Now that we can (almost) dynamically size the number of interrupts,
we're facing an interesting issue:
We have to evaluate at runtime whether or not an access hits a valid
register, based on the sizing of this particular instance of the
distributor. Furthermore, the GIC spec says that accessing a reserved
register is RAZ/WI.
For this, add a new field to our range structure, indicating the number
of bits a single interrupts uses. That allows us to find out whether or
not the access is in range.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We now have the information about the number of CPU interfaces in
the distributor itself. Let's get rid of VGIC_MAX_CPUS, and just
rely on KVM_MAX_VCPUS where we don't have the choice. Yet.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Having a dynamic number of supported interrupts means that we
cannot relly on VGIC_NR_SHARED_IRQS being fixed anymore.
Instead, make it take the distributor structure as a parameter,
so it can return the right value.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, all the VGIC data structures are statically defined by the
*maximum* number of vcpus and interrupts it supports. It means that
we always have to oversize it to cater for the worse case.
Start by changing the data structures to be dynamically sizeable,
and allocate them at runtime.
The sizes are still very static though.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Writes to GICD_ISPENDRn and GICD_ICPENDRn are currently not handled
correctly for level-triggered interrupts. The spec states that for
level-triggered interrupts, writes to the GICD_ISPENDRn activate the
output of a flip-flop which is in turn or'ed with the actual input
interrupt signal. Correspondingly, writes to GICD_ICPENDRn simply
deactivates the output of that flip-flop, but does not (of course) affect
the external input signal. Reads from GICC_IAR will also deactivate the
flip-flop output.
This requires us to track the state of the level-input separately from
the state in the flip-flop. We therefore introduce two new variables on
the distributor struct to track these two states. Astute readers may
notice that this is introducing more state than required (because an OR
of the two states gives you the pending state), but the remaining vgic
code uses the pending bitmap for optimized operations to figure out, at
the end of the day, if an interrupt is pending or not on the distributor
side. Refactoring the code to consider the two state variables all the
places where we currently access the precomputed pending value, did not
look pretty.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We have a special bitmap on the distributor struct to keep track of when
level-triggered interrupts are queued on the list registers. This was
named irq_active, which is confusing, because the active state of an
interrupt as per the GIC spec is a different thing, not specifically
related to edge-triggered/level-triggered configurations but rather
indicates an interrupt which has been ack'ed but not yet eoi'ed.
Rename the bitmap and the corresponding accessor functions to irq_queued
to clarify what this is actually used for.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The irq_state field on the distributor struct is ambiguous in its
meaning; the comment says it's the level of the input put, but that
doesn't make much sense for edge-triggered interrupts. The code
actually uses this state variable to check if the interrupt is in the
pending state on the distributor so clarify the comment and rename the
actual variable and accessor methods.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Introduce the support code for emulating a GICv2 on top of GICv3
hardware.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move the GICv2 world switch code into its own file, and add the
necessary indirection to the arm64 switch code.
Also introduce a new type field to the vgic_params structure.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, irqchip_in_kernel() was implemented by testing the value of
vctrl_base, which worked fine with GICv2.
With GICv3, this field is useless, as we're using system registers
instead of a emmory mapped interface. To solve this, add a boolean
flag indicating if the we're using a vgic or not.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Brutally hack the innocent vgic code, and move the GICv2 specific code
to its own file, using vgic_ops and vgic_params as a way to pass
information between the two blocks.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move all the data specific to a given GIC implementation into its own
little structure.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move the code dealing with enabling the VGIC on to vgic_ops.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Instead of directly messing with with the GICH_VMCR bits for the CPU
interface save/restore code, add accessors that encode/decode the
entire set of registers exposed by VMCR.
Not the most efficient thing, but given that this code is only used
by the save/restore code, performance is far from being critical.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move the code dealing with LR underflow handling to its own functions,
and make them accessible through vgic_ops.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Instead of directly dealing with the GICH_MISR bits, move the code to
its own function and use a couple of public flags to represent the
actual state.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move the GICH_EISR access to its own function.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move the GICH_ELRSR access to its own functions, and add them to
the vgic_ops structure.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to split the various register manipulation from the main vgic
code, introduce a vgic_ops structure, and start by abstracting the
LR manipulation code with a couple of accessors.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to make way for the GICv3 registers, move the v2-specific
registers to their own structure.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add a stub for kvm_vgic_addr when compiling without
CONFIG_KVM_ARM_VGIC. The usefulness of this configurarion is extremely
doubtful, but let's fix it anyway (until we decide that we'll always
support a VGIC).
Reported-by: Michele Paolino <m.paolino@virtualopensystems.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Support setting the distributor and cpu interface base addresses in the
VM physical address space through the KVM_{SET,GET}_DEVICE_ATTR API
in addition to the ARM specific API.
This has the added benefit of being able to share more code in user
space and do things in a uniform manner.
Also deprecate the older API at the same time, but backwards
compatibility will be maintained.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The Versatile Express TC2 board, which we use as our main emulated
platform in QEMU, defines 160+32 == 192 interrupts, so limiting the
number of interrupts to 128 is not quite going to cut it for real board
emulation.
Note that this didn't use to be a problem because QEMU was buggy and
only defined 128 interrupts until recently.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
As KVM/arm64 is looming on the horizon, it makes sense to move some
of the common code to a single location in order to reduce duplication.
The code could live anywhere. Actually, most of KVM is already built
with a bunch of ugly ../../.. hacks in the various Makefiles, so we're
not exactly talking about style here. But maybe it is time to start
moving into a less ugly direction.
The include files must be in a "public" location, as they are accessed
from non-KVM files (arch/arm/kernel/asm-offsets.c).
For this purpose, introduce two new locations:
- virt/kvm/arm/ : x86 and ia64 already share the ioapic code in
virt/kvm, so this could be seen as a (very ugly) precedent.
- include/kvm/ : there is already an include/xen, and while the
intent is slightly different, this seems as good a location as
any
Eventually, we should probably have independant Makefiles at every
levels (just like everywhere else in the kernel), but this is just
the first step.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>