache')
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
[mpe: Rewrite comment and change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When we patch an alternate feature section, we have to adjust any
relative branches that branch out of the alternate section.
But currently we have a bug if we have a branch that points to past
the last instruction of the alternate section, eg:
FTR_SECTION_ELSE
1: b 2f
or 6,6,6
2:
ALT_FTR_SECTION_END(...)
nop
This will result in a relative branch at 1 with a target that equals
the end of the alternate section.
That branch does not need adjusting when it's moved to the non-else
location. Currently we do adjust it, resulting in a branch that goes
off into the link-time location of the else section, which is junk.
The fix is to not patch branches that have a target == end of the
alternate section.
Fixes: d20fe50a7b ("KVM: PPC: Book3S HV: Branch inside feature section")
Fixes: 9b1a735de6 ("powerpc: Add logic to patch alternative feature sections")
Cc: stable@vger.kernel.org # v2.6.27+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- Fix crashes when loading modules built with a different CONFIG_RELOCATABLE
value by adding CONFIG_RELOCATABLE to vermagic.
- Fix busy loops in the OPAL NVRAM driver if we get certain error conditions
from firmware.
- Remove tlbie trace points from KVM code that's called in real mode, because
it causes crashes.
- Fix checkstops caused by invalid tlbiel on Power9 Radix.
- Ensure the set of CPU features we "know" are always enabled is actually the
minimal set when we build with support for firmware supplied CPU features.
Thanks to:
Aneesh Kumar K.V, Anshuman Khandual, Nicholas Piggin.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJa0oWBExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYAV
EA//UQB7n33HlroMBL3841VswUrIgY36gSi9+QZPjxHiTYGVStI+u0FHq5hm8OMm
1FkronD0sfbN7t8LJ9FS6vCoAlW15vMBj95pWJXAL7NuQneO7cM5JvRbowVKbNbq
GESn4EkUj9bAXl7aTzX2yA7jruzMJIwE/2bgl1J6YkpByHx5x/fgzKTuoCRggQqY
Xd656ZZyWR/uIuWhAjCPFdrPnekVvo7/Gy5Yo5kcR6LbX4MO0JFNOHpiT3wPGGv/
LJedJtdpH1biMk7SrqLfWD7mpMsVJeMelpkftEbe8zUXf17wBd1rl4JkybLTDwZD
HznZ0nbnh0j5Q/KRHwOh0sLDSisJF6pQHH/Bnc4Xqrsn4OERwEk40/Ym/O0kDsjH
n2F3X5a5QLWoBWRsdV3BMyEzc0bgnb++tXeBWOV4jJBEOhoqxwimCU+3fmLiy95A
urJYf8Sljwve9I5kJyXKpruopgeoJ1aumRwopE8YCG9lfBgzvU/90u6+uKqAdkOv
kpZxS5FDT2lNIwbCP9WjEelAOGrtA6JQNWU0iPGwsVAvAxX/p1RwwbQeWVlWs3Ek
UdVF8eGezClpLPa/FQFdDyXfGE6WIf1vK9YnG7k3rUwwkSqoYxKgVQ3o1Vetp0Lg
fzPsDdDi2V2I3KDYNav8s6kohAIIS/a9XYk4BGvT/htRnUg=
=0e7c
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- Fix crashes when loading modules built with a different
CONFIG_RELOCATABLE value by adding CONFIG_RELOCATABLE to vermagic.
- Fix busy loops in the OPAL NVRAM driver if we get certain error
conditions from firmware.
- Remove tlbie trace points from KVM code that's called in real mode,
because it causes crashes.
- Fix checkstops caused by invalid tlbiel on Power9 Radix.
- Ensure the set of CPU features we "know" are always enabled is
actually the minimal set when we build with support for firmware
supplied CPU features.
Thanks to: Aneesh Kumar K.V, Anshuman Khandual, Nicholas Piggin.
* tag 'powerpc-4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/64s: Fix CPU_FTRS_ALWAYS vs DT CPU features
powerpc/mm/radix: Fix checkstops caused by invalid tlbiel
KVM: PPC: Book3S HV: trace_tlbie must not be called in realmode
powerpc/8xx: Fix build with hugetlbfs enabled
powerpc/powernv: Fix OPAL NVRAM driver OPAL_BUSY loops
powerpc/powernv: define a standard delay for OPAL_BUSY type retry loops
powerpc/fscr: Enable interrupts earlier before calling get_user()
powerpc/64s: Fix section mismatch warnings from setup_rfi_flush()
powerpc/modules: Fix crashes by adding CONFIG_RELOCATABLE to vermagic
For s390 new kernels are loaded to fixed addresses in memory before they
are booted. With the current code this is a problem as it assumes the
kernel will be loaded to an 'arbitrary' address. In particular,
kexec_locate_mem_hole searches for a large enough memory region and sets
the load address (kexec_bufer->mem) to it.
Luckily there is a simple workaround for this problem. By returning 1
in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This
allows the architecture to set kbuf->mem by hand. While the trick works
fine for the kernel it does not for the purgatory as here the
architectures don't have access to its kexec_buffer.
Give architectures access to the purgatories kexec_buffer by changing
kexec_load_purgatory to take a pointer to it. With this change
architectures have access to the buffer and can edit it as they need.
A nice side effect of this change is that we can get rid of the
purgatory_info->purgatory_load_address field. As now the information
stored there can directly be accessed from kbuf->mem.
Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As arch_kexec_kernel_image_{probe,load}(),
arch_kimage_file_post_load_cleanup() and arch_kexec_kernel_verify_sig()
are almost duplicated among architectures, they can be commonalized with
an architecture-defined kexec_file_ops array. So let's factor them out.
Link: http://lkml.kernel.org/r/20180306102303.9063-3-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kexec_file, x86, powerpc: refactoring for other
architecutres", v2.
This is a preparatory patchset for adding kexec_file support on arm64.
It was originally included in a arm64 patch set[1], but Philipp is also
working on their kexec_file support on s390[2] and some changes are now
conflicting.
So these common parts were extracted and put into a separate patch set
for better integration. What's more, my original patch#4 was split into
a few small chunks for easier review after Dave's comment.
As such, the resulting code is basically identical with my original, and
the only *visible* differences are:
- renaming of _kexec_kernel_image_probe() and _kimage_file_post_load_cleanup()
- change one of types of arguments at prepare_elf64_headers()
Those, unfortunately, require a couple of trivial changes on the rest
(#1, #6 to #13) of my arm64 kexec_file patch set[1].
Patch #1 allows making a use of purgatory optional, particularly useful
for arm64.
Patch #2 commonalizes arch_kexec_kernel_{image_probe, image_load,
verify_sig}() and arch_kimage_file_post_load_cleanup() across
architectures.
Patches #3-#7 are also intended to generalize parse_elf64_headers(),
along with exclude_mem_range(), to be made best re-use of.
[1] http://lists.infradead.org/pipermail/linux-arm-kernel/2018-February/561182.html
[2] http://lkml.iu.edu//hypermail/linux/kernel/1802.1/02596.html
This patch (of 7):
On arm64, crash dump kernel's usable memory is protected by *unmapping*
it from kernel virtual space unlike other architectures where the region
is just made read-only. It is highly unlikely that the region is
accidentally corrupted and this observation rationalizes that digest
check code can also be dropped from purgatory. The resulting code is so
simple as it doesn't require a bit ugly re-linking/relocation stuff,
i.e. arch_kexec_apply_relocations_add().
Please see:
http://lists.infradead.org/pipermail/linux-arm-kernel/2017-December/545428.html
All that the purgatory does is to shuffle arguments and jump into a new
kernel, while we still need to have some space for a hash value
(purgatory_sha256_digest) which is never checked against.
As such, it doesn't make sense to have trampline code between old kernel
and new kernel on arm64.
This patch introduces a new configuration, ARCH_HAS_KEXEC_PURGATORY, and
allows related code to be compiled in only if necessary.
[takahiro.akashi@linaro.org: fix trivial screwup]
Link: http://lkml.kernel.org/r/20180309093346.GF25863@linaro.org
Link: http://lkml.kernel.org/r/20180306102303.9063-2-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cpu_has_feature() mechanism has an optimisation where at build
time we construct a mask of the CPU feature bits that will always be
true for the given .config, based on the platform/bitness/etc. that we
are building for.
That is incompatible with DT CPU features, where the set of CPU
features is dependent on feature flags that are given to us by
firmware.
The result is that some feature bits can not be *disabled* by DT CPU
features. Or more accurately, they can be disabled but they will still
appear in the ALWAYS mask, meaning cpu_has_feature() will always
return true for them.
In the past this hasn't really been a problem because on Book3S
64 (where we support DT CPU features), the set of ALWAYS bits has been
very small. That was because we always built for POWER4 and later,
meaning the set of common bits was small.
The only bit that could be cleared by DT CPU features that was also in
the ALWAYS mask was CPU_FTR_NODSISRALIGN, and that was only used in
the alignment handler to create a fake DSISR. That code was itself
deleted in 31bfdb036f ("powerpc: Use instruction emulation
infrastructure to handle alignment faults") (Sep 2017).
However the set of ALWAYS features changed with the recent commit
db5ae1c155 ("powerpc/64s: Refine feature sets for little endian
builds") which restricted the set of feature flags when building
little endian to Power7 or later. That caused the ALWAYS mask to
become much larger for little endian builds.
The result is that the following feature bits can currently not
be *disabled* by DT CPU features:
CPU_FTR_REAL_LE, CPU_FTR_MMCRA, CPU_FTR_CTRL, CPU_FTR_SMT,
CPU_FTR_PURR, CPU_FTR_SPURR, CPU_FTR_DSCR, CPU_FTR_PKEY,
CPU_FTR_VMX_COPY, CPU_FTR_CFAR, CPU_FTR_HAS_PPR.
To fix it we need to mask the set of ALWAYS features with the base set
of DT CPU features, ie. the features that are always enabled by DT CPU
features. That way there are no bits in the ALWAYS mask that are not
also always set by DT CPU features.
Fixes: db5ae1c155 ("powerpc/64s: Refine feature sets for little endian builds")
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In tlbiel_radix_set_isa300() we use the PPC_TLBIEL() macro to
construct tlbiel instructions. The instruction takes 5 fields, two of
which are registers, and the others are constants. But because it's
constructed with inline asm the compiler doesn't know that.
We got the constraint wrong on the 'r' field, using "r" tells the
compiler to put the value in a register. The value we then get in the
macro is the *register number*, not the value of the field.
That means when we mask the register number with 0x1 we get 0 or 1
depending on which register the compiler happens to put the constant
in, eg:
li r10,1
tlbiel r8,r9,2,0,0
li r7,1
tlbiel r10,r6,0,0,1
If we're unlucky we might generate an invalid instruction form, for
example RIC=0, PRS=1 and R=0, tlbiel r8,r7,0,1,0, this has been
observed to cause machine checks:
Oops: Machine check, sig: 7 [#1]
CPU: 24 PID: 0 Comm: swapper
NIP: 00000000000385f4 LR: 000000000100ed00 CTR: 000000000000007f
REGS: c00000000110bb40 TRAP: 0200
MSR: 9000000000201003 <SF,HV,ME,RI,LE> CR: 48002222 XER: 20040000
CFAR: 00000000000385d0 DAR: 0000000000001c00 DSISR: 00000200 SOFTE: 1
If the machine check happens early in boot while we have MSR_ME=0 it
will escalate into a checkstop and kill the box entirely.
To fix it we could change the inline asm constraint to "i" which
tells the compiler the value is a constant. But a better fix is to just
pass a literal 1 into the macro, which bypasses any problems with inline
asm constraints.
Fixes: d4748276ae ("powerpc/64s: Improve local TLB flush for boot and MCE on POWER9")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Patch series "exec: Pin stack limit during exec".
Attempts to solve problems with the stack limit changing during exec
continue to be frustrated[1][2]. In addition to the specific issues
around the Stack Clash family of flaws, Andy Lutomirski pointed out[3]
other places during exec where the stack limit is used and is assumed to
be unchanging. Given the many places it gets used and the fact that it
can be manipulated/raced via setrlimit() and prlimit(), I think the only
way to handle this is to move away from the "current" view of the stack
limit and instead attach it to the bprm, and plumb this down into the
functions that need to know the stack limits. This series implements
the approach.
[1] 04e35f4495 ("exec: avoid RLIMIT_STACK races with prlimit()")
[2] 779f4e1c6c ("Revert "exec: avoid RLIMIT_STACK races with prlimit()"")
[3] to security@kernel.org, "Subject: existing rlimit races?"
This patch (of 3):
Since it is possible that the stack rlimit can change externally during
exec (either via another thread calling setrlimit() or another process
calling prlimit()), provide a way to pass the rlimit down into the
per-architecture mm layout functions so that the rlimit can stay in the
bprm structure instead of sitting in the signal structure until exec is
finalized.
Link: http://lkml.kernel.org/r/1518638796-20819-2-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Greg KH <greg@kroah.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ben Hutchings <ben.hutchings@codethink.co.uk>
Cc: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No allocation callback is using this argument anymore. new_page_node
used to use this parameter to convey node_id resp. migration error up
to move_pages code (do_move_page_to_node_array). The error status never
made it into the final status field and we have a better way to
communicate node id to the status field now. All other allocation
callbacks simply ignored the argument so we can drop it finally.
[mhocko@suse.com: fix migration callback]
Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz
[akpm@linux-foundation.org: fix alloc_misplaced_dst_page()]
[mhocko@kernel.org: fix build]
Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This crashes with a "Bad real address for load" attempting to load
from the vmalloc region in realmode (faulting address is in DAR).
Oops: Bad interrupt in KVM entry/exit code, sig: 6 [#1]
LE SMP NR_CPUS=2048 NUMA PowerNV
CPU: 53 PID: 6582 Comm: qemu-system-ppc Not tainted 4.16.0-01530-g43d1859f0994
NIP: c0000000000155ac LR: c0000000000c2430 CTR: c000000000015580
REGS: c000000fff76dd80 TRAP: 0200 Not tainted (4.16.0-01530-g43d1859f0994)
MSR: 9000000000201003 <SF,HV,ME,RI,LE> CR: 48082222 XER: 00000000
CFAR: 0000000102900ef0 DAR: d00017fffd941a28 DSISR: 00000040 SOFTE: 3
NIP [c0000000000155ac] perf_trace_tlbie+0x2c/0x1a0
LR [c0000000000c2430] do_tlbies+0x230/0x2f0
I suspect the reason is the per-cpu data is not in the linear chunk.
This could be restored if that was able to be fixed, but for now,
just remove the tracepoints.
Fixes: 0428491cba ("powerpc/mm: Trace tlbie(l) instructions")
Cc: stable@vger.kernel.org # v4.13+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
8xx uses the slice code when hugetlbfs is enabled. We missed a header
include on 8xx which resulted in the below build failure:
config: mpc885_ads_defconfig + CONFIG_HUGETLBFS
arch/powerpc/mm/slice.c: In function 'slice_get_unmapped_area':
arch/powerpc/mm/slice.c:655:2: error: implicit declaration of function 'need_extra_context'
arch/powerpc/mm/slice.c:656:3: error: implicit declaration of function 'alloc_extended_context'
on PPC64 the mmu_context.h was included via linux/pkeys.h
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The OPAL NVRAM driver does not sleep in case it gets OPAL_BUSY or
OPAL_BUSY_EVENT from firmware, which causes large scheduling
latencies, and various lockup errors to trigger (again, BMC reboot
can cause it).
Fix this by converting it to the standard form OPAL_BUSY loop that
sleeps.
Fixes: 628daa8d5a ("powerpc/powernv: Add RTC and NVRAM support plus RTAS fallbacks")
Depends-on: 34dd25de9f ("powerpc/powernv: define a standard delay for OPAL_BUSY type retry loops")
Cc: stable@vger.kernel.org # v3.2+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* A rework of the filesytem-dax implementation provides for detection of
unmap operations (truncate / hole punch) colliding with in-progress
device-DMA. A fix for these collisions remains a work-in-progress
pending resolution of truncate latency and starvation regressions.
* The of_pmem driver expands the users of libnvdimm outside of x86 and
ACPI to describe an implementation of persistent memory on PowerPC with
Open Firmware / Device tree.
* Address Range Scrub (ARS) handling is completely rewritten to account for
the fact that ARS may run for 100s of seconds and there is no platform
defined way to cancel it. ARS will now no longer block namespace
initialization.
* The NVDIMM Namespace Label implementation is updated to handle label
areas as small as 1K, down from 128K.
* Miscellaneous cleanups and updates to unit test infrastructure.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJazDt5AAoJEB7SkWpmfYgCqGMQALLwdPeY87cUK7AvQ2IXj46B
lJgeVuHPzyQDbC03AS5uUYnnU3I5lFd7i4y7ZrywNpFs4lsb/bNmbUpQE5xp+Yvc
1MJ/JYDIP5X4misWYm3VJo85N49+VqSRgAQk52PBigwnZ7M6/u4cSptXM9//c9JL
/NYbat6IjjY6Tx49Tec6+F3GMZjsFLcuTVkQcREoOyOqVJE4YpP0vhNjEe0vq6vr
EsSWiqEI5VFH4PfJwKdKj/64IKB4FGKj2A5cEgjQBxW2vw7tTJnkRkdE3jDUjqtg
xYAqGp/Dqs4+bgdYlT817YhiOVrcr5mOHj7TKWQrBPgzKCbcG5eKDmfT8t+3NEga
9kBlgisqIcG72lwZNA7QkEHxq1Omy9yc1hUv9qz2YA0G+J1WE8l1T15k1DOFwV57
qIrLLUypklNZLxvrzNjclempboKc4JCUlj+TdN5E5Y6pRs55UWTXaP7Xf5O7z0vf
l/uiiHkc3MPH73YD2PSEGFJ8m8EU0N8xhrcz3M9E2sHgYCnbty1Lw3FH0/GhThVA
ya1mMeDdb8A2P7gWCBk1Lqeig+rJKXSey4hKM6D0njOEtMQO1H4tFqGjyfDX1xlJ
3plUR9WBVEYzN5+9xWbwGag/ezGZ+NfcVO2gmy6yXiEph796BxRAZx/18zKRJr0m
9eGJG1H+JspcbtLF9iHn
=acZQ
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This cycle was was not something I ever want to repeat as there were
several late changes that have only now just settled.
Half of the branch up to commit d2c997c0f1 ("fs, dax: use
page->mapping to warn...") have been in -next for several releases.
The of_pmem driver and the address range scrub rework were late
arrivals, and the dax work was scaled back at the last moment.
The of_pmem driver missed a previous merge window due to an oversight.
A sense of obligation to rectify that miss is why it is included for
4.17. It has acks from PowerPC folks. Stephen reported a build failure
that only occurs when merging it with your latest tree, for now I have
fixed that up by disabling modular builds of of_pmem. A test merge
with your tree has received a build success report from the 0day robot
over 156 configs.
An initial version of the ARS rework was submitted before the merge
window. It is self contained to libnvdimm, a net code reduction, and
passing all unit tests.
The filesystem-dax changes are based on the wait_var_event()
functionality from tip/sched/core. However, late review feedback
showed that those changes regressed truncate performance to a large
degree. The branch was rewound to drop the truncate behavior change
and now only includes preparation patches and cleanups (with full acks
and reviews). The finalization of this dax-dma-vs-trnucate work will
need to wait for 4.18.
Summary:
- A rework of the filesytem-dax implementation provides for detection
of unmap operations (truncate / hole punch) colliding with
in-progress device-DMA. A fix for these collisions remains a
work-in-progress pending resolution of truncate latency and
starvation regressions.
- The of_pmem driver expands the users of libnvdimm outside of x86
and ACPI to describe an implementation of persistent memory on
PowerPC with Open Firmware / Device tree.
- Address Range Scrub (ARS) handling is completely rewritten to
account for the fact that ARS may run for 100s of seconds and there
is no platform defined way to cancel it. ARS will now no longer
block namespace initialization.
- The NVDIMM Namespace Label implementation is updated to handle
label areas as small as 1K, down from 128K.
- Miscellaneous cleanups and updates to unit test infrastructure"
* tag 'libnvdimm-for-4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (39 commits)
libnvdimm, of_pmem: workaround OF_NUMA=n build error
nfit, address-range-scrub: add module option to skip initial ars
nfit, address-range-scrub: rework and simplify ARS state machine
nfit, address-range-scrub: determine one platform max_ars value
powerpc/powernv: Create platform devs for nvdimm buses
doc/devicetree: Persistent memory region bindings
libnvdimm: Add device-tree based driver
libnvdimm: Add of_node to region and bus descriptors
libnvdimm, region: quiet region probe
libnvdimm, namespace: use a safe lookup for dimm device name
libnvdimm, dimm: fix dpa reservation vs uninitialized label area
libnvdimm, testing: update the default smart ctrl_temperature
libnvdimm, testing: Add emulation for smart injection commands
nfit, address-range-scrub: introduce nfit_spa->ars_state
libnvdimm: add an api to cast a 'struct nd_region' to its 'struct device'
nfit, address-range-scrub: fix scrub in-progress reporting
dax, dm: allow device-mapper to operate without dax support
dax: introduce CONFIG_DAX_DRIVER
fs, dax: use page->mapping to warn if truncate collides with a busy page
ext2, dax: introduce ext2_dax_aops
...
This is the start of an effort to tidy up and standardise all the
delays. Existing loops have a range of delay/sleep periods from 1ms
to 20ms, and some have no delay. They all loop forever except rtc,
which times out after 10 retries, and that uses 10ms delays. So use
10ms as our standard delay. The OPAL maintainer agrees 10ms is a
reasonable starting point.
The idea is to use the same recipe everywhere, once this is proven to
work then it will be documented as an OPAL API standard. Then both
firmware and OS can agree, and if a particular call needs something
else, then that can be documented with reasoning.
This is not the end-all of this effort, it's just a relatively easy
change that fixes some existing high latency delays. There should be
provision for standardising timeouts and/or interruptible loops where
possible, so non-fatal firmware errors don't cause hangs.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The function get_user() can sleep while trying to fetch instruction
from user address space and causes the following warning from the
scheduler.
BUG: sleeping function called from invalid context
Though interrupts get enabled back but it happens bit later after
get_user() is called. This change moves enabling these interrupts
earlier covering the function get_user(). While at this, lets check
for kernel mode and crash as this interrupt should not have been
triggered from the kernel context.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The recent LPM changes to setup_rfi_flush() are causing some section
mismatch warnings because we removed the __init annotation on
setup_rfi_flush():
The function setup_rfi_flush() references
the function __init ppc64_bolted_size().
the function __init memblock_alloc_base().
The references are actually in init_fallback_flush(), but that is
inlined into setup_rfi_flush().
These references are safe because:
- only pseries calls setup_rfi_flush() at runtime
- pseries always passes L1D_FLUSH_FALLBACK at boot
- so the fallback flush area will always be allocated
- so the check in init_fallback_flush() will always return early:
/* Only allocate the fallback flush area once (at boot time). */
if (l1d_flush_fallback_area)
return;
- and therefore we won't actually call the freed init routines.
We should rework the code to make it safer by default rather than
relying on the above, but for now as a quick-fix just add a __ref
annotation to squash the warning.
Fixes: abf110f3e1 ("powerpc/rfi-flush: Make it possible to call setup_rfi_flush() again")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past invalid
privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as of now)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
=bPlD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
If you build the kernel with CONFIG_RELOCATABLE=n, then install the
modules, rebuild the kernel with CONFIG_RELOCATABLE=y and leave the
old modules installed, we crash something like:
Unable to handle kernel paging request for data at address 0xd000000018d66cef
Faulting instruction address: 0xc0000000021ddd08
Oops: Kernel access of bad area, sig: 11 [#1]
Modules linked in: x_tables autofs4
CPU: 2 PID: 1 Comm: systemd Not tainted 4.16.0-rc6-gcc_ubuntu_le-g99fec39 #1
...
NIP check_version.isra.22+0x118/0x170
Call Trace:
__ksymtab_xt_unregister_table+0x58/0xfffffffffffffcb8 [x_tables] (unreliable)
resolve_symbol+0xb4/0x150
load_module+0x10e8/0x29a0
SyS_finit_module+0x110/0x140
system_call+0x58/0x6c
This happens because since commit 71810db27c ("modversions: treat
symbol CRCs as 32 bit quantities"), a relocatable kernel encodes and
handles symbol CRCs differently from a non-relocatable kernel.
Although it's possible we could try and detect this situation and
handle it, it's much more robust to simply make the state of
CONFIG_RELOCATABLE part of the module vermagic.
Fixes: 71810db27c ("modversions: treat symbol CRCs as 32 bit quantities")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Notable changes:
- Support for 4PB user address space on 64-bit, opt-in via mmap().
- Removal of POWER4 support, which was accidentally broken in 2016 and no one
noticed, and blocked use of some modern instructions.
- Workarounds so that the hypervisor can enable Transactional Memory on Power9.
- A series to disable the DAWR (Data Address Watchpoint Register) on Power9.
- More information displayed in the meltdown/spectre_v1/v2 sysfs files.
- A vpermxor (Power8 Altivec) implementation for the raid6 Q Syndrome.
- A big series to make the allocation of our pacas (per cpu area), kernel page
tables, and per-cpu stacks NUMA aware when using the Radix MMU on Power9.
And as usual many fixes, reworks and cleanups.
Thanks to:
Aaro Koskinen, Alexandre Belloni, Alexey Kardashevskiy, Alistair Popple, Andy
Shevchenko, Aneesh Kumar K.V, Anshuman Khandual, Balbir Singh, Benjamin
Herrenschmidt, Christophe Leroy, Christophe Lombard, Cyril Bur, Daniel Axtens,
Dave Young, Finn Thain, Frederic Barrat, Gustavo Romero, Horia Geantă,
Jonathan Neuschäfer, Kees Cook, Larry Finger, Laurent Dufour, Laurent Vivier,
Logan Gunthorpe, Madhavan Srinivasan, Mark Greer, Mark Hairgrove, Markus
Elfring, Mathieu Malaterre, Matt Brown, Matt Evans, Mauricio Faria de
Oliveira, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Paul Mackerras,
Philippe Bergheaud, Ram Pai, Rob Herring, Sam Bobroff, Segher Boessenkool,
Simon Guo, Simon Horman, Stewart Smith, Sukadev Bhattiprolu, Suraj Jitindar
Singh, Thiago Jung Bauermann, Vaibhav Jain, Vaidyanathan Srinivasan, Vasant
Hegde, Wei Yongjun.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJayKxDExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYAr
JQ/6A9Xs4zHDn9OeT9esEIxciETqUlrP0Wp64c4JVC7EkG1E7xRDZ4Xb4m8R2nNt
9sPhtNO1yCtEk6kFQtPNB0N8v6pud4I6+aMcYnn+tP8mJRYQ4x9bYaF3Hw98IKmE
Kd6TglmsUQvh2GpwPiF93KpzzWu1HB2kZzzqJcAMTMh7C79Qz00BjrTJltzXB2jx
tJ+B4lVy8BeU8G5nDAzJEEwb5Ypkn8O40rS/lpAwVTYOBJ8Rbyq8Fj82FeREK9YO
4EGaEKPkC/FdzX7OJV3v2/nldCd8pzV471fAoGuBUhJiJBMBoBybcTHIdDex7LlL
zMLV1mUtGo8iolRPhL8iCH+GGifZz2WzstYCozz7hgIraWtc/frq9rZp6q0LdH/K
trk7UbPGlVb92ecWZVpZyEcsMzKrCgZqnAe9wRNh1uEKScEdzd/bmRaMhENUObRh
Hili6AVvmSKExpy7k2sZP/oUMaeC15/xz8Lk7l8a/iCkYhNmPYh5iSXM5+UKpcRT
FYOcO0o3DwXsN46Whow3nJ7TqAsDy9/ecPUG71JQi3ZrHnRrm8jxkn8MCG5pZ1Fi
KvKDxlg6RiJo3DF9/fSOpJUokvMwqBS5dJo4eh5eiDy94aBTqmBKFecvPxQm7a0L
l3uXCF/6JuXEvMukFjGBO4RiYhw8i+B2uKsh81XUh7HKrgE=
=HAB1
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for 4PB user address space on 64-bit, opt-in via mmap().
- Removal of POWER4 support, which was accidentally broken in 2016
and no one noticed, and blocked use of some modern instructions.
- Workarounds so that the hypervisor can enable Transactional Memory
on Power9.
- A series to disable the DAWR (Data Address Watchpoint Register) on
Power9.
- More information displayed in the meltdown/spectre_v1/v2 sysfs
files.
- A vpermxor (Power8 Altivec) implementation for the raid6 Q
Syndrome.
- A big series to make the allocation of our pacas (per cpu area),
kernel page tables, and per-cpu stacks NUMA aware when using the
Radix MMU on Power9.
And as usual many fixes, reworks and cleanups.
Thanks to: Aaro Koskinen, Alexandre Belloni, Alexey Kardashevskiy,
Alistair Popple, Andy Shevchenko, Aneesh Kumar K.V, Anshuman Khandual,
Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Cyril Bur, Daniel Axtens, Dave Young, Finn Thain, Frederic
Barrat, Gustavo Romero, Horia Geantă, Jonathan Neuschäfer, Kees Cook,
Larry Finger, Laurent Dufour, Laurent Vivier, Logan Gunthorpe,
Madhavan Srinivasan, Mark Greer, Mark Hairgrove, Markus Elfring,
Mathieu Malaterre, Matt Brown, Matt Evans, Mauricio Faria de Oliveira,
Michael Neuling, Naveen N. Rao, Nicholas Piggin, Paul Mackerras,
Philippe Bergheaud, Ram Pai, Rob Herring, Sam Bobroff, Segher
Boessenkool, Simon Guo, Simon Horman, Stewart Smith, Sukadev
Bhattiprolu, Suraj Jitindar Singh, Thiago Jung Bauermann, Vaibhav
Jain, Vaidyanathan Srinivasan, Vasant Hegde, Wei Yongjun"
* tag 'powerpc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (207 commits)
powerpc/64s/idle: Fix restore of AMOR on POWER9 after deep sleep
powerpc/64s: Fix POWER9 DD2.2 and above in cputable features
powerpc/64s: Fix pkey support in dt_cpu_ftrs, add CPU_FTR_PKEY bit
powerpc/64s: Fix dt_cpu_ftrs to have restore_cpu clear unwanted LPCR bits
Revert "powerpc/64s/idle: POWER9 ESL=0 stop avoid save/restore overhead"
powerpc: iomap.c: introduce io{read|write}64_{lo_hi|hi_lo}
powerpc: io.h: move iomap.h include so that it can use readq/writeq defs
cxl: Fix possible deadlock when processing page faults from cxllib
powerpc/hw_breakpoint: Only disable hw breakpoint if cpu supports it
powerpc/mm/radix: Update command line parsing for disable_radix
powerpc/mm/radix: Parse disable_radix commandline correctly.
powerpc/mm/hugetlb: initialize the pagetable cache correctly for hugetlb
powerpc/mm/radix: Update pte fragment count from 16 to 256 on radix
powerpc/mm/keys: Update documentation and remove unnecessary check
powerpc/64s/idle: POWER9 ESL=0 stop avoid save/restore overhead
powerpc/64s/idle: Consolidate power9_offline_stop()/power9_idle_stop()
powerpc/powernv: Always stop secondaries before reboot/shutdown
powerpc: hard disable irqs in smp_send_stop loop
powerpc: use NMI IPI for smp_send_stop
powerpc/powernv: Fix SMT4 forcing idle code
...
Scan the devicetree for an nvdimm-bus compatible and create
a platform device for them.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAlrHeY8UHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vxhLRAAndV/0NDyWZU0eZNM6twri2SEFnF7
E4ar+YthxDxxJG4TLJbIA12jc5NgHZy4WuttDa6Jb99KreBXIHJFlNi/V/tme6zf
+yXUuxWae7wJzBiaay57VqLGSc80gt/LTgjLa1siwQqjTbO3wSXR6JJXNaE9FtQ4
/jL61t8bD1Peb5cWTpt9p0hrnKI0/pHwASdReyFS4F/HDKdvpof7BxE/OU3HSxxA
XKC2v6RjY4S93vkzvApDXQ+vhKquVRK7/ojyTXQUO/GIzcARprO7H4k62N4ar0x/
qbXLkR8IMkwA8ecsNmcL92ftb/cXoHfd+wdK8WpijqzF4kW4SdteVWbIhUzI0gbr
0gjDYIzjplvH3pZGv/qvx+8sFtAP95OdPjuAAW2qJ9TCVfmiS8naNFCvcxg87RhD
gjyQD3If1X7F8wy309lhq7VNyRexTHgIMgTXHyFvuZMzn/Qe1huL2XCwDcEAg/OX
AvU2iuSE5tWAh7gIUMF/aWi3uoeJUyyoru5ZR//gqdFfx9YxpSimO1UDXnpPi8SR
Iz/jzHJc0aWGYdQ9l6HiSbJF3P/QQcWYs9igt0A7BRGB05SPdWCh7sSO70FJa8ME
f4WID5/qEiaH26kiSRX4cUqpc8Amk8bT0DXw2OT57qy3JM0ZdV5ENQX11pSpr9hv
uLEf0DU7AEmdvzQ=
=T++R
-----END PGP SIGNATURE-----
Merge tag 'pci-v4.17-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI updates from Bjorn Helgaas:
- move pci_uevent_ers() out of pci.h (Michael Ellerman)
- skip ASPM common clock warning if BIOS already configured it (Sinan
Kaya)
- fix ASPM Coverity warning about threshold_ns (Gustavo A. R. Silva)
- remove last user of pci_get_bus_and_slot() and the function itself
(Sinan Kaya)
- add decoding for 16 GT/s link speed (Jay Fang)
- add interfaces to get max link speed and width (Tal Gilboa)
- add pcie_bandwidth_capable() to compute max supported link bandwidth
(Tal Gilboa)
- add pcie_bandwidth_available() to compute bandwidth available to
device (Tal Gilboa)
- add pcie_print_link_status() to log link speed and whether it's
limited (Tal Gilboa)
- use PCI core interfaces to report when device performance may be
limited by its slot instead of doing it in each driver (Tal Gilboa)
- fix possible cpqphp NULL pointer dereference (Shawn Lin)
- rescan more of the hierarchy on ACPI hotplug to fix Thunderbolt/xHCI
hotplug (Mika Westerberg)
- add support for PCI I/O port space that's neither directly accessible
via CPU in/out instructions nor directly mapped into CPU physical
memory space. This is fairly intrusive and includes minor changes to
interfaces used for I/O space on most platforms (Zhichang Yuan, John
Garry)
- add support for HiSilicon Hip06/Hip07 LPC I/O space (Zhichang Yuan,
John Garry)
- use PCI_EXP_DEVCTL2_COMP_TIMEOUT in rapidio/tsi721 (Bjorn Helgaas)
- remove possible NULL pointer dereference in of_pci_bus_find_domain_nr()
(Shawn Lin)
- report quirk timings with dev_info (Bjorn Helgaas)
- report quirks that take longer than 10ms (Bjorn Helgaas)
- add and use Altera Vendor ID (Johannes Thumshirn)
- tidy Makefiles and comments (Bjorn Helgaas)
- don't set up INTx if MSI or MSI-X is enabled to align cris, frv,
ia64, and mn10300 with x86 (Bjorn Helgaas)
- move pcieport_if.h to drivers/pci/pcie/ to encapsulate it (Frederick
Lawler)
- merge pcieport_if.h into portdrv.h (Bjorn Helgaas)
- move workaround for BIOS PME issue from portdrv to PCI core (Bjorn
Helgaas)
- completely disable portdrv with "pcie_ports=compat" (Bjorn Helgaas)
- remove portdrv link order dependency (Bjorn Helgaas)
- remove support for unused VC portdrv service (Bjorn Helgaas)
- simplify portdrv feature permission checking (Bjorn Helgaas)
- remove "pcie_hp=nomsi" parameter (use "pci=nomsi" instead) (Bjorn
Helgaas)
- remove unnecessary "pcie_ports=auto" parameter (Bjorn Helgaas)
- use cached AER capability offset (Frederick Lawler)
- don't enable DPC if BIOS hasn't granted AER control (Mika Westerberg)
- rename pcie-dpc.c to dpc.c (Bjorn Helgaas)
- use generic pci_mmap_resource_range() instead of powerpc and xtensa
arch-specific versions (David Woodhouse)
- support arbitrary PCI host bridge offsets on sparc (Yinghai Lu)
- remove System and Video ROM reservations on sparc (Bjorn Helgaas)
- probe for device reset support during enumeration instead of runtime
(Bjorn Helgaas)
- add ACS quirk for Ampere (née APM) root ports (Feng Kan)
- add function 1 DMA alias quirk for Marvell 88SE9220 (Thomas
Vincent-Cross)
- protect device restore with device lock (Sinan Kaya)
- handle failure of FLR gracefully (Sinan Kaya)
- handle CRS (config retry status) after device resets (Sinan Kaya)
- skip various config reads for SR-IOV VFs as an optimization
(KarimAllah Ahmed)
- consolidate VPD code in vpd.c (Bjorn Helgaas)
- add Tegra dependency on PCI_MSI_IRQ_DOMAIN (Arnd Bergmann)
- add DT support for R-Car r8a7743 (Biju Das)
- fix a PCI_EJECT vs PCI_BUS_RELATIONS race condition in Hyper-V host
bridge driver that causes a general protection fault (Dexuan Cui)
- fix Hyper-V host bridge hang in MSI setup on 1-vCPU VMs with SR-IOV
(Dexuan Cui)
- fix Hyper-V host bridge hang when ejecting a VF before setting up MSI
(Dexuan Cui)
- make several structures static (Fengguang Wu)
- increase number of MSI IRQs supported by Synopsys DesignWare bridges
from 32 to 256 (Gustavo Pimentel)
- implemented multiplexed IRQ domain API and remove obsolete MSI IRQ
API from DesignWare drivers (Gustavo Pimentel)
- add Tegra power management support (Manikanta Maddireddy)
- add Tegra loadable module support (Manikanta Maddireddy)
- handle 64-bit BARs correctly in endpoint support (Niklas Cassel)
- support optional regulator for HiSilicon STB (Shawn Guo)
- use regulator bulk API for Qualcomm apq8064 (Srinivas Kandagatla)
- support power supplies for Qualcomm msm8996 (Srinivas Kandagatla)
* tag 'pci-v4.17-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (123 commits)
MAINTAINERS: Add John Garry as maintainer for HiSilicon LPC driver
HISI LPC: Add ACPI support
ACPI / scan: Do not enumerate Indirect IO host children
ACPI / scan: Rename acpi_is_serial_bus_slave() for more general use
HISI LPC: Support the LPC host on Hip06/Hip07 with DT bindings
of: Add missing I/O range exception for indirect-IO devices
PCI: Apply the new generic I/O management on PCI IO hosts
PCI: Add fwnode handler as input param of pci_register_io_range()
PCI: Remove __weak tag from pci_register_io_range()
MAINTAINERS: Add missing /drivers/pci/cadence directory entry
fm10k: Report PCIe link properties with pcie_print_link_status()
net/mlx5e: Use pcie_bandwidth_available() to compute bandwidth
net/mlx5: Report PCIe link properties with pcie_print_link_status()
net/mlx4_core: Report PCIe link properties with pcie_print_link_status()
PCI: Add pcie_print_link_status() to log link speed and whether it's limited
PCI: Add pcie_bandwidth_available() to compute bandwidth available to device
misc: pci_endpoint_test: Handle 64-bit BARs properly
PCI: designware-ep: Make dw_pcie_ep_reset_bar() handle 64-bit BARs properly
PCI: endpoint: Make sure that BAR_5 does not have 64-bit flag set when clearing
PCI: endpoint: Make epc->ops->clear_bar()/pci_epc_clear_bar() take struct *epf_bar
...
Merge updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- the v9fs maintainers have been missing for a long time. I've taken
over v9fs patch slinging.
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (116 commits)
mm,oom_reaper: check for MMF_OOM_SKIP before complaining
mm/ksm: fix interaction with THP
mm/memblock.c: cast constant ULLONG_MAX to phys_addr_t
headers: untangle kmemleak.h from mm.h
include/linux/mmdebug.h: make VM_WARN* non-rvals
mm/page_isolation.c: make start_isolate_page_range() fail if already isolated
mm: change return type to vm_fault_t
mm, oom: remove 3% bonus for CAP_SYS_ADMIN processes
mm, page_alloc: wakeup kcompactd even if kswapd cannot free more memory
kernel/fork.c: detect early free of a live mm
mm: make counting of list_lru_one::nr_items lockless
mm/swap_state.c: make bool enable_vma_readahead and swap_vma_readahead() static
block_invalidatepage(): only release page if the full page was invalidated
mm: kernel-doc: add missing parameter descriptions
mm/swap.c: remove @cold parameter description for release_pages()
mm/nommu: remove description of alloc_vm_area
zram: drop max_zpage_size and use zs_huge_class_size()
zsmalloc: introduce zs_huge_class_size()
mm: fix races between swapoff and flush dcache
fs/direct-io.c: minor cleanups in do_blockdev_direct_IO
...
Currently <linux/slab.h> #includes <linux/kmemleak.h> for no obvious
reason. It looks like it's only a convenience, so remove kmemleak.h
from slab.h and add <linux/kmemleak.h> to any users of kmemleak_* that
don't already #include it. Also remove <linux/kmemleak.h> from source
files that do not use it.
This is tested on i386 allmodconfig and x86_64 allmodconfig. It would
be good to run it through the 0day bot for other $ARCHes. I have
neither the horsepower nor the storage space for the other $ARCHes.
Update: This patch has been extensively build-tested by both the 0day
bot & kisskb/ozlabs build farms. Both of them reported 2 build failures
for which patches are included here (in v2).
[ slab.h is the second most used header file after module.h; kernel.h is
right there with slab.h. There could be some minor error in the
counting due to some #includes having comments after them and I didn't
combine all of those. ]
[akpm@linux-foundation.org: security/keys/big_key.c needs vmalloc.h, per sfr]
Link: http://lkml.kernel.org/r/e4309f98-3749-93e1-4bb7-d9501a39d015@infradead.org
Link: http://kisskb.ellerman.id.au/kisskb/head/13396/
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Michael Ellerman <mpe@ellerman.id.au> [2 build failures]
Reported-by: Fengguang Wu <fengguang.wu@intel.com> [2 build failures]
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, smaps: MMUPageSize for device-dax", v3.
Similar to commit 31383c6865 ("mm, hugetlbfs: introduce ->split() to
vm_operations_struct") here is another occasion where we want
special-case hugetlbfs/hstate enabling to also apply to device-dax.
This prompts the question what other hstate conversions we might do
beyond ->split() and ->pagesize(), but this appears to be the last of
the usages of hstate_vma() in generic/non-hugetlbfs specific code paths.
This patch (of 3):
The current powerpc definition of vma_mmu_pagesize() open codes looking
up the page size via hstate. It is identical to the generic
vma_kernel_pagesize() implementation.
Now, vma_kernel_pagesize() is growing support for determining the page
size of Device-DAX vmas in addition to the existing Hugetlbfs page size
determination.
Ideally, if the powerpc vma_mmu_pagesize() used vma_kernel_pagesize() it
would automatically benefit from any new vma-type support that is added
to vma_kernel_pagesize(). However, the powerpc vma_mmu_pagesize() is
prevented from calling vma_kernel_pagesize() due to a circular header
dependency that requires vma_mmu_pagesize() to be defined before
including <linux/hugetlb.h>.
Break this circular dependency by defining the default vma_mmu_pagesize()
as a __weak symbol to be overridden by the powerpc version.
Link: http://lkml.kernel.org/r/151996254179.27922.2213728278535578744.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Jane Chu <jane.chu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>