The old struct mce had a limitation to 256 CPUs. But x86 Linux supports
more than that now with x2apic. Add a new field extcpu to report the
extended number.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This makes it easier for tools who want to extract the mcelog out of
crash images or memory dumps to adapt to changing struct mce size.
The length field replaces padding, so it's fully compatible.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Keep a count of the machine check polls (or CMCI events) in
/proc/interrupts.
Andi needs this for debugging, but it's also useful in general
to see what's going in by the kernel.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Useful for debugging, but it's also good general policy
to have a counter for all special interrupts there. This makes it easier
to diagnose where a CPU is spending its time.
[ Impact: feature, debugging tool ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Allow user programs to write mce records into /dev/mcelog. When they do
that a fake machine check is triggered to test the machine check code.
This uses the MCE MSR wrappers added earlier.
The implementation is straight forward. There is a struct mce record
per CPU and the MCE MSR accesses get data from there if there is valid
data injected there. This allows to test the machine check code
relatively realistically because only the lowest layer of hardware
access is intercepted.
The test suite and injector are available at
git://git.kernel.org/pub/scm/utils/cpu/mce/mce-test.git
git://git.kernel.org/pub/scm/utils/cpu/mce/mce-inject.git
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Give it the same name as on 32bit. This makes further merging easier.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Decode more magic constants and turn them into symbols.
[ Sort definitions bitwise, introduce MCG_EXT_CNT - HS ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Prepare mce.h for unification, so that it will build on 32-bit x86
kernels too.
[ Impact: cleanup ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The earlier patch to change the poller to a separate function subtly
broke the boot logging logic. This could lead to machine checks
getting logged at boot even when disabled or defaulting to off
on some systems. Fix that.
[ Impact: bug fix - avoid spurious MCE in log ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Impact: Major new feature
Intel CMCI (Corrected Machine Check Interrupt) is a new
feature on Nehalem CPUs. It allows the CPU to trigger
interrupts on corrected events, which allows faster
reaction to them instead of with the traditional
polling timer.
Also use CMCI to discover shared banks. Machine check banks
can be shared by CPU threads or even cores. Using the CMCI enable
bit it is possible to detect the fact that another CPU already
saw a specific bank. Use this to assign shared banks only
to one CPU to avoid reporting duplicated events.
On CPU hot unplug bank sharing is re discovered. This is done
using a thread that cycles through all the CPUs.
To avoid races between the poller and CMCI we only poll
for banks that are not CMCI capable and only check CMCI
owned banks on a interrupt.
The shared banks ownership information is currently only used for
CMCI interrupts, not polled banks.
The sharing discovery code follows the algorithm recommended in the
IA32 SDM Vol3a 14.5.2.1
The CMCI interrupt handler just calls the machine check poller to
pick up the machine check event that caused the interrupt.
I decided not to implement a separate threshold event like
the AMD version has, because the threshold is always one currently
and adding another event didn't seem to add any value.
Some code inspired by Yunhong Jiang's Xen implementation,
which was in term inspired by a earlier CMCI implementation
by me.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: New register definitions only
CMCI means support for raising an interrupt on a corrected machine
check event instead of having to poll for it. It's a new feature in
Intel Nehalem CPUs available on some machine check banks.
For details see the IA32 SDM Vol3a 14.5
Define the registers for it as a preparation for further patches.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Define a per cpu bitmap that contains the banks polled by the machine
check poller. This is needed for the CMCI code in the next patches
to be able to disable polling on specific banks.
The bank by default contains all banks, so there is no behaviour
change. Only future code will remove some banks from the polling
set.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: cleanup; preparation for feature
The mce_amd_64 code has an own private MC threshold vector with an own
interrupt handler. Since Intel needs a similar handler
it makes sense to share the vector because both can not
be active at the same time.
I factored the common APIC handler code into a separate file which can
be used by both the Intel or AMD MC code.
This is needed for the next patch which adds an Intel specific
CMCI handler.
This patch should be a nop for AMD, it just moves some code
around.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: Cleanup (code movement)
Move MAX_NR_BANKS into mce.h because it's needed there
for followup patches.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: cleanup, performance enhancement
The machine check poller is diverging more and more from the fatal
exception handler. Instead of adding more special cases separate the code
paths completely. The corrected poll path is actually quite simple,
and this doesn't result in much code duplication.
This makes both handlers much easier to read and results in
cleaner code flow. The exception handler now only needs to care
about uncorrected errors, which also simplifies the handling of multiple
errors. The corrected poller also now always runs in standard interrupt
context and does not need to do anything special to handle NMI context.
Minor behaviour changes:
- MCG status is now not cleared on polling.
- Only the banks which had corrected errors get cleared on polling
- The exception handler only clears banks with errors now
v2: Forward port to new patch order. Add "uc" argument.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Impact: cleanup
This merely factors out duplicated code to set up
the initial struct mce state into a single function.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Impact: low priority bug fix
This removes part of a a patch I added myself some time ago. After some
consideration the patch was a bad idea. In particular it stopped machine check
exceptions during code patching.
To quote the comment:
* MCEs only happen when something got corrupted and in this
* case we must do something about the corruption.
* Ignoring it is worse than a unlikely patching race.
* Also machine checks tend to be broadcast and if one CPU
* goes into machine check the others follow quickly, so we don't
* expect a machine check to cause undue problems during to code
* patching.
So undo the machine check related parts of
8f4e956b31 NMIs are still disabled.
This only removes code, the only additions are a new comment.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
fix the following 'make headers_check' warnings:
usr/include/asm/mce.h:7: include of <linux/types.h> is preferred over <asm/types.h>
usr/include/asm/mce.h:29: found __[us]{8,16,32,64} type without #include <linux/types.h>
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:
a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>