With a relocatable kernel that could reside at any place in memory, code
and data that has to stay below 2 GB needs special handling.
This patch introduces .dma sections for such text, data and ex_table.
The sections will be part of the decompressor kernel, so they will not
be relocated and stay below 2 GB. Their location is passed over to the
decompressed / relocated kernel via the .boot.preserved.data section.
The duald and aste for control register setup also need to stay below
2 GB, so move the setup code from arch/s390/kernel/head64.S to
arch/s390/boot/head.S. The duct and linkage_stack could reside above
2 GB, but their content has to be preserved for the decompresed kernel,
so they are also moved into the .dma section.
The start and end address of the .dma sections is added to vmcoreinfo,
for crash support, to help debugging in case the kernel crashed there.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make it explicit that the caller gets a physical address rather than a
virtual one.
This will also allow using meblock_alloc prefix for memblock allocations
returning virtual address, which is done in the following patches.
The conversion is done using the following semantic patch:
@@
expression e1, e2, e3;
@@
(
- memblock_alloc(e1, e2)
+ memblock_phys_alloc(e1, e2)
|
- memblock_alloc_nid(e1, e2, e3)
+ memblock_phys_alloc_nid(e1, e2, e3)
|
- memblock_alloc_try_nid(e1, e2, e3)
+ memblock_phys_alloc_try_nid(e1, e2, e3)
)
Link: http://lkml.kernel.org/r/1536927045-23536-7-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pull s390 updates from Heiko Carstens:
"Since Martin is on vacation you get the s390 pull request for the
v4.15 merge window this time from me.
Besides a lot of cleanups and bug fixes these are the most important
changes:
- a new regset for runtime instrumentation registers
- hardware accelerated AES-GCM support for the aes_s390 module
- support for the new CEX6S crypto cards
- support for FORTIFY_SOURCE
- addition of missing z13 and new z14 instructions to the in-kernel
disassembler
- generate opcode tables for the in-kernel disassembler out of a
simple text file instead of having to manually maintain those
tables
- fast memset16, memset32 and memset64 implementations
- removal of named saved segment support
- hardware counter support for z14
- queued spinlocks and queued rwlocks implementations for s390
- use the stack_depth tracking feature for s390 BPF JIT
- a new s390_sthyi system call which emulates the sthyi (store
hypervisor information) instruction
- removal of the old KVM virtio transport
- an s390 specific CPU alternatives implementation which is used in
the new spinlock code"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (88 commits)
MAINTAINERS: add virtio-ccw.h to virtio/s390 section
s390/noexec: execute kexec datamover without DAT
s390: fix transactional execution control register handling
s390/bpf: take advantage of stack_depth tracking
s390: simplify transactional execution elf hwcap handling
s390/zcrypt: Rework struct ap_qact_ap_info.
s390/virtio: remove unused header file kvm_virtio.h
s390: avoid undefined behaviour
s390/disassembler: generate opcode tables from text file
s390/disassembler: remove insn_to_mnemonic()
s390/dasd: avoid calling do_gettimeofday()
s390: vfio-ccw: Do not attempt to free no-op, test and tic cda.
s390: remove named saved segment support
s390/archrandom: Reconsider s390 arch random implementation
s390/pci: do not require AIS facility
s390/qdio: sanitize put_indicator
s390/qdio: use atomic_cmpxchg
s390/nmi: avoid using long-displacement facility
s390: pass endianness info to sparse
s390/decompressor: remove informational messages
...
At a couple of places smatch emits warnings like this:
arch/s390/mm/vmem.c:409 vmem_map_init() warn:
right shifting more than type allows
In fact shifting a signed type right is undefined. Avoid this and add
an unsigned long cast. The shifted values are always positive.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Remove the support to create a z/VM named saved segment (NSS). This
feature is not supported since quite a while in favour of jump labels,
function tracing and (now) CPU alternatives. All of these features
require to write to the kernel text section which is not possible if
the kernel is contained within an NSS.
Given that memory savings are minimal if kernel images are shared and
in addition updates of shared images are painful, the NSS feature can
be removed.
Reviewed-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Use memset64 instead of the (now) open-coded variant clear_table.
Performance wise there is no difference.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add the logic to upgrade the page table for a 64-bit process to
five levels. This increases the TASK_SIZE from 8PB to 16EB-4K.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
set_memory_* functions have moved to set_memory.h. Switch to this
explicitly
Link: http://lkml.kernel.org/r/1488920133-27229-5-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each change instance
for the presence of either and replace as needed. An instance
where module_param was used without moduleparam.h was also fixed,
as well as an implict use of asm/elf.h header.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Bit 0x100 of a page table, segment table of region table entry
can be used to disallow code execution for the virtual addresses
associated with the entry.
There is one tricky bit, the system call to return from a signal
is part of the signal frame written to the user stack. With a
non-executable stack this would stop working. To avoid breaking
things the protection fault handler checks the opcode that caused
the fault for 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn)
and injects a system call. This is preferable to the alternative
solution with a stub function in the vdso because it works for
vdso=off and statically linked binaries as well.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Get rid of all remaining alloc_bootmem calls and use memblock_alloc
instead everywhere. This way we get rid of the inconsistent mixture
of alloc_bootmem and memblock_alloc usages.
Two of the alloc_bootmem_low calls within arch/s390/kernel/setup.c are
replaced with memblock_alloc calls that don't enforce that the
allocated memory is below 2GB. This restriction was never necessary.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
On s390 __ro_after_init is currently mapped to __read_mostly which
means that data marked as __ro_after_init will not be protected.
Reason for this is that the common code __ro_after_init implementation
is x86 centric: the ro_after_init data section was added to rodata,
since x86 enables write protection to kernel text and rodata very
late. On s390 we have write protection for these sections enabled with
the initial page tables. So adding the ro_after_init data section to
rodata does not work on s390.
In order to make __ro_after_init work properly on s390 move the
ro_after_init data, right behind rodata. Unlike the rodata section it
will be marked read-only later after all init calls happened.
This s390 specific implementation adds new __start_ro_after_init and
__end_ro_after_init labels. Everything in between will be marked
read-only after the init calls happened. In addition to the
__ro_after_init data move also the exception table there, since from a
practical point of view it fits the __ro_after_init requirements.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add statistics that show how memory is mapped within the kernel
identity mapping. This is more or less the same like git
commit ce0c0e50f9 ("x86, generic: CPA add statistics about state
of direct mapping v4") for x86.
I also intentionally copied the lower case "k" within DirectMap4k vs
the upper case "M" and "G" within the two other lines. Let's have
consistent inconsistencies across architectures.
The output of /proc/meminfo now contains these additional lines:
DirectMap4k: 2048 kB
DirectMap1M: 3991552 kB
DirectMap2G: 4194304 kB
The implementation on s390 is lockless unlike the x86 version, since I
assume changes to the kernel mapping are a very rare event. Therefore
it really doesn't matter if these statistics could potentially be
inconsistent if read while kernel pages tables are being changed.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
For the kernel identity mapping map everything read-writeable and
subsequently call set_memory_ro() to make the ro section read-only.
This simplifies the code a lot.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
set_memory_ro() and set_memory_rw() currently only work on 4k
mappings, which is good enough for module code aka the vmalloc area.
However we stumbled already twice into the need to make this also work
on larger mappings:
- the ro after init patch set
- the crash kernel resize code
Therefore this patch implements automatic kernel page table splitting
if e.g. set_memory_ro() would be called on parts of a 2G mapping.
This works quite the same as the x86 code, but is much simpler.
In order to make this work and to be architecturally compliant we now
always use the csp, cspg or crdte instructions to replace valid page
table entries. This means that set_memory_ro() and set_memory_rw()
will be much more expensive than before. In order to avoid huge
latencies the code contains a couple of cond_resched() calls.
The current code only splits page tables, but does not merge them if
it would be possible. The reason for this is that currently there is
no real life scenarion where this would really happen. All current use
cases that I know of only change access rights once during the life
time. If that should change we can still implement kernel page table
merging at a later time.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use pte_clear() instead of open-coding it.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Instead of open-coded SEGMENT_KERNEL and REGION3_KERNEL assignments use
defines. Also to make e.g. pmd_wrprotect() work on the kernel mapping
a couple more flags must be set. Therefore add the missing flags also.
In order to make everything symmetrical this patch also adds software
dirty, young, read and write bits for region 3 table entries.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Usually segment and region tables are 16k aligned due to the way the
buddy allocator works. This is not true for the vmem code which only
asks for a 4k alignment. In order to be consistent enforce a 16k
alignment here as well.
This alignment will be assumed and therefore is required by the
pageattr code.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
vmem_pte_alloc() has an unused function parameter. Let's remove it.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The identity mapping is suboptimal for the last 2GB frame. The mapping
will be established with a mix of 4KB and 1MB mappings instead of a
single 2GB mapping.
This happens because of a off-by-one bug introduced with
commit 50be634507 ("s390/mm: Convert bootmem to memblock").
Currently the identity mapping looks like this:
0x0000000080000000-0x0000000180000000 4G PUD RW
0x0000000180000000-0x00000001fff00000 2047M PMD RW
0x00000001fff00000-0x0000000200000000 1M PTE RW
With the bug fixed it looks like this:
0x0000000080000000-0x0000000200000000 6G PUD RW
Fixes: 50be634507 ("s390/mm: Convert bootmem to memblock")
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
We can use debug_pagealloc_enabled() to check if we can map the identity
mapping with 1MB/2GB pages as well as to print the current setting in
dump_stack.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the 31 bit support in order to reduce maintenance cost and
effectively remove dead code. Since a couple of years there is no
distribution left that comes with a 31 bit kernel.
The 31 bit kernel also has been broken since more than a year before
anybody noticed. In addition I added a removal warning to the kernel
shown at ipl for 5 minutes: a960062e58 ("s390: add 31 bit warning
message") which let everybody know about the plan to remove 31 bit
code. We didn't get any response.
Given that the last 31 bit only machine was introduced in 1999 let's
remove the code.
Anybody with 31 bit user space code can still use the compat mode.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Pull s390 updates from Martin Schwidefsky:
"This patch set contains the main portion of the changes for 3.18 in
regard to the s390 architecture. It is a bit bigger than usual,
mainly because of a new driver and the vector extension patches.
The interesting bits are:
- Quite a bit of work on the tracing front. Uprobes is enabled and
the ftrace code is reworked to get some of the lost performance
back if CONFIG_FTRACE is enabled.
- To improve boot time with CONFIG_DEBIG_PAGEALLOC, support for the
IPTE range facility is added.
- The rwlock code is re-factored to improve writer fairness and to be
able to use the interlocked-access instructions.
- The kernel part for the support of the vector extension is added.
- The device driver to access the CD/DVD on the HMC is added, this
will hopefully come in handy to improve the installation process.
- Add support for control-unit initiated reconfiguration.
- The crypto device driver is enhanced to enable the additional AP
domains and to allow the new crypto hardware to be used.
- Bug fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (39 commits)
s390/ftrace: simplify enabling/disabling of ftrace_graph_caller
s390/ftrace: remove 31 bit ftrace support
s390/kdump: add support for vector extension
s390/disassembler: add vector instructions
s390: add support for vector extension
s390/zcrypt: Toleration of new crypto hardware
s390/idle: consolidate idle functions and definitions
s390/nohz: use a per-cpu flag for arch_needs_cpu
s390/vtime: do not reset idle data on CPU hotplug
s390/dasd: add support for control unit initiated reconfiguration
s390/dasd: fix infinite loop during format
s390/mm: make use of ipte range facility
s390/setup: correct 4-level kernel page table detection
s390/topology: call set_sched_topology early
s390/uprobes: architecture backend for uprobes
s390/uprobes: common library for kprobes and uprobes
s390/rwlock: use the interlocked-access facility 1 instructions
s390/rwlock: improve writer fairness
s390/rwlock: remove interrupt-enabling rwlock variant.
s390/mm: remove change bit override support
...
If the vmemmap array gets filled with large pages we allocate those
pages with vmemmap_alloc_block(), which returns cleared pages.
Only for single 4k pages we call our own vmem_alloc_pages() which does
not return cleared pages. However we can also call vmemmap_alloc_block()
to allocate the 4k pages.
This way we can also make sure the vmemmap array is cleared after its
population.
Therefore we can remove the memset at the end of the function which
would clear the vmmemmap array a second time on machines which do
support EDAT1.
On very large configurations this can save us several seconds.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Store the target address for the gmap segments in a radix tree
instead of using invalid segment table entries. gmap_translate
becomes a simple radix_tree_lookup, gmap_fault is split into the
address translation with gmap_translate and the part that does
the linking of the gmap shadow page table with the process page
table.
A second radix tree is used to keep the pointers to the segment
table entries for segments that are mapped in the guest address
space. On unmap of a segment the pointer is retrieved from the
radix tree and is used to carry out the segment invalidation in
the gmap shadow page table. As the radix tree can only store one
pointer, each host segment may only be mapped to exactly one
guest location.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The original bootmem allocator is getting replaced by memblock. To
cover the needs of the s390 kdump implementation the physical memory
list is used.
With this patch the bootmem allocator and its bitmaps are completely
removed from s390.
Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The zEC12 machines introduced the local-clearing control for the IDTE
and IPTE instruction. If the control is set only the TLB of the local
CPU is cleared of entries, either all entries of a single address space
for IDTE, or the entry for a single page-table entry for IPTE.
Without the local-clearing control the TLB flush is broadcasted to all
CPUs in the configuration, which is expensive.
The reset of the bit mask of the CPUs that need flushing after a
non-local IDTE is tricky. As TLB entries for an address space remain
in the TLB even if the address space is detached a new bit field is
required to keep track of attached CPUs vs. CPUs in the need of a
flush. After a non-local flush with IDTE the bit-field of attached CPUs
is copied to the bit-field of CPUs in need of a flush. The ordering
of operations on cpu_attach_mask, attach_count and mm_cpumask(mm) is
such that an underindication in mm_cpumask(mm) is prevented but an
overindication in mm_cpumask(mm) is possible.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The last remaining use for the storage key of the s390 architecture
is reference counting. The alternative is to make page table entries
invalid while they are old. On access the fault handler marks the
pte/pmd as young which makes the pte/pmd valid if the access rights
allow read access. The pte/pmd invalidations required for software
managed reference bits cost a bit of performance, on the other hand
the RRBE/RRBM instructions to read and reset the referenced bits are
quite expensive as well.
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Improve the encoding of the different pte types and the naming of the
page, segment table and region table bits. Due to the different pte
encoding the hugetlbfs primitives need to be adapted as well. To improve
compatability with common code make the huge ptes use the encoding of
normal ptes. The conversion between the pte and pmd encoding for a huge
pte is done with set_huge_pte_at and huge_ptep_get.
Overall the code is now easier to understand.
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Simplify the memory detection code a bit by removing the CHUNK_OLDMEM
and CHUNK_CRASHK memory types.
They are not needed. Everything that is needed is a mechanism to
insert holes into the detected memory.
Reviewed-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The sparse code, when asking the architecture to populate the vmemmap,
specifies the section range as a starting page and a number of pages.
This is an awkward interface, because none of the arch-specific code
actually thinks of the range in terms of 'struct page' units and always
translates it to bytes first.
In addition, later patches mix huge page and regular page backing for
the vmemmap. For this, they need to call vmemmap_populate_basepages()
on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these
are not necessarily multiples of the 'struct page' size and so this unit
is too coarse.
Just translate the section range into bytes once in the generic sparse
code, then pass byte ranges down the stack.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: David S. Miller <davem@davemloft.net>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add hint to the page tables that we don't care about the change bit
in storage keys that belong to vmemmap pages.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Introduce a new API vmemmap_free() to free and remove vmemmap
pagetables. Since pagetable implements are different, each architecture
has to provide its own version of vmemmap_free(), just like
vmemmap_populate().
Note: vmemmap_free() is not implemented for ia64, ppc, s390, and sparc.
[mhocko@suse.cz: fix implicit declaration of remove_pagetable]
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Wu Jianguo <wujianguo@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The s390 architecture is unique in respect to dirty page detection,
it uses the change bit in the per-page storage key to track page
modifications. All other architectures track dirty bits by means
of page table entries. This property of s390 has caused numerous
problems in the past, e.g. see git commit ef5d437f71
"mm: fix XFS oops due to dirty pages without buffers on s390".
To avoid future issues in regard to per-page dirty bits convert
s390 to a fault based software dirty bit detection mechanism. All
user page table entries which are marked as clean will be hardware
read-only, even if the pte is supposed to be writable. A write by
the user process will trigger a protection fault which will cause
the user pte to be marked as dirty and the hardware read-only bit
is removed.
With this change the dirty bit in the storage key is irrelevant
for Linux as a host, but the storage key is still required for
KVM guests. The effect is that page_test_and_clear_dirty and the
related code can be removed. The referenced bit in the storage
key is still used by the page_test_and_clear_young primitive to
provide page age information.
For page cache pages of mappings with mapping_cap_account_dirty
there will not be any change in behavior as the dirty bit tracking
already uses read-only ptes to control the amount of dirty pages.
Only for swap cache pages and pages of mappings without
mapping_cap_account_dirty there can be additional protection faults.
To avoid an excessive number of additional faults the mk_pte
primitive checks for PageDirty if the pgprot value allows for writes
and pre-dirties the pte. That avoids all additional faults for
tmpfs and shmem pages until these pages are added to the swap cache.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use 1MB frames for vmemmap if EDAT1 is available in order to
reduce TLB pressure
Always use a 1MB frame even if its only partially needed for
struct pages. Otherwise we would end up with a mix of large
frame and page mappings, because vmemmap_populate gets called
for each section (256MB -> 3.5MB memmap) separately.
Worst case is that we would waste 512KB.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use 2GB frames for indentity mapping if EDAT2 is
available to reduce TLB pressure.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
vmem_add_mem() should only then insert a large page if pmd_none() is true
for the specific entry. We might have a leftover from a previous mapping.
In addition make vmem_remove_range()'s page table walk code more complete
and fix a couple of potential endless loops (which can never happen :).
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Within the identity mapping the kernel text section is mapped read-only.
However when mapping the first and last page of the text section we must
round upwards and downwards respectively, if only parts of a page belong
to the section.
Otherwise potential rw data can be mapped read-only. So the rounding must
be done just the other way we have it right now.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
pmd_huge() will always return 0 on !HUGETLBFS, however we use that helper
function when walking the kernel page tables to decide if we have a
1MB page frame or not.
Since we create 1MB frames for the kernel 1:1 mapping independently of
HUGETLBFS this can lead to incorrect storage accesses since the code
can assume that we have a pointer to a page table instead of a pointer
to a 1MB frame.
Fix this by adding a pmd_large() primitive like other architectures have
it already and remove all references to HUGETLBFS/HUGETLBPAGE from the
code that walks kernel page tables.
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
So far, large page support was completely disabled with
CONFIG_DEBUG_PAGEALLOC, although it would be sufficient if only the
large page kernel mapping was disabled. This patch enables large page
support with CONFIG_DEBUG_PAGEALLOC, while it prevents the large kernel
mapping in that case.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the file name from the comment at top of many files. In most
cases the file name was wrong anyway, so it's rather pointless.
Also unify the IBM copyright statement. We did have a lot of sightly
different statements and wanted to change them one after another
whenever a file gets touched. However that never happened. Instead
people start to take the old/"wrong" statements to use as a template
for new files.
So unify all of them in one go.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Replace __s390x__ with CONFIG_64BIT in all places that are not exported
to userspace or guarded with #ifdef __KERNEL__.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch provides the architecture specific part of the s390 kdump
support.
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add code that allows KVM to control the virtual memory layout that
is seen by a guest. The guest address space uses a second page table
that shares the last level pte-tables with the process page table.
If a page is unmapped from the process page table it is automatically
unmapped from the guest page table as well.
The guest address space mapping starts out empty, KVM can map any
individual 1MB segments from the process virtual memory to any 1MB
aligned location in the guest virtual memory. If a target segment in
the process virtual memory does not exist or is unmapped while a
guest mapping exists the desired target address is stored as an
invalid segment table entry in the guest page table.
The population of the guest page table is fault driven.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>