This patch removes an outdated comment.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Reviewed-by: Thomas Richter <tmricht@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
These files all use functions declared in interrupt.h, but currently rely
on implicit inclusion of this file (via netns/xfrm.h).
That won't work anymore when the flow cache is removed so include that
header where needed.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Lockdep issues a circular dependency warning when AFS issues an operation
through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem.
The theory lockdep comes up with is as follows:
(1) If the pagefault handler decides it needs to read pages from AFS, it
calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but
creating a call requires the socket lock:
mmap_sem must be taken before sk_lock-AF_RXRPC
(2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind()
binds the underlying UDP socket whilst holding its socket lock.
inet_bind() takes its own socket lock:
sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET
(3) Reading from a TCP socket into a userspace buffer might cause a fault
and thus cause the kernel to take the mmap_sem, but the TCP socket is
locked whilst doing this:
sk_lock-AF_INET must be taken before mmap_sem
However, lockdep's theory is wrong in this instance because it deals only
with lock classes and not individual locks. The AF_INET lock in (2) isn't
really equivalent to the AF_INET lock in (3) as the former deals with a
socket entirely internal to the kernel that never sees userspace. This is
a limitation in the design of lockdep.
Fix the general case by:
(1) Double up all the locking keys used in sockets so that one set are
used if the socket is created by userspace and the other set is used
if the socket is created by the kernel.
(2) Store the kern parameter passed to sk_alloc() in a variable in the
sock struct (sk_kern_sock). This informs sock_lock_init(),
sock_init_data() and sk_clone_lock() as to the lock keys to be used.
Note that the child created by sk_clone_lock() inherits the parent's
kern setting.
(3) Add a 'kern' parameter to ->accept() that is analogous to the one
passed in to ->create() that distinguishes whether kernel_accept() or
sys_accept4() was the caller and can be passed to sk_alloc().
Note that a lot of accept functions merely dequeue an already
allocated socket. I haven't touched these as the new socket already
exists before we get the parameter.
Note also that there are a couple of places where I've made the accepted
socket unconditionally kernel-based:
irda_accept()
rds_rcp_accept_one()
tcp_accept_from_sock()
because they follow a sock_create_kern() and accept off of that.
Whilst creating this, I noticed that lustre and ocfs don't create sockets
through sock_create_kern() and thus they aren't marked as for-kernel,
though they appear to be internal. I wonder if these should do that so
that they use the new set of lock keys.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
task_struct::signal and task_struct::sighand are pointers, which would normally make it
straightforward to not define those types in sched.h.
That is not so, because the types are accompanied by a myriad of APIs (macros and inline
functions) that dereference them.
Split the types and the APIs out of sched.h and move them into a new header, <linux/sched/signal.h>.
With this change sched.h does not know about 'struct signal' and 'struct sighand' anymore,
trying to put accessors into sched.h as a test fails the following way:
./include/linux/sched.h: In function ‘test_signal_types’:
./include/linux/sched.h:2461:18: error: dereferencing pointer to incomplete type ‘struct signal_struct’
^
This reduces the size and complexity of sched.h significantly.
Update all headers and .c code that relied on getting the signal handling
functionality from <linux/sched.h> to include <linux/sched/signal.h>.
The list of affected files in the preparatory patch was partly generated by
grepping for the APIs, and partly by doing coverage build testing, both
all[yes|mod|def|no]config builds on 64-bit and 32-bit x86, and an array of
cross-architecture builds.
Nevertheless some (trivial) build breakage is still expected related to rare
Kconfig combinations and in-flight patches to various kernel code, but most
of it should be handled by this patch.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Say we got really unlucky and these failed on the last iteration, then
it could lead to a use after free bug.
Fixes: cd6851f303 ("smc: remote memory buffers (RMBs)")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When creating an SMC connection, there is a CLC (connection layer control)
handshake to prepare for RDMA traffic. The corresponding code is part of
commit 0cfdd8f92c ("smc: connection and link group creation").
Mac addresses to be exchanged in the handshake are copied with a wrong
length of 12 instead of 6 bytes. Following code overwrites the wrongly
copied code, but nevertheless the correct length should already be used for
the preceding mac address copying. Use ETH_ALEN for the memcpy length with
mac addresses.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Fixes: 0cfdd8f92c ("smc: connection and link group creation")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Support for SMC socket monitoring via netlink sockets of protocol
NETLINK_SOCK_DIAG.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
smc_shutdown() and smc_release() handling
delayed linkgroup cleanup for linkgroups without connections
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
move RMBE data into user space buffer and update managing cursors
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
copy data to kernel send buffer, and trigger RDMA write
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
send and receive CDC messages (via IB message send and CQE)
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
send and receive LLC messages CONFIRM_LINK (via IB message send and CQE)
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Prepare the link for RDMA transport:
Create a queue pair (QP) and move it into the state Ready-To-Receive (RTR).
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The base containers for RDMA transport are work requests and completion
queue entries processed through Infiniband verbs:
* allocate and initialize these areas
* map these areas to DMA
* implement the basic communication consisting of work request posting
and receival of completion queue events
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
* allocate data RMB memory for sending and receiving
* size depends on the maximum socket send and receive buffers
* allocated RMBs are kept during life time of the owning link group
* map the allocated RMBs to DMA
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
* create smc_connection for SMC-sockets
* determine suitable link group for a connection
* create a new link group if necessary
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
* CLC (Connection Layer Control) handshake
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Connection creation with SMC-R starts through an internal
TCP-connection. The Ethernet interface for this TCP-connection is not
restricted to the Ethernet interface of a RoCE device. Any existing
Ethernet interface belonging to the same physical net can be used, as
long as there is a defined relation between the Ethernet interface and
some RoCE devices. This relation is defined with the help of an
identification string called "Physical Net ID" or short "pnet ID".
Information about defined pnet IDs and their related Ethernet
interfaces and RoCE devices is stored in the SMC-R pnet table.
A pnet table entry consists of the identifying pnet ID and the
associated network and IB device.
This patch adds pnet table configuration support using the
generic netlink message interface referring to network and IB device
by their names. Commands exist to add, delete, and display pnet table
entries, and to flush or display the entire pnet table.
There are cross-checks to verify whether the ethernet interfaces
or infiniband devices really exist in the system. If either device
is not available, the pnet ID entry is not created.
Loss of network devices and IB devices is also monitored;
a pnet ID entry is removed when an associated network or
IB device is removed.
Signed-off-by: Thomas Richter <tmricht@linux.vnet.ibm.com>
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
* enable smc module loading and unloading
* register new socket family
* basic smc socket creation and deletion
* use backing TCP socket to run CLC (Connection Layer Control)
handshake of SMC protocol
* Setup for infiniband traffic is implemented in follow-on patches.
For now fallback to TCP socket is always used.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Reviewed-by: Utz Bacher <utz.bacher@de.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>