Some bit of SPU code was using the FDT rather than the expanded
device-tree. Fix it.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
All the callers of irq_create_of_mapping() pass the contents of a struct
of_phandle_args structure to the function. Since all the callers already
have an of_phandle_args pointer, why not pass it directly to
irq_create_of_mapping()?
Signed-off-by: Grant Likely <grant.likely@linaro.org>
Acked-by: Michal Simek <monstr@monstr.eu>
Acked-by: Tony Lindgren <tony@atomide.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
struct of_irq and struct of_phandle_args are exactly the same structure.
This patch makes the kernel use of_phandle_args everywhere. This in
itself isn't a big deal, but it makes some follow-on patches simpler.
Signed-off-by: Grant Likely <grant.likely@linaro.org>
Acked-by: Michal Simek <monstr@monstr.eu>
Acked-by: Tony Lindgren <tony@atomide.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The OF irq handling code has been overloading the term 'map' to refer to
both parsing the data in the device tree and mapping it to the internal
linux irq system. This is probably because the device tree does have the
concept of an 'interrupt-map' function for translating interrupt
references from one node to another, but 'map' is still confusing when
the primary purpose of some of the functions are to parse the DT data.
This patch renames all the of_irq_map_* functions to of_irq_parse_*
which makes it clear that there is a difference between the parsing
phase and the mapping phase. Kernel code can make use of just the
parsing or just the mapping support as needed by the subsystem.
The patch was generated mechanically with a handful of sed commands.
Signed-off-by: Grant Likely <grant.likely@linaro.org>
Acked-by: Michal Simek <monstr@monstr.eu>
Acked-by: Tony Lindgren <tony@atomide.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
All these files were including module.h just for the basic
EXPORT_SYMBOL infrastructure. We can shift them off to the
export.h header which is a way smaller footprint and thus
realize some compile time gains.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Several fixes as well where the +1 was missing.
Done via coccinelle scripts like:
@@
struct resource *ptr;
@@
- ptr->end - ptr->start + 1
+ resource_size(ptr)
and some grep and typing.
Mostly uncompiled, no cross-compilers.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
In struct device_node, the phandle is named 'linux_phandle' for PowerPC
and MicroBlaze, and 'node' for SPARC. There is no good reason for the
difference, it is just an artifact of the code diverging over a couple
of years. This patch renames both to simply .phandle.
Note: the .node also existed in PowerPC/MicroBlaze, but the only user
seems to be arch/powerpc/platforms/powermac/pfunc_core.c. It doesn't
look like the assignment between .linux_phandle and .node is
significantly different enough to warrant the separate code paths
unless ibm,phandle properties actually appear in Apple device trees.
I think it is safe to eliminate the old .node property and use
phandle everywhere.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Add platform specific SPU run control routines to the spufs. The current
spufs implementation uses the SPU master run control bit (MFC_SR1[S]) to
control SPE execution, but the PS3 hypervisor does not support the use of
this feature.
This change adds the run control wrapper routies spu_enable_spu() and
spu_disable_spu(). The bare metal routines use the master run control
bit, and the PS3 specific routines use the priv2 run control register.
An outstanding enhancement for the PS3 would be to add a guard to check
for incorrect access to the spu problem state when the spu context is
disabled. This check could be implemented with a flag added to the spu
context that would inhibit mapping problem state pages, and a routine
to unmap spu problem state pages. When the spu is enabled with
ps3_enable_spu() the flag would be set allowing pages to be mapped,
and when the spu is disabled with ps3_disable_spu() the flag would be
cleared and mapped problem state pages would be unmapped.
Signed-off-by: Masato Noguchi <Masato.Noguchi@jp.sony.com>
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch changes the way we check for the existence of
vicinity property in spe device nodes.
The new implementation does not depend on having an initialized
cbe_spu_info[0].spus, and checks for presence of vicinity in all
nodes, not only in the first one.
Signed-off-by: Andre Detsch <adetsch@br.ibm.com>
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The cast to u32 * isn't required, of_get_property returns a void *.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This fixes a regression introduced with 2.6.23-rc4 after on some
confusion about the device tree interfaces.
IBM QS21 device trees provide "physical-id", so we changed the code to
run on that and remain compatible with all IBM machines.
However, the Toshiba Celleb device tree provides the "unit-id" property,
which was in the Linux code, but never used in this way on IBM hardware.
Legacy device tree used the reg property for the physical id of an spe.
This patch fixes find_spu_unit_number to look for the spu id in that order.
The length is checked to avoid misinterpretation in case the attributes
unit-id or reg do not contain the id.
Signed-off-by: Christian Krafft <krafft@de.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Cc: Jeremy Kerr <jk@ozlabs.org>
Legacy device tree used the reg property for the physical id of an
spe. On newer device tree layouts the reg property contains the
"correct" value in the reg attribute. So there has been intoduced the
"physical-id" on newer devicetree layouts. The id is stored by
spu_manage into the spu struct as spe_id. cbe_thermal has been
changed to use the spu->spe_id. There's no need for the thermal code
to check devicetree attributes for itself.
Signed-off-by: Christian Krafft <krafft@de.ibm.com>
Cc: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch moves affinity initialization code from spu_base.c to a
new spu_management_of_ops function (init_affinity), which is empty
in the case of PS3. This fixes a linking problem that was happening
when compiling for PS3.
Also, some small code style changes were made.
Signed-off-by: Andre Detsch <adetsch@br.ibm.com>
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Acked-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Let spu_management_ops.enumerate_spus() return the number of found SPEs
and use that information to draw some little helper penguin logos.
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-By: James Simmons <jsimmons@infradead.org>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch removes the need for struct page for SPE local store
and registers from spufs. It also makes the locking much more
obvious and no longer relying on the truncate logic black magic
for protecting against races between unmap_mapping_range() and
new pages faulted in. It does so by switching to a nopfn() handler
and using the new vm_insert_pfn() to setup the PTEs itself while
holding a lock on the SPE.
The nice thing is that this patch actually removes a lot more code
than it adds :-)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Spu management ops in arch/platforms/cell/spu_priv1_mmio.h can be used
commonly in of based platform. This patch separates spu management ops
from native cell code and uses on celleb platform.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Kou Ishizaki <kou.ishizaki@toshiba.co.jp>
Signed-off-by: Paul Mackerras <paulus@samba.org>