c8061485a0
465 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Prarit Bhargava
|
2a51fe083e |
arch/x86: Handle non enumerated CPU after physical hotplug
When a CPU is physically added to a system then the MADT table is not
updated.
If subsequently a kdump kernel is started on that physically added CPU then
the ACPI enumeration fails to provide the information for this CPU which is
now the boot CPU of the kdump kernel.
As a consequence, generic_processor_info() is not invoked for that CPU so
the number of enumerated processors is 0 and none of the initializations,
including the logical package id management, are performed.
We have code which relies on the correctness of the logical package map and
other information which is initialized via generic_processor_info().
Executing such code will result in undefined behaviour or kernel crashes.
This problem applies only to the kdump kernel because a normal kexec will
switch to the original boot CPU, which is enumerated in MADT, before
jumping into the kexec kernel.
The boot code already has a check for num_processors equal 0 in
prefill_possible_map(). We can use that check as an indicator that the
enumeration of the boot CPU did not happen and invoke generic_processor_info()
for it. That initializes the relevant data for the boot CPU and therefore
prevents subsequent failure.
[ tglx: Refined the code and rewrote the changelog ]
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Fixes:
|
||
Linus Torvalds
|
597f03f9d1 |
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug updates from Thomas Gleixner: "Yet another batch of cpu hotplug core updates and conversions: - Provide core infrastructure for multi instance drivers so the drivers do not have to keep custom lists. - Convert custom lists to the new infrastructure. The block-mq custom list conversion comes through the block tree and makes the diffstat tip over to more lines removed than added. - Handle unbalanced hotplug enable/disable calls more gracefully. - Remove the obsolete CPU_STARTING/DYING notifier support. - Convert another batch of notifier users. The relayfs changes which conflicted with the conversion have been shipped to me by Andrew. The remaining lot is targeted for 4.10 so that we finally can remove the rest of the notifiers" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits) cpufreq: Fix up conversion to hotplug state machine blk/mq: Reserve hotplug states for block multiqueue x86/apic/uv: Convert to hotplug state machine s390/mm/pfault: Convert to hotplug state machine mips/loongson/smp: Convert to hotplug state machine mips/octeon/smp: Convert to hotplug state machine fault-injection/cpu: Convert to hotplug state machine padata: Convert to hotplug state machine cpufreq: Convert to hotplug state machine ACPI/processor: Convert to hotplug state machine virtio scsi: Convert to hotplug state machine oprofile/timer: Convert to hotplug state machine block/softirq: Convert to hotplug state machine lib/irq_poll: Convert to hotplug state machine x86/microcode: Convert to hotplug state machine sh/SH-X3 SMP: Convert to hotplug state machine ia64/mca: Convert to hotplug state machine ARM/OMAP/wakeupgen: Convert to hotplug state machine ARM/shmobile: Convert to hotplug state machine arm64/FP/SIMD: Convert to hotplug state machine ... |
||
Linus Torvalds
|
1a4a2bc460 |
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull low-level x86 updates from Ingo Molnar: "In this cycle this topic tree has become one of those 'super topics' that accumulated a lot of changes: - Add CONFIG_VMAP_STACK=y support to the core kernel and enable it on x86 - preceded by an array of changes. v4.8 saw preparatory changes in this area already - this is the rest of the work. Includes the thread stack caching performance optimization. (Andy Lutomirski) - switch_to() cleanups and all around enhancements. (Brian Gerst) - A large number of dumpstack infrastructure enhancements and an unwinder abstraction. The secret long term plan is safe(r) live patching plus maybe another attempt at debuginfo based unwinding - but all these current bits are standalone enhancements in a frame pointer based debug environment as well. (Josh Poimboeuf) - More __ro_after_init and const annotations. (Kees Cook) - Enable KASLR for the vmemmap memory region. (Thomas Garnier)" [ The virtually mapped stack changes are pretty fundamental, and not x86-specific per se, even if they are only used on x86 right now. ] * 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits) x86/asm: Get rid of __read_cr4_safe() thread_info: Use unsigned long for flags x86/alternatives: Add stack frame dependency to alternative_call_2() x86/dumpstack: Fix show_stack() task pointer regression x86/dumpstack: Remove dump_trace() and related callbacks x86/dumpstack: Convert show_trace_log_lvl() to use the new unwinder oprofile/x86: Convert x86_backtrace() to use the new unwinder x86/stacktrace: Convert save_stack_trace_*() to use the new unwinder perf/x86: Convert perf_callchain_kernel() to use the new unwinder x86/unwind: Add new unwind interface and implementations x86/dumpstack: Remove NULL task pointer convention fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y sched/core: Free the stack early if CONFIG_THREAD_INFO_IN_TASK lib/syscall: Pin the task stack in collect_syscall() x86/process: Pin the target stack in get_wchan() x86/dumpstack: Pin the target stack when dumping it kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function sched/core: Add try_get_task_stack() and put_task_stack() x86/entry/64: Fix a minor comment rebase error iommu/amd: Don't put completion-wait semaphore on stack ... |
||
Linus Torvalds
|
110a9e42b6 |
Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 apic updates from Ingo Molnar: "The main changes are: - Persistent CPU/node numbering across CPU hotplug/unplug events. This is a pretty involved series of changes that first fetches all the information during bootup and then uses it for the various hotplug/unplug methods. (Gu Zheng, Dou Liyang) - IO-APIC hot-add/remove fixes and enhancements. (Rui Wang) - ... various fixes, cleanups and enhancements" * 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits) x86/apic: Fix silent & fatal merge conflict in __generic_processor_info() acpi: Fix broken error check in map_processor() acpi: Validate processor id when mapping the processor acpi: Provide mechanism to validate processors in the ACPI tables x86/acpi: Set persistent cpuid <-> nodeid mapping when booting x86/acpi: Enable MADT APIs to return disabled apicids x86/acpi: Introduce persistent storage for cpuid <-> apicid mapping x86/acpi: Enable acpi to register all possible cpus at boot time x86/numa: Online memory-less nodes at boot time x86/apic: Get rid of apic_version[] array x86/apic: Order irq_enter/exit() calls correctly vs. ack_APIC_irq() x86/ioapic: Ignore root bridges without a companion ACPI device x86/apic: Update comment about disabling processor focus x86/smpboot: Check APIC ID before setting up default routing x86/ioapic: Fix IOAPIC failing to request resource x86/ioapic: Fix lost IOAPIC resource after hot-removal and hotadd x86/ioapic: Fix setup_res() failing to get resource x86/ioapic: Support hot-removal of IOAPICs present during boot x86/ioapic: Change prototype of acpi_ioapic_add() x86/apic, ACPI: Fix incorrect assignment when handling apic/x2apic entries ... |
||
Tim Chen
|
8f37961cf2 |
sched/core, x86/topology: Fix NUMA in package topology bug
Current code can call set_cpu_sibling_map() and invoke sched_set_topology() more than once (e.g. on CPU hot plug). When this happens after sched_init_smp() has been called, we lose the NUMA topology extension to sched_domain_topology in sched_init_numa(). This results in incorrect topology when the sched domain is rebuilt. This patch fixes the bug and issues warning if we call sched_set_topology() after sched_init_smp(). Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@suse.de Cc: jolsa@redhat.com Cc: rjw@rjwysocki.net Link: http://lkml.kernel.org/r/1474485552-141429-2-git-send-email-srinivas.pandruvada@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
1e1b37273c |
Merge branch 'x86/urgent' into x86/apic
Bring in the upstream modifications so we can fixup the silent merge conflict which is introduced by this merge. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Denys Vlasenko
|
cff9ab2b29 |
x86/apic: Get rid of apic_version[] array
The array has a size of MAX_LOCAL_APIC, which can be as large as 32k, so it can consume up to 128k. The array has been there forever and was never used for anything useful other than a version mismatch check which was introduced in 2009. There is no reason to store the version in an array. The kernel is not prepared to handle different APIC versions anyway, so the real important part is to detect a version mismatch and warn about it, which can be done with a single variable as well. [ tglx: Massaged changelog ] Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: Andy Lutomirski <luto@amacapital.net> CC: Borislav Petkov <bp@alien8.de> CC: Brian Gerst <brgerst@gmail.com> CC: Mike Travis <travis@sgi.com> Link: http://lkml.kernel.org/r/20160913181232.30815-1-dvlasenk@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Thomas Gleixner
|
0cb7bf61b1 |
Merge branch 'linus' into smp/hotplug
Apply upstream changes to avoid conflicts with pending patches. |
||
Brian Gerst
|
0100301bfd |
sched/x86: Rewrite the switch_to() code
Move the low-level context switch code to an out-of-line asm stub instead of using complex inline asm. This allows constructing a new stack frame for the child process to make it seamlessly flow to ret_from_fork without an extra test and branch in __switch_to(). It also improves code generation for __schedule() by using the C calling convention instead of clobbering all registers. Signed-off-by: Brian Gerst <brgerst@gmail.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1471106302-10159-5-git-send-email-brgerst@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Wei Jiangang
|
384d9fe374 |
x86/smpboot: Check APIC ID before setting up default routing
This is not a bugfix, but code optimization. If the BSP's APIC ID in local APIC is unexpected, a kernel panic will occur and the system will halt. That means no need to enable APIC mode, and no reason to set up the default routing for APIC. The combination of default_setup_apic_routing() and apic_bsp_setup() are used to enable APIC mode. They two should be kept together, rather than being separated by the codes of checking APIC ID. Just like their usage in APIC_init_uniprocessor(). Signed-off-by: Wei Jiangang <weijg.fnst@cn.fujitsu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@suse.de Link: http://lkml.kernel.org/r/1471576957-12961-1-git-send-email-weijg.fnst@cn.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Josh Poimboeuf
|
b32f96c75d |
x86/asm/head: Rename 'stack_start' -> 'initial_stack'
The 'stack_start' variable is similar in usage to 'initial_code' and 'initial_gs': they're all stored in head_64.S and they're all updated by SMP and ACPI suspend before starting a CPU. Rename it to 'initial_stack' to be consistent with the others. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/87063d773a3212051b77e17b0ee427f6582a5050.1471535549.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Jiri Olsa
|
7b0501b1e7 |
x86/smp: Fix __max_logical_packages value setup
Frank reported kernel panic when he disabled several cores in BIOS via following option: Core Disable Bitmap(Hex) [0] with number 0xFFE, which leaves 16 CPUs in system (out of 48). The kernel panic below goes along with following messages: smpboot: Max logical packages: 2^M smpboot: APIC(0) Converting physical 0 to logical package 0^M smpboot: APIC(20) Converting physical 1 to logical package 1^M smpboot: APIC(40) Package 2 exceeds logical package map^M smpboot: CPU 8 APICId 40 disabled^M smpboot: APIC(60) Package 3 exceeds logical package map^M smpboot: CPU 12 APICId 60 disabled^M ... general protection fault: 0000 [#1] SMP^M Modules linked in:^M CPU: 15 PID: 1 Comm: swapper/0 Not tainted 4.7.0-rc5+ #1^M Hardware name: SGI UV300/UV300, BIOS SGI UV 300 series BIOS 05/25/2016^M task: ffff8801673e0000 ti: ffff8801673ac000 task.ti: ffff8801673ac000^M RIP: 0010:[<ffffffff81014d54>] [<ffffffff81014d54>] uncore_change_context+0xd4/0x180^M ... [<ffffffff810158ac>] uncore_event_init_cpu+0x6c/0x70^M [<ffffffff81d8c91c>] intel_uncore_init+0x1c2/0x2dd^M [<ffffffff81d8c75a>] ? uncore_cpu_setup+0x17/0x17^M [<ffffffff81002190>] do_one_initcall+0x50/0x190^M [<ffffffff810ab193>] ? parse_args+0x293/0x480^M [<ffffffff81d87365>] kernel_init_freeable+0x1a5/0x249^M [<ffffffff81d86a35>] ? set_debug_rodata+0x12/0x12^M [<ffffffff816dc19e>] kernel_init+0xe/0x110^M [<ffffffff816e93bf>] ret_from_fork+0x1f/0x40^M [<ffffffff816dc190>] ? rest_init+0x80/0x80^M The reason for the panic is wrong value of __max_logical_packages, which lets logical_package_map uninitialized and the uncore code relying on this map being properly initialized (maybe we should add some safety checks there as well). The __max_logical_packages is computed as: DIV_ROUND_UP(total_cpus, ncpus); - ncpus being number of cores With above BIOS setup we get total_cpus == 16 which set __max_logical_packages to 2 (ncpus is 12). Once topology_update_package_map processes CPU with logical pkg over 2 we display above messages and fail to initialize the physical_to_logical_pkg map, which makes the uncore code crash. The fix is to remove logical_package_map bitmap completely and keep and update the logical_packages number instead. After we enumerate all the present CPUs, we check if the enumerated logical packages count is within its computed maximum from BIOS data. If it's not the case, we set this maximum to the new enumerated value and freeze any new addition of logical packages. The freeze is because lot of init code like uncore/rapl/cqm depends on having maximum logical package value set to allocate their data, so we can't change it later on. Prarit Bhargava tested the patch and confirms that it solves the problem: From dmidecode: Core Count: 24 Core Enabled: 24 Thread Count: 48 Orig kernel boot log: [ 0.464981] smpboot: Max logical packages: 19 [ 0.469861] smpboot: APIC(0) Converting physical 0 to logical package 0 [ 0.477261] smpboot: APIC(40) Converting physical 1 to logical package 1 [ 0.484760] smpboot: APIC(80) Converting physical 2 to logical package 2 [ 0.492258] smpboot: APIC(c0) Converting physical 3 to logical package 3 1. nr_cpus=8, should stop enumerating in package 0: [ 0.533664] smpboot: APIC(0) Converting physical 0 to logical package 0 [ 0.539596] smpboot: Max logical packages: 19 2. max_cpus=8, should still enumerate all packages: [ 0.526494] smpboot: APIC(0) Converting physical 0 to logical package 0 [ 0.532428] smpboot: APIC(40) Converting physical 1 to logical package 1 [ 0.538456] smpboot: APIC(80) Converting physical 2 to logical package 2 [ 0.544486] smpboot: APIC(c0) Converting physical 3 to logical package 3 [ 0.550524] smpboot: Max logical packages: 19 3. nr_cpus=49 ( 2 socket + 1 core on 3rd socket), should stop enumerating in package 2: [ 0.521378] smpboot: APIC(0) Converting physical 0 to logical package 0 [ 0.527314] smpboot: APIC(40) Converting physical 1 to logical package 1 [ 0.533345] smpboot: APIC(80) Converting physical 2 to logical package 2 [ 0.539368] smpboot: Max logical packages: 19 4. maxcpus=49, should still enumerate all packages: [ 0.525591] smpboot: APIC(0) Converting physical 0 to logical package 0 [ 0.531525] smpboot: APIC(40) Converting physical 1 to logical package 1 [ 0.537547] smpboot: APIC(80) Converting physical 2 to logical package 2 [ 0.543579] smpboot: APIC(c0) Converting physical 3 to logical package 3 [ 0.549624] smpboot: Max logical packages: 19 5. kdump (nr_cpus=1) works as well. Reported-by: Frank Ramsay <framsay@redhat.com> Tested-by: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Reviewed-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160815101700.GA30090@krava Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Boris Ostrovsky
|
aa877175e7 |
cpu/hotplug: Prevent alloc/free of irq descriptors during CPU up/down (again)
Now that Xen no longer allocates irqs in _cpu_up() we can restore
commit:
|
||
Linus Torvalds
|
aeb35d6b74 |
Merge branch 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 header cleanups from Ingo Molnar: "This tree is a cleanup of the x86 tree reducing spurious uses of module.h - which should improve build performance a bit" * 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, crypto: Restore MODULE_LICENSE() to glue_helper.c so it loads x86/apic: Remove duplicated include from probe_64.c x86/ce4100: Remove duplicated include from ce4100.c x86/headers: Include spinlock_types.h in x8664_ksyms_64.c for missing spinlock_t x86/platform: Delete extraneous MODULE_* tags fromm ts5500 x86: Audit and remove any remaining unnecessary uses of module.h x86/kvm: Audit and remove any unnecessary uses of module.h x86/xen: Audit and remove any unnecessary uses of module.h x86/platform: Audit and remove any unnecessary uses of module.h x86/lib: Audit and remove any unnecessary uses of module.h x86/kernel: Audit and remove any unnecessary uses of module.h x86/mm: Audit and remove any unnecessary uses of module.h x86: Don't use module.h just for AUTHOR / LICENSE tags |
||
Linus Torvalds
|
6453dbdda3 |
Power management material for v4.8-rc1
- Rework the cpufreq governor interface to make it more straightforward and modify the conservative governor to avoid using transition notifications (Rafael Wysocki). - Rework the handling of frequency tables by the cpufreq core to make it more efficient (Viresh Kumar). - Modify the schedutil governor to reduce the number of wakeups it causes to occur in cases when the CPU frequency doesn't need to be changed (Steve Muckle, Viresh Kumar). - Fix some minor issues and clean up code in the cpufreq core and governors (Rafael Wysocki, Viresh Kumar). - Add Intel Broxton support to the intel_pstate driver (Srinivas Pandruvada). - Fix problems related to the config TDP feature and to the validity of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka, Srinivas Pandruvada). - Make intel_pstate update the cpu_frequency tracepoint even if the frequency doesn't change to avoid confusing powertop (Rafael Wysocki). - Clean up the usage of __init/__initdata in intel_pstate, mark some of its internal variables as __read_mostly and drop an unused structure element from it (Jisheng Zhang, Carsten Emde). - Clean up the usage of some duplicate MSR symbols in intel_pstate and turbostat (Srinivas Pandruvada). - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay Adiga, Viresh Kumar, Ben Dooks). - Fix a regression (introduced during the 4.5 cycle) in the pcc-cpufreq driver by reverting the problematic commit (Andreas Herrmann). - Add support for Intel Denverton to intel_idle, clean up Broxton support in it and make it explicitly non-modular (Jacob Pan, Jan Beulich, Paul Gortmaker). - Add support for Denverton and Ivy Bridge server to the Intel RAPL power capping driver and make it more careful about the handing of MSRs that may not be present (Jacob Pan, Xiaolong Wang). - Fix resume from hibernation on x86-64 by making the CPU offline during resume avoid using MONITOR/MWAIT in the "play dead" loop which may lead to an inadvertent "revival" of a "dead" CPU and a page fault leading to a kernel crash from it (Rafael Wysocki). - Make memory management during resume from hibernation more straightforward (Rafael Wysocki). - Add debug features that should help to detect problems related to hibernation and resume from it (Rafael Wysocki, Chen Yu). - Clean up hibernation core somewhat (Rafael Wysocki). - Prevent KASAN from instrumenting the hibernation core which leads to large numbers of false-positives from it (James Morse). - Prevent PM (hibernate and suspend) notifiers from being called during the cleanup phase if they have not been called during the corresponding preparation phase which is possible if one of the other notifiers returns an error at that time (Lianwei Wang). - Improve suspend-related debug printout in the tasks freezer and clean up suspend-related console handling (Roger Lu, Borislav Petkov). - Update the AnalyzeSuspend script in the kernel sources to version 4.2 (Todd Brandt). - Modify the generic power domains framework to make it handle system suspend/resume better (Ulf Hansson). - Make the runtime PM framework avoid resuming devices synchronously when user space changes the runtime PM settings for them and improve its error reporting (Rafael Wysocki, Linus Walleij). - Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus) and in the core, make some devfreq code explicitly non-modular and change some of it into tristate (Bartlomiej Zolnierkiewicz, Peter Chen, Paul Gortmaker). - Add DT support to the generic PM clocks management code and make it export some more symbols (Jon Hunter, Paul Gortmaker). - Make the PCI PM core code slightly more robust against possible driver errors (Andy Shevchenko). - Make it possible to change DESTDIR and PREFIX in turbostat (Andy Shevchenko). -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABCAAGBQJXl7/dAAoJEILEb/54YlRx+VgQAIQJOWvxKew3Yl02c/sdj9OT 5VNnFrzGzdcAPofvvG9qGq8B0Es1vYehJpwwOB21ri8EvYv0riIiU1yrqslObojQ oaZOkSBpbIoKjGR4CpYA/A+feE+8EqIBdPGd+lx5a6oRdUi7tRVHBG9lyLO3FB/i jan1q8dMpZsmu+Y+rVVHGnCVuIlIEqr2ZnZfCwDAulO2Arp/QFAh4kH08ELATvrl bkPa25vq7/VMP/vCDzrfZKD5mUuKogIRu/J5wx4py1nE+FB35cKKyqBOgklLwAeY UI8vjDhr/myNUs54AZlktOkq47TCYvjvhX9kmOxBjuWqFbRusU012IRek1fYPRIV ZqbkqNX7UEVQwunAEg9AyFwyzEtOht93dQDT5RLEd4QzKuM76gmHpLeTGGMzE+nu FnmF9JGl4DVwqpZl9yU2+hR2Mt3bP8OF8qYmNiGUB3KO4emPslhSd+6y8liA5Bx2 SJf0Gb//vaHCh3/uMnwAonYPqRkZvBLOMwuL1VUjNQfRMnQtDdgHMYB1aT/EglPA 8ww6j4J8rVRLAxvYQ3UEmNA/vBNclKXblRR18+JddEZP9/oX0ATfwnCCUpr839uk xxyQhrm4/AI60+PHWCX4GG80YrKdOGTkF7LXCQZanVWjjuyF17rufegZ2YWLT07v JU1Cmumfdy2jJluT8xsR =uVGz -----END PGP SIGNATURE----- Merge tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "Again, the majority of changes go into the cpufreq subsystem, but there are no big features this time. The cpufreq changes that stand out somewhat are the governor interface rework and improvements related to the handling of frequency tables. Apart from those, there are fixes and new device/CPU IDs in drivers, cleanups and an improvement of the new schedutil governor. Next, there are some changes in the hibernation core, including a fix for a nasty problem related to the MONITOR/MWAIT usage by CPU offline during resume from hibernation, a few core improvements related to memory management during resume, a couple of additional debug features and cleanups. Finally, we have some fixes and cleanups in the devfreq subsystem, generic power domains framework improvements related to system suspend/resume, support for some new chips in intel_idle and in the power capping RAPL driver, a new version of the AnalyzeSuspend utility and some assorted fixes and cleanups. Specifics: - Rework the cpufreq governor interface to make it more straightforward and modify the conservative governor to avoid using transition notifications (Rafael Wysocki). - Rework the handling of frequency tables by the cpufreq core to make it more efficient (Viresh Kumar). - Modify the schedutil governor to reduce the number of wakeups it causes to occur in cases when the CPU frequency doesn't need to be changed (Steve Muckle, Viresh Kumar). - Fix some minor issues and clean up code in the cpufreq core and governors (Rafael Wysocki, Viresh Kumar). - Add Intel Broxton support to the intel_pstate driver (Srinivas Pandruvada). - Fix problems related to the config TDP feature and to the validity of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka, Srinivas Pandruvada). - Make intel_pstate update the cpu_frequency tracepoint even if the frequency doesn't change to avoid confusing powertop (Rafael Wysocki). - Clean up the usage of __init/__initdata in intel_pstate, mark some of its internal variables as __read_mostly and drop an unused structure element from it (Jisheng Zhang, Carsten Emde). - Clean up the usage of some duplicate MSR symbols in intel_pstate and turbostat (Srinivas Pandruvada). - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay Adiga, Viresh Kumar, Ben Dooks). - Fix a regression (introduced during the 4.5 cycle) in the pcc-cpufreq driver by reverting the problematic commit (Andreas Herrmann). - Add support for Intel Denverton to intel_idle, clean up Broxton support in it and make it explicitly non-modular (Jacob Pan, Jan Beulich, Paul Gortmaker). - Add support for Denverton and Ivy Bridge server to the Intel RAPL power capping driver and make it more careful about the handing of MSRs that may not be present (Jacob Pan, Xiaolong Wang). - Fix resume from hibernation on x86-64 by making the CPU offline during resume avoid using MONITOR/MWAIT in the "play dead" loop which may lead to an inadvertent "revival" of a "dead" CPU and a page fault leading to a kernel crash from it (Rafael Wysocki). - Make memory management during resume from hibernation more straightforward (Rafael Wysocki). - Add debug features that should help to detect problems related to hibernation and resume from it (Rafael Wysocki, Chen Yu). - Clean up hibernation core somewhat (Rafael Wysocki). - Prevent KASAN from instrumenting the hibernation core which leads to large numbers of false-positives from it (James Morse). - Prevent PM (hibernate and suspend) notifiers from being called during the cleanup phase if they have not been called during the corresponding preparation phase which is possible if one of the other notifiers returns an error at that time (Lianwei Wang). - Improve suspend-related debug printout in the tasks freezer and clean up suspend-related console handling (Roger Lu, Borislav Petkov). - Update the AnalyzeSuspend script in the kernel sources to version 4.2 (Todd Brandt). - Modify the generic power domains framework to make it handle system suspend/resume better (Ulf Hansson). - Make the runtime PM framework avoid resuming devices synchronously when user space changes the runtime PM settings for them and improve its error reporting (Rafael Wysocki, Linus Walleij). - Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus) and in the core, make some devfreq code explicitly non-modular and change some of it into tristate (Bartlomiej Zolnierkiewicz, Peter Chen, Paul Gortmaker). - Add DT support to the generic PM clocks management code and make it export some more symbols (Jon Hunter, Paul Gortmaker). - Make the PCI PM core code slightly more robust against possible driver errors (Andy Shevchenko). - Make it possible to change DESTDIR and PREFIX in turbostat (Andy Shevchenko)" * tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits) Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency" PM / hibernate: Introduce test_resume mode for hibernation cpufreq: export cpufreq_driver_resolve_freq() cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index() PCI / PM: check all fields in pci_set_platform_pm() cpufreq: acpi-cpufreq: use cached frequency mapping when possible cpufreq: schedutil: map raw required frequency to driver frequency cpufreq: add cpufreq_driver_resolve_freq() cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT intel_pstate: Update cpu_frequency tracepoint every time cpufreq: intel_pstate: clean remnant struct element PM / tools: scripts: AnalyzeSuspend v4.2 x86 / hibernate: Use hlt_play_dead() when resuming from hibernation cpufreq: powernv: Replacing pstate_id with frequency table index intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate() PM / hibernate: Image data protection during restoration PM / hibernate: Add missing braces in __register_nosave_region() PM / hibernate: Clean up comments in snapshot.c PM / hibernate: Clean up function headers in snapshot.c PM / hibernate: Add missing braces in hibernate_setup() ... |
||
Linus Torvalds
|
0f657262d5 |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar: "Various x86 low level modifications: - preparatory work to support virtually mapped kernel stacks (Andy Lutomirski) - support for 64-bit __get_user() on 32-bit kernels (Benjamin LaHaise) - (involved) workaround for Knights Landing CPU erratum (Dave Hansen) - MPX enhancements (Dave Hansen) - mremap() extension to allow remapping of the special VDSO vma, for purposes of user level context save/restore (Dmitry Safonov) - hweight and entry code cleanups (Borislav Petkov) - bitops code generation optimizations and cleanups with modern GCC (H. Peter Anvin) - syscall entry code optimizations (Paolo Bonzini)" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits) x86/mm/cpa: Add missing comment in populate_pdg() x86/mm/cpa: Fix populate_pgd(): Stop trying to deallocate failed PUDs x86/syscalls: Add compat_sys_preadv64v2/compat_sys_pwritev64v2 x86/smp: Remove unnecessary initialization of thread_info::cpu x86/smp: Remove stack_smp_processor_id() x86/uaccess: Move thread_info::addr_limit to thread_struct x86/dumpstack: Rename thread_struct::sig_on_uaccess_error to sig_on_uaccess_err x86/uaccess: Move thread_info::uaccess_err and thread_info::sig_on_uaccess_err to thread_struct x86/dumpstack: When OOPSing, rewind the stack before do_exit() x86/mm/64: In vmalloc_fault(), use CR3 instead of current->active_mm x86/dumpstack/64: Handle faults when printing the "Stack: " part of an OOPS x86/dumpstack: Try harder to get a call trace on stack overflow x86/mm: Remove kernel_unmap_pages_in_pgd() and efi_cleanup_page_tables() x86/mm/cpa: In populate_pgd(), don't set the PGD entry until it's populated x86/mm/hotplug: Don't remove PGD entries in remove_pagetable() x86/mm: Use pte_none() to test for empty PTE x86/mm: Disallow running with 32-bit PTEs to work around erratum x86/mm: Ignore A/D bits in pte/pmd/pud_none() x86/mm: Move swap offset/type up in PTE to work around erratum x86/entry: Inline enter_from_user_mode() ... |
||
Rafael J. Wysocki
|
406f992e4a |
x86 / hibernate: Use hlt_play_dead() when resuming from hibernation
On Intel hardware, native_play_dead() uses mwait_play_dead() by default and only falls back to the other methods if that fails. That also happens during resume from hibernation, when the restore (boot) kernel runs disable_nonboot_cpus() to take all of the CPUs except for the boot one offline. However, that is problematic, because the address passed to __monitor() in mwait_play_dead() is likely to be written to in the last phase of hibernate image restoration and that causes the "dead" CPU to start executing instructions again. Unfortunately, the page containing the address in that CPU's instruction pointer may not be valid any more at that point. First, that page may have been overwritten with image kernel memory contents already, so the instructions the CPU attempts to execute may simply be invalid. Second, the page tables previously used by that CPU may have been overwritten by image kernel memory contents, so the address in its instruction pointer is impossible to resolve then. A report from Varun Koyyalagunta and investigation carried out by Chen Yu show that the latter sometimes happens in practice. To prevent it from happening, temporarily change the smp_ops.play_dead pointer during resume from hibernation so that it points to a special "play dead" routine which uses hlt_play_dead() and avoids the inadvertent "revivals" of "dead" CPUs this way. A slightly unpleasant consequence of this change is that if the system is hibernated with one or more CPUs offline, it will generally draw more power after resume than it did before hibernation, because the physical state entered by CPUs via hlt_play_dead() is higher-power than the mwait_play_dead() one in the majority of cases. It is possible to work around this, but it is unclear how much of a problem that's going to be in practice, so the workaround will be implemented later if it turns out to be necessary. Link: https://bugzilla.kernel.org/show_bug.cgi?id=106371 Reported-by: Varun Koyyalagunta <cpudebug@centtech.com> Original-by: Chen Yu <yu.c.chen@intel.com> Tested-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
eb43e8f85f |
x86/smp: Remove unnecessary initialization of thread_info::cpu
It's statically initialized to zero -- no need to dynamically initialize it to zero as well. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/6cf6314dce3051371a913ee19d1b88e29c68c560.1468527351.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Paul Gortmaker
|
186f43608a |
x86/kernel: Audit and remove any unnecessary uses of module.h
Historically a lot of these existed because we did not have a distinction between what was modular code and what was providing support to modules via EXPORT_SYMBOL and friends. That changed when we forked out support for the latter into the export.h file. This means we should be able to reduce the usage of module.h in code that is obj-y Makefile or bool Kconfig. The advantage in doing so is that module.h itself sources about 15 other headers; adding significantly to what we feed cpp, and it can obscure what headers we are effectively using. Since module.h was the source for init.h (for __init) and for export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance for the presence of either and replace as needed. Build testing revealed some implicit header usage that was fixed up accordingly. Note that some bool/obj-y instances remain since module.h is the header for some exception table entry stuff, and for things like __init_or_module (code that is tossed when MODULES=n). Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160714001901.31603-4-paul.gortmaker@windriver.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andi Kleen
|
70b8301f6b |
x86/topology: Add topology_max_smt_threads()
For SMT specific workarounds it is useful to know if SMT is active on any online CPU in the system. This currently requires a loop over all online CPUs. Add a global variable that is updated with the maximum number of smt threads on any CPU on online/offline, and use it for topology_max_smt_threads() The single call is easier to use than a loop. Not exported to user space because user space already can use the existing sibling interfaces to find this out. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1463703002-19686-2-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
168f1a7163 |
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar: "The main changes in this cycle were: - MSR access API fixes and enhancements (Andy Lutomirski) - early exception handling improvements (Andy Lutomirski) - user-space FS/GS prctl usage fixes and improvements (Andy Lutomirski) - Remove the cpu_has_*() APIs and replace them with equivalents (Borislav Petkov) - task switch micro-optimization (Brian Gerst) - 32-bit entry code simplification (Denys Vlasenko) - enhance PAT handling in enumated CPUs (Toshi Kani) ... and lots of other cleanups/fixlets" * 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits) x86/arch_prctl/64: Restore accidentally removed put_cpu() in ARCH_SET_GS x86/entry/32: Remove asmlinkage_protect() x86/entry/32: Remove GET_THREAD_INFO() from entry code x86/entry, sched/x86: Don't save/restore EFLAGS on task switch x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs selftests/x86/ldt_gdt: Test set_thread_area() deletion of an active segment x86/tls: Synchronize segment registers in set_thread_area() x86/asm/64: Rename thread_struct's fs and gs to fsbase and gsbase x86/arch_prctl/64: Remove FSBASE/GSBASE < 4G optimization x86/segments/64: When load_gs_index fails, clear the base x86/segments/64: When loadsegment(fs, ...) fails, clear the base x86/asm: Make asm/alternative.h safe from assembly x86/asm: Stop depending on ptrace.h in alternative.h x86/entry: Rename is_{ia32,x32}_task() to in_{ia32,x32}_syscall() x86/asm: Make sure verify_cpu() has a good stack x86/extable: Add a comment about early exception handlers x86/msr: Set the return value to zero when native_rdmsr_safe() fails x86/paravirt: Make "unsafe" MSR accesses unsafe even if PARAVIRT=y x86/paravirt: Add paravirt_{read,write}_msr() x86/msr: Carry on after a non-"safe" MSR access fails ... |
||
Thomas Gleixner
|
56402d63ee |
x86/topology: Handle CPUID bogosity gracefully
Joseph reported that a XEN guest dies with a division by 0 in the package topology setup code. This happens if cpu_info.x86_max_cores is zero. Handle that case and emit a warning. This does not fix the underlying XEN bug, but makes the code more robust. Reported-and-tested-by: Joseph Salisbury <joseph.salisbury@canonical.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: David Vrabel <david.vrabel@citrix.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1605062046270.3540@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Borislav Petkov
|
93984fbd4e |
x86/cpufeature: Replace cpu_has_apic with boot_cpu_has() usage
Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: iommu@lists.linux-foundation.org Cc: linux-pm@vger.kernel.org Cc: oprofile-list@lists.sf.net Link: http://lkml.kernel.org/r/1459801503-15600-8-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Borislav Petkov
|
8196dab4fc |
x86/cpu: Get rid of compute_unit_id
It is cpu_core_id anyway. Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1458917557-8757-3-git-send-email-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Thomas Gleixner
|
3e8db2246b |
x86/topology: Use total_cpus not nr_cpu_ids for logical packages
nr_cpu_ids can be limited on the command line via nr_cpus=. That can break the
logical package management because it results in a smaller number of packages,
but the cpus to online are occupying the full package space as the hyper
threads are enumerated after the physical cores typically.
total_cpus is the real possible cpu space not limited by nr_cpus command line
and gives us the proper number of packages.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Fixes:
|
||
Peter Zijlstra
|
63d1e995be |
x86/topology: Fix Intel HT disable
As per the comment in the code; due to BIOS it is sometimes impossible to know
if there actually are smp siblings until the machine is fully enumerated. So
we rather overestimate the number of possible packages.
Fixes:
|
||
Peter Zijlstra
|
b5d5f27d93 |
x86/topology: Fix logical package mapping
That first branch testing pkg against __max_logical_packages is wrong,
because if the first pkg id is larger, then the find_first_zero will
find us logical package id 0. However, if the second pkg id is indeed
0, we'll again claim it without testing if it was already taken.
Also, it fails to print the mapping.
Fixes:
|
||
Linus Torvalds
|
710d60cbf1 |
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull cpu hotplug updates from Thomas Gleixner: "This is the first part of the ongoing cpu hotplug rework: - Initial implementation of the state machine - Runs all online and prepare down callbacks on the plugged cpu and not on some random processor - Replaces busy loop waiting with completions - Adds tracepoints so the states can be followed" More detailed commentary on this work from an earlier email: "What's wrong with the current cpu hotplug infrastructure? - Asymmetry The hotplug notifier mechanism is asymmetric versus the bringup and teardown. This is mostly caused by the notifier mechanism. - Largely undocumented dependencies While some notifiers use explicitely defined notifier priorities, we have quite some notifiers which use numerical priorities to express dependencies without any documentation why. - Control processor driven Most of the bringup/teardown of a cpu is driven by a control processor. While it is understandable, that preperatory steps, like idle thread creation, memory allocation for and initialization of essential facilities needs to be done before a cpu can boot, there is no reason why everything else must run on a control processor. Before this patch series, bringup looks like this: Control CPU Booting CPU do preparatory steps kick cpu into life do low level init sync with booting cpu sync with control cpu bring the rest up - All or nothing approach There is no way to do partial bringups. That's something which is really desired because we waste e.g. at boot substantial amount of time just busy waiting that the cpu comes to life. That's stupid as we could very well do preparatory steps and the initial IPI for other cpus and then go back and do the necessary low level synchronization with the freshly booted cpu. - Minimal debuggability Due to the notifier based design, it's impossible to switch between two stages of the bringup/teardown back and forth in order to test the correctness. So in many hotplug notifiers the cancel mechanisms are either not existant or completely untested. - Notifier [un]registering is tedious To [un]register notifiers we need to protect against hotplug at every callsite. There is no mechanism that bringup/teardown callbacks are issued on the online cpus, so every caller needs to do it itself. That also includes error rollback. What's the new design? The base of the new design is a symmetric state machine, where both the control processor and the booting/dying cpu execute a well defined set of states. Each state is symmetric in the end, except for some well defined exceptions, and the bringup/teardown can be stopped and reversed at almost all states. So the bringup of a cpu will look like this in the future: Control CPU Booting CPU do preparatory steps kick cpu into life do low level init sync with booting cpu sync with control cpu bring itself up The synchronization step does not require the control cpu to wait. That mechanism can be done asynchronously via a worker or some other mechanism. The teardown can be made very similar, so that the dying cpu cleans up and brings itself down. Cleanups which need to be done after the cpu is gone, can be scheduled asynchronously as well. There is a long way to this, as we need to refactor the notion when a cpu is available. Today we set the cpu online right after it comes out of the low level bringup, which is not really correct. The proper mechanism is to set it to available, i.e. cpu local threads, like softirqd, hotplug thread etc. can be scheduled on that cpu, and once it finished all booting steps, it's set to online, so general workloads can be scheduled on it. The reverse happens on teardown. First thing to do is to forbid scheduling of general workloads, then teardown all the per cpu resources and finally shut it off completely. This patch series implements the basic infrastructure for this at the core level. This includes the following: - Basic state machine implementation with well defined states, so ordering and prioritization can be expressed. - Interfaces to [un]register state callbacks This invokes the bringup/teardown callback on all online cpus with the proper protection in place and [un]installs the callbacks in the state machine array. For callbacks which have no particular ordering requirement we have a dynamic state space, so that drivers don't have to register an explicit hotplug state. If a callback fails, the code automatically does a rollback to the previous state. - Sysfs interface to drive the state machine to a particular step. This is only partially functional today. Full functionality and therefor testability will be achieved once we converted all existing hotplug notifiers over to the new scheme. - Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying processor: Control CPU Booting CPU do preparatory steps kick cpu into life do low level init sync with booting cpu sync with control cpu wait for boot bring itself up Signal completion to control cpu In a previous step of this work we've done a full tree mechanical conversion of all hotplug notifiers to the new scheme. The balance is a net removal of about 4000 lines of code. This is not included in this series, as we decided to take a different approach. Instead of mechanically converting everything over, we will do a proper overhaul of the usage sites one by one so they nicely fit into the symmetric callback scheme. I decided to do that after I looked at the ugliness of some of the converted sites and figured out that their hotplug mechanism is completely buggered anyway. So there is no point to do a mechanical conversion first as we need to go through the usage sites one by one again in order to achieve a full symmetric and testable behaviour" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits) cpu/hotplug: Document states better cpu/hotplug: Fix smpboot thread ordering cpu/hotplug: Remove redundant state check cpu/hotplug: Plug death reporting race rcu: Make CPU_DYING_IDLE an explicit call cpu/hotplug: Make wait for dead cpu completion based cpu/hotplug: Let upcoming cpu bring itself fully up arch/hotplug: Call into idle with a proper state cpu/hotplug: Move online calls to hotplugged cpu cpu/hotplug: Create hotplug threads cpu/hotplug: Split out the state walk into functions cpu/hotplug: Unpark smpboot threads from the state machine cpu/hotplug: Move scheduler cpu_online notifier to hotplug core cpu/hotplug: Implement setup/removal interface cpu/hotplug: Make target state writeable cpu/hotplug: Add sysfs state interface cpu/hotplug: Hand in target state to _cpu_up/down cpu/hotplug: Convert the hotplugged cpu work to a state machine cpu/hotplug: Convert to a state machine for the control processor cpu/hotplug: Add tracepoints ... |
||
Thomas Gleixner
|
fc6d73d674 |
arch/hotplug: Call into idle with a proper state
Let the non boot cpus call into idle with the corresponding hotplug state, so the hotplug core can handle the further bringup. That's a first step to convert the boot side of the hotplugged cpus to do all the synchronization with the other side through the state machine. For now it'll only start the hotplug thread and kick the full bringup of the cpu. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: Rik van Riel <riel@redhat.com> Cc: Rafael Wysocki <rafael.j.wysocki@intel.com> Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: http://lkml.kernel.org/r/20160226182341.614102639@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Thomas Gleixner
|
1f12e32f4c |
x86/topology: Create logical package id
For per package oriented services we must be able to rely on the number of CPU packages to be within bounds. Create a tracking facility, which - calculates the number of possible packages depending on nr_cpu_ids after boot - makes sure that the package id is within the number of possible packages. If the apic id is outside we map it to a logical package id if there is enough space available. Provide interfaces for drivers to query the mapping and do translations from physcial to logical ids. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Harish Chegondi <harish.chegondi@intel.com> Cc: Jacob Pan <jacob.jun.pan@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20160222221011.541071755@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Borislav Petkov
|
362f924b64 |
x86/cpufeature: Remove unused and seldomly used cpu_has_xx macros
Those are stupid and code should use static_cpu_has_safe() or boot_cpu_has() instead. Kill the least used and unused ones. The remaining ones need more careful inspection before a conversion can happen. On the TODO. Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1449481182-27541-4-git-send-email-bp@alien8.de Cc: David Sterba <dsterba@suse.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Matt Mackall <mpm@selenic.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fb.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Thomas Gleixner
|
0fa85119cd |
Merge branch 'linus' into x86/cleanups
Pull in upstream changes so we can apply depending patches. |
||
Len Brown
|
656279a1f3 |
x86 smpboot: Re-enable init_udelay=0 by default on modern CPUs
commit |
||
Juergen Gross
|
4609586592 |
x86/paravirt: Remove unused pv_apic_ops structure
The only member of that structure is startup_ipi_hook which is always set to paravirt_nop. Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: David Vrabel <david.vrabel@citrix.com> Cc: jeremy@goop.org Cc: chrisw@sous-sol.org Cc: akataria@vmware.com Cc: rusty@rustcorp.com.au Cc: virtualization@lists.linux-foundation.org Cc: xen-devel@lists.xen.org Cc: konrad.wilk@oracle.com Cc: boris.ostrovsky@oracle.com Link: http://lkml.kernel.org/r/1447767872-16730-1-git-send-email-jgross@suse.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Len Brown
|
fcafddec4e |
x86/smpboot: Fix CPU #1 boot timeout
The following commit:
|
||
Len Brown
|
f1ccd24931 |
x86/smpboot: Fix cpu_init_udelay=10000 corner case boot parameter misbehavior
For legacy machines cpu_init_udelay defaults to 10,000. For modern machines it is set to 0. The user should be able to set cpu_init_udelay to any value on the cmdline, including 10,000. Before this patch, that was seen as "unchanged from default" and thus on a modern machine, the user request was ignored and the delay was set to 0. Signed-off-by: Len Brown <len.brown@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dparsons@brightdsl.net Cc: shrybman@teksavvy.com Link: http://lkml.kernel.org/r/de363cdbbcfcca1d22569683f7eb9873e0177251.1444968087.git.len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
0c0fee018d |
Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 init code fixlet from Ingo Molnar: "A single change: fix obsolete init code annotations" * 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86: Drop bogus __ref / __refdata annotations |
||
Len Brown
|
656bba3068 |
x86/smpboot: Remove APIC.wait_for_init_deassert and atomic init_deasserted
Both the per-APIC flag ".wait_for_init_deassert", and the global atomic_t "init_deasserted" are dead code -- remove them. For all APIC types, "wait_for_master()" prevents an AP from proceeding until the BSP has set cpu_callout_mask, making "init_deasserted" {unnecessary}: BSP: <de-assert INIT> ... BSP: {set init_deasserted} AP: wait_for_master() set cpu_initialized_mask wait for cpu_callout_mask BSP: test cpu_initialized_mask BSP: set cpu_callout_mask AP: test cpu_callout_mask AP: {wait for init_deasserted} ... AP: <touch APIC> Deleting the {dead code} above is necessary to enable some parallelism in a future patch. Signed-off-by: Len Brown <len.brown@intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jan H. Schönherr <jschoenh@amazon.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Link: http://lkml.kernel.org/r/de4b3a9bab894735e285870b5296da25ee6a8a5a.1439739165.git.len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Len Brown
|
a9bcaa02a5 |
x86/smpboot: Remove SIPI delays from cpu_up()
MPS 1.4 example code shows the following required delays during processor on-lining: INIT udelay(10,000) SIPI udelay(200) SIPI udelay(200) /* Linux actually implements this as udelay(300) */ Linux skips the udelay(10,000) on modern processors. This patch removes the udelay(200) after each SIPI on those same processors. All three legacy delays can be restored by the cmdline "cpu_init_udelay=10000". As measured by analyze_suspend.py, this patch speeds processor resume time on my desktop from 2.4ms to 1.8ms, per AP. Signed-off-by: Len Brown <len.brown@intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jan H. Schönherr <jschoenh@amazon.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Link: http://lkml.kernel.org/r/a5dfdbc8fbfdd813784da204aad5677fe459ac37.1439739165.git.len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Len Brown
|
2d99af8e8f |
x86/smpboot: Remove udelay(100) when polling cpu_callin_map
After the BSP sends INIT/SIPI/SIP to the AP and sees the AP in the cpu_initialized_map, it sets the AP loose via the cpu_callout_map, and waits for it via the cpu_callin_map. The BSP polls the cpu_callin_map with a udelay(100) and a schedule() in each iteration. The udelay(100) adds no value. For example, on my 4-CPU dekstop, the AP finishes cpu_callin() in under 70 usec and sets the cpu_callin_mask. The BSP, however, doesn't see that setting until over 30 usec later, because it was still running its udelay(100) when the AP finished. Deleting the udelay(100) in the cpu_callin_mask polling loop, saves from 0 to 100 usec per Application Processor. Signed-off-by: Len Brown <len.brown@intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jan H. Schönherr <jschoenh@amazon.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Link: http://lkml.kernel.org/r/0aade12eabeb89a688c929fe80856eaea0544bb7.1439739165.git.len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Len Brown
|
6e38f1e79d |
x86/smpboot: Remove udelay(100) when polling cpu_initialized_map
After the BSP sends the APIC INIT/SIPI/SIPI to the AP, it waits for the AP to come up and indicate that it is alive by setting its own bit in the cpu_initialized_mask. Linux polls for up to 10 seconds for this to happen. Each polling loop has a udelay(100) and a call to schedule(). The udelay(100) adds no value. For example, on my desktop, the BSP waits for the other 3 CPUs to come on line at boot for 305, 404, 405 usec. For resume from S3, it waits 317, 404, 405 usec. But when the udelay(100) is removed, the BSP waits 305, 310, 306 for boot, and 305, 307, 306 for resume. So for both boot and resume, removing the udelay(100) speeds online by about 100us in 2 of 3 cases. Signed-off-by: Len Brown <len.brown@intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jan H. Schönherr <jschoenh@amazon.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Link: http://lkml.kernel.org/r/33ef746c67d2489cad0a9b1958cf71167232ff2b.1439739165.git.len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mathias Krause
|
4daa832d99 |
x86: Drop bogus __ref / __refdata annotations
The __ref / __refdata annotations used to be needed because of referencing functions / variables annotated __cpuinit / __cpuinitdata. But those annotations vanished during the development of v3.11. Therefore most of the __ref / __refdata annotations are not needed anymore. As they may hide legitimate sections mismatches, we better get rid of them. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1437409973-8927-1-git-send-email-minipli@googlemail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
ce0d3c0a6f |
genirq: Revert sparse irq locking around __cpu_up() and move it to x86 for now
Boris reported that the sparse_irq protection around __cpu_up() in the
generic code causes a regression on Xen. Xen allocates interrupts and
some more in the xen_cpu_up() function, so it deadlocks on the
sparse_irq_lock.
There is no simple fix for this and we really should have the
protection for all architectures, but for now the only solution is to
move it to x86 where actual wreckage due to the lack of protection has
been observed.
Reported-and-tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Fixes:
|
||
Thomas Gleixner
|
5a3f75e3f0 |
x86/irq: Plug irq vector hotplug race
Jin debugged a nasty cpu hotplug race which results in leaking a irq vector on the newly hotplugged cpu. cpu N cpu M native_cpu_up device_shutdown do_boot_cpu free_msi_irqs start_secondary arch_teardown_msi_irqs smp_callin default_teardown_msi_irqs setup_vector_irq arch_teardown_msi_irq __setup_vector_irq native_teardown_msi_irq lock(vector_lock) destroy_irq install vectors unlock(vector_lock) lock(vector_lock) ---> __clear_irq_vector unlock(vector_lock) lock(vector_lock) set_cpu_online unlock(vector_lock) This leaves the irq vector(s) which are torn down on CPU M stale in the vector array of CPU N, because CPU M does not see CPU N online yet. There is a similar issue with concurrent newly setup interrupts. The alloc/free protection of irq descriptors does not prevent the above race, because it merily prevents interrupt descriptors from going away or changing concurrently. Prevent this by moving the call to setup_vector_irq() into the vector_lock held region which protects set_cpu_online(): cpu N cpu M native_cpu_up device_shutdown do_boot_cpu free_msi_irqs start_secondary arch_teardown_msi_irqs smp_callin default_teardown_msi_irqs lock(vector_lock) arch_teardown_msi_irq setup_vector_irq() __setup_vector_irq native_teardown_msi_irq install vectors destroy_irq set_cpu_online unlock(vector_lock) lock(vector_lock) __clear_irq_vector unlock(vector_lock) So cpu M either sees the cpu N online before clearing the vector or cpu N installs the vectors after cpu M has cleared it. Reported-by: xiao jin <jin.xiao@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Joerg Roedel <jroedel@suse.de> Cc: Borislav Petkov <bp@suse.de> Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com> Link: http://lkml.kernel.org/r/20150705171102.141898931@linutronix.de |
||
Zhu Guihua
|
20d5e4a9cd |
x86/espfix: Init espfix on the boot CPU side
As we alloc pages with GFP_KERNEL in init_espfix_ap() which is called before we enable local irqs, so the lockdep sub-system would (correctly) trigger a warning about the potentially blocking API. So we allocate them on the boot CPU side when the secondary CPU is brought up by the boot CPU, and hand them over to the secondary CPU. And we use alloc_pages_node() with the secondary CPU's node, to make sure the espfix stack is NUMA-local to the CPU that is going to use it. Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Cc: <bp@alien8.de> Cc: <luto@amacapital.net> Cc: <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/c97add2670e9abebb90095369f0cfc172373ac94.1435824469.git.zhugh.fnst@cn.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Zhu Guihua
|
1db875631f |
x86/espfix: Add 'cpu' parameter to init_espfix_ap()
Add a CPU index parameter to init_espfix_ap(), so that the parameter could be propagated to the function for espfix page allocation. Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com> Cc: <bp@alien8.de> Cc: <luto@amacapital.net> Cc: <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/cde3fcf1b3211f3f03feb1a995bce3fee850f0fc.1435824469.git.zhugh.fnst@cn.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
d70b3ef54c |
Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Ingo Molnar: "There were so many changes in the x86/asm, x86/apic and x86/mm topics in this cycle that the topical separation of -tip broke down somewhat - so the result is a more traditional architecture pull request, collected into the 'x86/core' topic. The topics were still maintained separately as far as possible, so bisectability and conceptual separation should still be pretty good - but there were a handful of merge points to avoid excessive dependencies (and conflicts) that would have been poorly tested in the end. The next cycle will hopefully be much more quiet (or at least will have fewer dependencies). The main changes in this cycle were: * x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas Gleixner) - This is the second and most intrusive part of changes to the x86 interrupt handling - full conversion to hierarchical interrupt domains: [IOAPIC domain] ----- | [MSI domain] --------[Remapping domain] ----- [ Vector domain ] | (optional) | [HPET MSI domain] ----- | | [DMAR domain] ----------------------------- | [Legacy domain] ----------------------------- This now reflects the actual hardware and allowed us to distangle the domain specific code from the underlying parent domain, which can be optional in the case of interrupt remapping. It's a clear separation of functionality and removes quite some duct tape constructs which plugged the remap code between ioapic/msi/hpet and the vector management. - Intel IOMMU IRQ remapping enhancements, to allow direct interrupt injection into guests (Feng Wu) * x86/asm changes: - Tons of cleanups and small speedups, micro-optimizations. This is in preparation to move a good chunk of the low level entry code from assembly to C code (Denys Vlasenko, Andy Lutomirski, Brian Gerst) - Moved all system entry related code to a new home under arch/x86/entry/ (Ingo Molnar) - Removal of the fragile and ugly CFI dwarf debuginfo annotations. Conversion to C will reintroduce many of them - but meanwhile they are only getting in the way, and the upstream kernel does not rely on them (Ingo Molnar) - NOP handling refinements. (Borislav Petkov) * x86/mm changes: - Big PAT and MTRR rework: making the code more robust and preparing to phase out exposing direct MTRR interfaces to drivers - in favor of using PAT driven interfaces (Toshi Kani, Luis R Rodriguez, Borislav Petkov) - New ioremap_wt()/set_memory_wt() interfaces to support Write-Through cached memory mappings. This is especially important for good performance on NVDIMM hardware (Toshi Kani) * x86/ras changes: - Add support for deferred errors on AMD (Aravind Gopalakrishnan) This is an important RAS feature which adds hardware support for poisoned data. That means roughly that the hardware marks data which it has detected as corrupted but wasn't able to correct, as poisoned data and raises an APIC interrupt to signal that in the form of a deferred error. It is the OS's responsibility then to take proper recovery action and thus prolonge system lifetime as far as possible. - Add support for Intel "Local MCE"s: upcoming CPUs will support CPU-local MCE interrupts, as opposed to the traditional system- wide broadcasted MCE interrupts (Ashok Raj) - Misc cleanups (Borislav Petkov) * x86/platform changes: - Intel Atom SoC updates ... and lots of other cleanups, fixlets and other changes - see the shortlog and the Git log for details" * 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits) x86/hpet: Use proper hpet device number for MSI allocation x86/hpet: Check for irq==0 when allocating hpet MSI interrupts x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail genirq: Prevent crash in irq_move_irq() genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain iommu, x86: Properly handle posted interrupts for IOMMU hotplug iommu, x86: Provide irq_remapping_cap() interface iommu, x86: Setup Posted-Interrupts capability for Intel iommu iommu, x86: Add cap_pi_support() to detect VT-d PI capability iommu, x86: Avoid migrating VT-d posted interrupts iommu, x86: Save the mode (posted or remapped) of an IRTE iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip iommu: dmar: Provide helper to copy shared irte fields iommu: dmar: Extend struct irte for VT-d Posted-Interrupts iommu: Add new member capability to struct irq_remap_ops x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry() ... |
||
Linus Torvalds
|
e75c73ad64 |
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FPU updates from Ingo Molnar: "This tree contains two main changes: - The big FPU code rewrite: wide reaching cleanups and reorganization that pulls all the FPU code together into a clean base in arch/x86/fpu/. The resulting code is leaner and faster, and much easier to understand. This enables future work to further simplify the FPU code (such as removing lazy FPU restores). By its nature these changes have a substantial regression risk: FPU code related bugs are long lived, because races are often subtle and bugs mask as user-space failures that are difficult to track back to kernel side backs. I'm aware of no unfixed (or even suspected) FPU related regression so far. - MPX support rework/fixes. As this is still not a released CPU feature, there were some buglets in the code - should be much more robust now (Dave Hansen)" * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (250 commits) x86/fpu: Fix double-increment in setup_xstate_features() x86/mpx: Allow 32-bit binaries on 64-bit kernels again x86/mpx: Do not count MPX VMAs as neighbors when unmapping x86/mpx: Rewrite the unmap code x86/mpx: Support 32-bit binaries on 64-bit kernels x86/mpx: Use 32-bit-only cmpxchg() for 32-bit apps x86/mpx: Introduce new 'directory entry' to 'addr' helper function x86/mpx: Add temporary variable to reduce masking x86: Make is_64bit_mm() widely available x86/mpx: Trace allocation of new bounds tables x86/mpx: Trace the attempts to find bounds tables x86/mpx: Trace entry to bounds exception paths x86/mpx: Trace #BR exceptions x86/mpx: Introduce a boot-time disable flag x86/mpx: Restrict the mmap() size check to bounds tables x86/mpx: Remove redundant MPX_BNDCFG_ADDR_MASK x86/mpx: Clean up the code by not passing a task pointer around when unnecessary x86/mpx: Use the new get_xsave_field_ptr()API x86/fpu/xstate: Wrap get_xsave_addr() to make it safer x86/fpu/xstate: Fix up bad get_xsave_addr() assumptions ... |
||
Bartosz Golaszewski
|
7d79a7bd75 |
x86: Replace cpu_**_mask() with topology_**_cpumask()
The former duplicate the functionalities of the latter but are neither documented nor arch-independent. Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Benoit Cousson <bcousson@baylibre.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Jean Delvare <jdelvare@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Russell King <linux@arm.linux.org.uk> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/1432645896-12588-9-git-send-email-bgolaszewski@baylibre.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
78f7f1e54b |
x86/fpu: Rename fpu-internal.h to fpu/internal.h
This unifies all the FPU related header files under a unified, hiearchical naming scheme: - asm/fpu/types.h: FPU related data types, needed for 'struct task_struct', widely included in almost all kernel code, and hence kept as small as possible. - asm/fpu/api.h: FPU related 'public' methods exported to other subsystems. - asm/fpu/internal.h: FPU subsystem internal methods - asm/fpu/xsave.h: XSAVE support internal methods (Also standardize the header guard in asm/fpu/internal.h.) Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |