Commit Graph

443 Commits

Author SHA1 Message Date
Peter Zijlstra
2fb7635c4c sched: sync wakeups vs avg_overlap
While looking at the code I wondered why we always do:

  sync && avg_overlap < migration_cost

Which is a bit odd, since the overlap test was meant to detect sync wakeups
so using it to specialize sync wakeups doesn't make much sense.

Hence change the code to do:

  sync || avg_overlap < migration_cost

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-08 12:20:26 +02:00
Amit K. Arora
64b9e0294d sched: minor optimizations in wake_affine and select_task_rq_fair
This patch does following:
o Removes unused variable and argument "rq".
o Optimizes one of the "if" conditions in wake_affine() - i.e.  if
  "balanced" is true, we need not do rest of the calculations in the
  condition.
o If this cpu is same as the previous cpu (on which woken up task
  was running when it went to sleep), no need to call wake_affine at all.

Signed-off-by: Amit K Arora <aarora@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-30 15:25:44 +02:00
Bharata B Rao
b87f17242d sched: maintain only task entities in cfs_rq->tasks list
cfs_rq->tasks list is used by the load balancer to iterate
over all the tasks. Currently it holds all the entities
(both task and group entities) because of which there is
a need to check for group entities explicitly during load
balancing. This patch changes the cfs_rq->tasks list to
hold only task entities.

Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-25 11:24:11 +02:00
Peter Zijlstra
57fdc26d4a sched: fixup buddy selection
We should set the buddy even though we might already have the
TIF_RESCHED flag set.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-23 16:23:17 +02:00
Peter Zijlstra
940959e939 sched: fixlet for group load balance
We should not only correct the increment for the initial group, but should
be consistent and do so for all the groups we encounter.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-23 16:23:15 +02:00
Peter Zijlstra
6956985009 sched: rework wakeup preemption
Rework the wakeup preemption to work on real runtime instead of
the virtual runtime. This greatly simplifies the code.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-23 14:54:23 +02:00
Chris Friesen
caea8a0370 sched: fix list traversal to use _rcu variant
load_balance_fair() calls rcu_read_lock() but then traverses the list
 using the regular list traversal routine.  This patch converts the
list traversal to use the _rcu version.

Signed-off-by: Chris Friesen <cfriesen@nortel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-22 19:43:10 +02:00
Peter Zijlstra
15afe09bf4 sched: wakeup preempt when small overlap
Lin Ming reported a 10% OLTP regression against 2.6.27-rc4.

The difference seems to come from different preemption agressiveness,
which affects the cache footprint of the workload and its effective
cache trashing.

Aggresively preempt a task if its avg overlap is very small, this should
avoid the task going to sleep and find it still running when we schedule
back to it - saving a wakeup.

Reported-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-22 16:28:32 +02:00
Frank Mayhar
f06febc96b timers: fix itimer/many thread hang
Overview

This patch reworks the handling of POSIX CPU timers, including the
ITIMER_PROF, ITIMER_VIRT timers and rlimit handling.  It was put together
with the help of Roland McGrath, the owner and original writer of this code.

The problem we ran into, and the reason for this rework, has to do with using
a profiling timer in a process with a large number of threads.  It appears
that the performance of the old implementation of run_posix_cpu_timers() was
at least O(n*3) (where "n" is the number of threads in a process) or worse.
Everything is fine with an increasing number of threads until the time taken
for that routine to run becomes the same as or greater than the tick time, at
which point things degrade rather quickly.

This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF."

Code Changes

This rework corrects the implementation of run_posix_cpu_timers() to make it
run in constant time for a particular machine.  (Performance may vary between
one machine and another depending upon whether the kernel is built as single-
or multiprocessor and, in the latter case, depending upon the number of
running processors.)  To do this, at each tick we now update fields in
signal_struct as well as task_struct.  The run_posix_cpu_timers() function
uses those fields to make its decisions.

We define a new structure, "task_cputime," to contain user, system and
scheduler times and use these in appropriate places:

struct task_cputime {
	cputime_t utime;
	cputime_t stime;
	unsigned long long sum_exec_runtime;
};

This is included in the structure "thread_group_cputime," which is a new
substructure of signal_struct and which varies for uniprocessor versus
multiprocessor kernels.  For uniprocessor kernels, it uses "task_cputime" as
a simple substructure, while for multiprocessor kernels it is a pointer:

struct thread_group_cputime {
	struct task_cputime totals;
};

struct thread_group_cputime {
	struct task_cputime *totals;
};

We also add a new task_cputime substructure directly to signal_struct, to
cache the earliest expiration of process-wide timers, and task_cputime also
replaces the it_*_expires fields of task_struct (used for earliest expiration
of thread timers).  The "thread_group_cputime" structure contains process-wide
timers that are updated via account_user_time() and friends.  In the non-SMP
case the structure is a simple aggregator; unfortunately in the SMP case that
simplicity was not achievable due to cache-line contention between CPUs (in
one measured case performance was actually _worse_ on a 16-cpu system than
the same test on a 4-cpu system, due to this contention).  For SMP, the
thread_group_cputime counters are maintained as a per-cpu structure allocated
using alloc_percpu().  The timer functions update only the timer field in
the structure corresponding to the running CPU, obtained using per_cpu_ptr().

We define a set of inline functions in sched.h that we use to maintain the
thread_group_cputime structure and hide the differences between UP and SMP
implementations from the rest of the kernel.  The thread_group_cputime_init()
function initializes the thread_group_cputime structure for the given task.
The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the
out-of-line function thread_group_cputime_alloc_smp() to allocate and fill
in the per-cpu structures and fields.  The thread_group_cputime_free()
function, also a no-op for UP, in SMP frees the per-cpu structures.  The
thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls
thread_group_cputime_alloc() if the per-cpu structures haven't yet been
allocated.  The thread_group_cputime() function fills the task_cputime
structure it is passed with the contents of the thread_group_cputime fields;
in UP it's that simple but in SMP it must also safely check that tsk->signal
is non-NULL (if it is it just uses the appropriate fields of task_struct) and,
if so, sums the per-cpu values for each online CPU.  Finally, the three
functions account_group_user_time(), account_group_system_time() and
account_group_exec_runtime() are used by timer functions to update the
respective fields of the thread_group_cputime structure.

Non-SMP operation is trivial and will not be mentioned further.

The per-cpu structure is always allocated when a task creates its first new
thread, via a call to thread_group_cputime_clone_thread() from copy_signal().
It is freed at process exit via a call to thread_group_cputime_free() from
cleanup_signal().

All functions that formerly summed utime/stime/sum_sched_runtime values from
from all threads in the thread group now use thread_group_cputime() to
snapshot the values in the thread_group_cputime structure or the values in
the task structure itself if the per-cpu structure hasn't been allocated.

Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit.
The run_posix_cpu_timers() function has been split into a fast path and a
slow path; the former safely checks whether there are any expired thread
timers and, if not, just returns, while the slow path does the heavy lifting.
With the dedicated thread group fields, timers are no longer "rebalanced" and
the process_timer_rebalance() function and related code has gone away.  All
summing loops are gone and all code that used them now uses the
thread_group_cputime() inline.  When process-wide timers are set, the new
task_cputime structure in signal_struct is used to cache the earliest
expiration; this is checked in the fast path.

Performance

The fix appears not to add significant overhead to existing operations.  It
generally performs the same as the current code except in two cases, one in
which it performs slightly worse (Case 5 below) and one in which it performs
very significantly better (Case 2 below).  Overall it's a wash except in those
two cases.

I've since done somewhat more involved testing on a dual-core Opteron system.

Case 1: With no itimer running, for a test with 100,000 threads, the fixed
	kernel took 1428.5 seconds, 513 seconds more than the unfixed system,
	all of which was spent in the system.  There were twice as many
	voluntary context switches with the fix as without it.

Case 2: With an itimer running at .01 second ticks and 4000 threads (the most
	an unmodified kernel can handle), the fixed kernel ran the test in
	eight percent of the time (5.8 seconds as opposed to 70 seconds) and
	had better tick accuracy (.012 seconds per tick as opposed to .023
	seconds per tick).

Case 3: A 4000-thread test with an initial timer tick of .01 second and an
	interval of 10,000 seconds (i.e. a timer that ticks only once) had
	very nearly the same performance in both cases:  6.3 seconds elapsed
	for the fixed kernel versus 5.5 seconds for the unfixed kernel.

With fewer threads (eight in these tests), the Case 1 test ran in essentially
the same time on both the modified and unmodified kernels (5.2 seconds versus
5.8 seconds).  The Case 2 test ran in about the same time as well, 5.9 seconds
versus 5.4 seconds but again with much better tick accuracy, .013 seconds per
tick versus .025 seconds per tick for the unmodified kernel.

Since the fix affected the rlimit code, I also tested soft and hard CPU limits.

Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer
	running), the modified kernel was very slightly favored in that while
	it killed the process in 19.997 seconds of CPU time (5.002 seconds of
	wall time), only .003 seconds of that was system time, the rest was
	user time.  The unmodified kernel killed the process in 20.001 seconds
	of CPU (5.014 seconds of wall time) of which .016 seconds was system
	time.  Really, though, the results were too close to call.  The results
	were essentially the same with no itimer running.

Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds
	(where the hard limit would never be reached) and an itimer running,
	the modified kernel exhibited worse tick accuracy than the unmodified
	kernel: .050 seconds/tick versus .028 seconds/tick.  Otherwise,
	performance was almost indistinguishable.  With no itimer running this
	test exhibited virtually identical behavior and times in both cases.

In times past I did some limited performance testing.  those results are below.

On a four-cpu Opteron system without this fix, a sixteen-thread test executed
in 3569.991 seconds, of which user was 3568.435s and system was 1.556s.  On
the same system with the fix, user and elapsed time were about the same, but
system time dropped to 0.007 seconds.  Performance with eight, four and one
thread were comparable.  Interestingly, the timer ticks with the fix seemed
more accurate:  The sixteen-thread test with the fix received 149543 ticks
for 0.024 seconds per tick, while the same test without the fix received 58720
for 0.061 seconds per tick.  Both cases were configured for an interval of
0.01 seconds.  Again, the other tests were comparable.  Each thread in this
test computed the primes up to 25,000,000.

I also did a test with a large number of threads, 100,000 threads, which is
impossible without the fix.  In this case each thread computed the primes only
up to 10,000 (to make the runtime manageable).  System time dominated, at
1546.968 seconds out of a total 2176.906 seconds (giving a user time of
629.938s).  It received 147651 ticks for 0.015 seconds per tick, still quite
accurate.  There is obviously no comparable test without the fix.

Signed-off-by: Frank Mayhar <fmayhar@google.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-14 16:25:35 +02:00
Gautham R Shenoy
38736f4750 sched: fix __load_balance_iterator() for cfq with only one task
The __load_balance_iterator() returns a NULL when there's only one
sched_entity which is a task. It is caused by the following code-path.

	/* Skip over entities that are not tasks */
	do {
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
	} while (next != &cfs_rq->tasks && !entity_is_task(se));

	if (next == &cfs_rq->tasks)
		return NULL;
	^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
      This will return NULL even when se is a task.

As a side-effect, there was a regression in sched_mc behavior since 2.6.25,
since iter_move_one_task() when it calls load_balance_start_fair(),
would not get any tasks to move!

Fix this by checking if the last entity was a task or not.

Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-06 16:53:34 +02:00
Bharata B Rao
aec0a5142c sched: call resched_task() conditionally from new task wake up path
- During wake up of a new task, task_new_fair() can do a resched_task()
  on the current task. Later in the code path, check_preempt_curr() also ends
  up doing the same, which can be avoided. Check if TIF_NEED_RESCHED is
  already set for the current task.

- task_new_fair() does a resched_task() on the current task unconditionally.
  This can be done only in case when child runs before the parent.

So this is a small speedup.

Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-28 11:35:51 +02:00
Mike Galbraith
77ae651347 sched: fix mysql+oltp regression
Defer commit 6d299f1b53 to the next release.

Testing of the tip/sched/clock tree revealed a mysql+oltp regression
which bisection eventually traced back to this commit in mainline.

Pertinent test results:  Three run sysbench averages, throughput units
in read/write requests/sec.

clients         1     2     4     8    16    32    64
6e0534f      9646 17876 34774 33868 32230 30767 29441
2.6.26.1     9112 17936 34652 33383 31929 30665 29232
6d299f1      9112 14637 28370 33339 32038 30762 29204

Note: subsequent commits hide the majority of this regression until you
apply the clock fixes, at which time it reemerges at full magnitude.

We cannot see anything bad about the change itself so we defer it to the
next release until this problem is fully analysed.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-11 14:49:29 +02:00
Peter Zijlstra
157124c11f sched: fix warning in hrtick_start_fair()
Benjamin Herrenschmidt reported:

> I get that on ppc64 ...
>
> In file included from kernel/sched.c:1595:
> kernel/sched_fair.c: In function ‘hrtick_start_fair’:
> kernel/sched_fair.c:902: warning: comparison of distinct pointer types lacks a cast
>
> Probably harmless but annoying.

s64 delta = slice - ran;

-->	delta = max(10000LL, delta);

Probably ppc64's s64 is long vs long long..

I think hpa was looking at sanitizing all these 64bit types across the
architectures.

Use max_t with an explicit type meanwhile.

Reported-by: Benjamin Herrenschmid <benh@kernel.crashing.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-28 12:01:58 +02:00
Linus Torvalds
7f9dce3837 Merge branch 'sched/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  sched: hrtick_enabled() should use cpu_active()
  sched, x86: clean up hrtick implementation
  sched: fix build error, provide partition_sched_domains() unconditionally
  sched: fix warning in inc_rt_tasks() to not declare variable 'rq' if it's not needed
  cpu hotplug: Make cpu_active_map synchronization dependency clear
  cpu hotplug, sched: Introduce cpu_active_map and redo sched domain managment (take 2)
  sched: rework of "prioritize non-migratable tasks over migratable ones"
  sched: reduce stack size in isolated_cpu_setup()
  Revert parts of "ftrace: do not trace scheduler functions"

Fixed up conflicts in include/asm-x86/thread_info.h (due to the
TIF_SINGLESTEP unification vs TIF_HRTICK_RESCHED removal) and
kernel/sched_fair.c (due to cpu_active_map vs for_each_cpu_mask_nr()
introduction).
2008-07-23 19:36:53 -07:00
Ingo Molnar
d986434a7d Merge branch 'sched/urgent' into sched/devel 2008-07-20 11:01:29 +02:00
Peter Zijlstra
31656519e1 sched, x86: clean up hrtick implementation
random uvesafb failures were reported against Gentoo:

  http://bugs.gentoo.org/show_bug.cgi?id=222799

and Mihai Moldovan bisected it back to:

> 8f4d37ec07 is first bad commit
> commit 8f4d37ec07
> Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
> Date:   Fri Jan 25 21:08:29 2008 +0100
>
>    sched: high-res preemption tick

Linus suspected it to be hrtick + vm86 interaction and observed:

> Btw, Peter, Ingo: I think that commit is doing bad things. They aren't
> _incorrect_ per se, but they are definitely bad.
>
> Why?
>
> Using random _TIF_WORK_MASK flags is really impolite for doing
> "scheduling" work. There's a reason that arch/x86/kernel/entry_32.S
> special-cases the _TIF_NEED_RESCHED flag: we don't want to exit out of
> vm86 mode unnecessarily.
>
> See the "work_notifysig_v86" label, and how it does that
> "save_v86_state()" thing etc etc.

Right, I never liked having to fiddle with those TIF flags. Initially I
needed it because the hrtimer base lock could not nest in the rq lock.
That however is fixed these days.

Currently the only reason left to fiddle with the TIF flags is remote
wakeups. We cannot program a remote cpu's hrtimer. I've been thinking
about using the new and improved IPI function call stuff to implement
hrtimer_start_on().

However that does require that smp_call_function_single(.wait=0) works
from interrupt context - /me looks at the latest series from Jens - Yes
that does seem to be supported, good.

Here's a stab at cleaning this stuff up ...

Mihai reported test success as well.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Mihai Moldovan <ionic@ionic.de>
Cc: Michal Januszewski <spock@gentoo.org>
Cc: Antonino Daplas <adaplas@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-20 10:37:28 +02:00
Max Krasnyansky
e761b77252 cpu hotplug, sched: Introduce cpu_active_map and redo sched domain managment (take 2)
This is based on Linus' idea of creating cpu_active_map that prevents
scheduler load balancer from migrating tasks to the cpu that is going
down.

It allows us to simplify domain management code and avoid unecessary
domain rebuilds during cpu hotplug event handling.

Please ignore the cpusets part for now. It needs some more work in order
to avoid crazy lock nesting. Although I did simplfy and unify domain
reinitialization logic. We now simply call partition_sched_domains() in
all the cases. This means that we're using exact same code paths as in
cpusets case and hence the test below cover cpusets too.
Cpuset changes to make rebuild_sched_domains() callable from various
contexts are in the separate patch (right next after this one).

This not only boots but also easily handles
	while true; do make clean; make -j 8; done
and
	while true; do on-off-cpu 1; done
at the same time.
(on-off-cpu 1 simple does echo 0/1 > /sys/.../cpu1/online thing).

Suprisingly the box (dual-core Core2) is quite usable. In fact I'm typing
this on right now in gnome-terminal and things are moving just fine.

Also this is running with most of the debug features enabled (lockdep,
mutex, etc) no BUG_ONs or lockdep complaints so far.

I believe I addressed all of the Dmitry's comments for original Linus'
version. I changed both fair and rt balancer to mask out non-active cpus.
And replaced cpu_is_offline() with !cpu_active() in the main scheduler
code where it made sense (to me).

Signed-off-by: Max Krasnyanskiy <maxk@qualcomm.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Gregory Haskins <ghaskins@novell.com>
Cc: dmitry.adamushko@gmail.com
Cc: pj@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-18 13:22:25 +02:00
Ingo Molnar
82638844d9 Merge branch 'linus' into cpus4096
Conflicts:

	arch/x86/xen/smp.c
	kernel/sched_rt.c
	net/iucv/iucv.c

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-16 00:29:07 +02:00
Ingo Molnar
68083e05d7 Merge commit 'v2.6.26-rc9' into cpus4096 2008-07-06 14:23:39 +02:00
Gregory Haskins
2087a1ad82 sched: add avg-overlap support to RT tasks
We have the notion of tracking process-coupling (a.k.a. buddy-wake) via
the p->se.last_wake / p->se.avg_overlap facilities, but it is only used
for cfs to cfs interactions.  There is no reason why an rt to cfs
interaction cannot share in establishing a relationhip in a similar
manner.

Because PREEMPT_RT runs many kernel threads as FIFO priority, we often
times have heavy interaction between RT threads waking CFS applications.
This patch offers a substantial boost (50-60%+) in perfomance under those
circumstances.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Cc: npiggin@suse.de
Cc: rostedt@goodmis.org
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-04 12:50:22 +02:00
Dhaval Giani
55e12e5e7b sched: make sched_{rt,fair}.c ifdefs more readable
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:32:05 +02:00
Peter Zijlstra
f5bfb7d9ff sched: bias effective_load() error towards failing wake_affine().
Measurement shows that the difference between cgroup:/ and cgroup:/foo
wake_affine() results is that the latter succeeds significantly more.

Therefore bias the calculations towards failing the test.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:47 +02:00
Peter Zijlstra
f1d239f732 sched: incremental effective_load()
Increase the accuracy of the effective_load values.

Not only consider the current increment (as per the attempted wakeup), but
also consider the delta between when we last adjusted the shares and the
current situation.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:47 +02:00
Peter Zijlstra
83378269a5 sched: correct wakeup weight calculations
rw_i = {2, 4, 1, 0}
s_i = {2/7, 4/7, 1/7, 0}

wakeup on cpu0, weight=1

rw'_i = {3, 4, 1, 0}
s'_i = {3/8, 4/8, 1/8, 0}

s_0 = S * rw_0 / \Sum rw_j ->
  \Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct)

s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) =
       1 * (2+1) / (7+1) = 3/8 (correct

so we find that adding 1 to cpu0 gains 5/56 in weight
if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:46 +02:00
Srivatsa Vaddagiri
243e0e7b7d sched: fix mult overflow
It was observed these mults can overflow.

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:45 +02:00
Peter Zijlstra
cb5ef42a03 sched: optimize effective_load()
s_i = S * rw_i / \Sum_j rw_j

 -> \Sum_j rw_j = S * rw_i / s_i

 -> s'_i = S * (rw_i + w) / (\Sum_j rw_j + w)

delta s = s' - s = S * (rw + w) / ((S * rw / s) + w)
        = s * (S * (rw + w) / (S * rw + s * w) - 1)

 a = S*(rw+w), b = S*rw + s*w

delta s = s * (a-b) / b

IOW, trade one divide for two multiplies

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:43 +02:00
Peter Zijlstra
4be9daaa1b sched: fix task_h_load()
Currently task_h_load() computes the load of a task and uses that to either
subtract it from the total, or add to it.

However, removing or adding a task need not have any effect on the total load
at all. Imagine adding a task to a group that is local to one cpu - in that
case the total load of that cpu is unaffected.

So properly compute addition/removal:

 s_i = S * rw_i / \Sum_j rw_j
 s'_i = S * (rw_i + wl) / (\Sum_j rw_j + wg)

then s'_i - s_i gives the change in load.

Where s_i is the shares for cpu i, S the group weight, rw_i the runqueue weight
for that cpu, wl the weight we add (subtract) and wg the weight contribution to
the runqueue.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:42 +02:00
Peter Zijlstra
42a3ac7d5c sched: fix load scaling in group balancing
doing the load balance will change cfs_rq->load.weight (that's the whole point)
but since that's part of the scale factor, we'll scale back with a different
amount.

Weight getting smaller would result in an inflated moved_load which causes
it to stop balancing too soon.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:41 +02:00
Peter Zijlstra
bb3469ac9b sched: hierarchical load vs affine wakeups
With hierarchical grouping we can't just compare task weight to rq weight - we
need to scale the weight appropriately.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:40 +02:00
Peter Zijlstra
c8cba857b4 sched: simplify the group load balancer
While thinking about the previous patch - I realized that using per domain
aggregate load values in load_balance_fair() is wrong. We should use the
load value for that CPU.

By not needing per domain hierarchical load values we don't need to store
per domain aggregate shares, which greatly simplifies all the math.

It basically falls apart in two separate computations:
 - per domain update of the shares
 - per CPU update of the hierarchical load

Also get rid of the move_group_shares() stuff - just re-compute the shares
again after a successful load balance.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:36 +02:00
Peter Zijlstra
a25b5aca87 sched: no need to aggregate task_weight
We only need to know the task_weight of the busiest rq - nothing to do
if there are no tasks there.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:35 +02:00
Srivatsa Vaddagiri
53fecd8ae1 sched: kill task_group balancing
The idea was to balance groups until we've reached the global goal, however
Vatsa rightly pointed out that we might never reach that goal this way -
hence take out this logic.

[ the initial rationale for this 'feature' was to promote max concurrency
  within a group - it does not however affect fairness ]

Reported-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:33 +02:00
Peter Zijlstra
b6a86c746f sched: fix sched_domain aggregation
Keeping the aggregate on the first cpu of the sched domain has two problems:
 - it could collide between different sched domains on different cpus
 - it could slow things down because of the remote accesses

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:32 +02:00
Peter Zijlstra
103638d95b sched: fix wakeup granularity and buddy granularity
Uncouple buddy selection from wakeup granularity.

The initial idea was that buddies could run ahead as far as a normal task
can - do this by measuring a pair 'slice' just as we do for a normal task.

This means we can drop the wakeup_granularity back to 5ms.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:31 +02:00
Peter Zijlstra
c09595f63b sched: revert revert of: fair-group: SMP-nice for group scheduling
Try again..

Initial commit: 18d95a2832
Revert: 6363ca57c7

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:29 +02:00
Peter Zijlstra
ced8aa16e1 sched: fix calc_delta_asym, #2
Ok, so why are we in this mess, it was:

  1/w

but now we mixed that rw in the mix like:

 rw/w

rw being \Sum w suggests: fiddling w, we should also fiddle rw, humm?

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:28 +02:00
Peter Zijlstra
c9c294a630 sched: fix calc_delta_asym()
calc_delta_asym() is supposed to do the same as calc_delta_fair() except
linearly shrink the result for negative nice processes - this causes them
to have a smaller preemption threshold so that they are more easily preempted.

The problem is that for task groups se->load.weight is the per cpu share of
the actual task group weight; take that into account.

Also provide a debug switch to disable the asymmetry (which I still don't
like - but it does greatly benefit some workloads)

This would explain the interactivity issues reported against group scheduling.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:28 +02:00
Peter Zijlstra
a7be37ac8e sched: revert the revert of: weight calculations
Try again..

initial commit: 8f1bc385cf
revert: f9305d4a09

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27 14:31:27 +02:00
Gregory Haskins
6d299f1b53 sched: fix SCHED_OTHER balance iterator to include all tasks
The currently logic inadvertently skips the last task on the run-queue,
resulting in missed balance opportunities.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: David Bahi <dbahi@novell.com>
CC: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-06-06 15:19:29 +02:00
Mike Galbraith
b3137bc8e7 sched: stop wake_affine from causing serious imbalance
Prevent short-running wakers of short-running threads from overloading a single
cpu via wakeup affinity, and wire up disconnected debug option.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-29 11:29:20 +02:00
Ingo Molnar
6363ca57c7 revert ("sched: fair-group: SMP-nice for group scheduling")
Yanmin Zhang reported:

Comparing with 2.6.25, volanoMark has big regression with kernel 2.6.26-rc1.
It's about 50% on my 8-core stoakley, 16-core tigerton, and Itanium Montecito.

With bisect, I located the following patch:

| 18d95a2832 is first bad commit
| commit 18d95a2832
| Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
| Date:   Sat Apr 19 19:45:00 2008 +0200
|
|     sched: fair-group: SMP-nice for group scheduling

Revert it so that we get v2.6.25 behavior.

Bisected-by: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-29 11:28:57 +02:00
Ingo Molnar
f9305d4a09 revert ("sched: fair: weight calculations")
Yanmin Zhang reported:

Comparing with kernel 2.6.25, sysbench+mysql(oltp, readonly) has many
regressions with 2.6.26-rc1:

 1) 8-core stoakley: 28%;
 2) 16-core tigerton: 20%;
 3) Itanium Montvale: 50%.

Bisect located this patch:

| 8f1bc385cf is first bad commit
| commit 8f1bc385cf
| Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
| Date:   Sat Apr 19 19:45:00 2008 +0200
|
|     sched: fair: weight calculations

Revert it to the 2.6.25 state.

Bisected-by: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-29 11:24:01 +02:00
Mike Travis
363ab6f142 core: use performance variant for_each_cpu_mask_nr
Change references from for_each_cpu_mask to for_each_cpu_mask_nr
where appropriate

Reviewed-by: Paul Jackson <pj@sgi.com>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23 18:35:12 +02:00
Mike Galbraith
46151122e0 sched: fix weight calculations
The conversion between virtual and real time is as follows:

  dvt = rw/w * dt <=> dt = w/rw * dvt

Since we want the fair sleeper granularity to be in real time, we actually
need to do:

  dvt = - rw/w * l

This bug could be related to the regression reported by Yanmin Zhang:

| Comparing with kernel 2.6.25, sysbench+mysql(oltp, readonly) has lots
| of regressions with 2.6.26-rc1:
|
| 1) 8-core stoakley: 28%;
| 2) 16-core tigerton: 20%;
| 3) Itanium Montvale: 50%.

Reported-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-08 17:00:42 +02:00
Peter Zijlstra
3e51f33fcc sched: add optional support for CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
this replaces the rq->clock stuff (and possibly cpu_clock()).

 - architectures that have an 'imperfect' hardware clock can set
   CONFIG_HAVE_UNSTABLE_SCHED_CLOCK

 - the 'jiffie' window might be superfulous when we update tick_gtod
   before the __update_sched_clock() call in sched_clock_tick()

 - cpu_clock() might be implemented as:

     sched_clock_cpu(smp_processor_id())

   if the accuracy proves good enough - how far can TSC drift in a
   single jiffie when considering the filtering and idle hooks?

[ mingo@elte.hu: various fixes and cleanups ]

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-05 23:56:18 +02:00
Mike Galbraith
d7dcdc11cf sched: fix debugging
Revert debugging commit 7ba2e74ab5.
print_cfs_rq_tasks() can induce live-lock if a task is dequeued
during list traversal.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-05 23:56:18 +02:00
Gregory Haskins
104f64549c sched: fix SCHED_FAIR wake-idle logic error
We currently use an optimization to skip the overhead of wake-idle
processing if more than one task is assigned to a run-queue.  The
assumption is that the system must already be load-balanced or we
wouldnt be overloaded to begin with.

The problem is that we are looking at rq->nr_running, which may include
RT tasks in addition to CFS tasks.  Since the presence of RT tasks
really has no bearing on the balance status of CFS tasks, this throws
the calculation off.

This patch changes the logic to only consider the number of CFS tasks
when making the decision to optimze the wake-idle.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
CC: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-05 23:56:18 +02:00
Harvey Harrison
983ed7a66b sched: add statics, don't return void expressions
Noticed by sparse:
kernel/sched.c:760:20: warning: symbol 'sched_feat_names' was not declared. Should it be static?
kernel/sched.c:767:5: warning: symbol 'sched_feat_open' was not declared. Should it be static?
kernel/sched_fair.c:845:3: warning: returning void-valued expression
kernel/sched.c:4386:3: warning: returning void-valued expression

Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-05 23:56:17 +02:00
Peter Zijlstra
a992241de6 sched: fix normalized sleeper
Normalized sleeper uses calc_delta*() which requires that the rq load is
already updated, so move account_entity_enqueue() before place_entity()

Tested-by: Frans Pop <elendil@planet.nl>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-05 23:56:17 +02:00
Peter Zijlstra
7ba2e74ab5 sched: debug: show a weight tree
Print a tree of weights.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Peter Zijlstra
8f1bc385cf sched: fair: weight calculations
In order to level the hierarchy, we need to calculate load based on the
root view. That is, each task's load is in the same unit.

             A
            / \
           B   1
          / \
         2   3

To compute 1's load we do:

	   weight(1)
	--------------
	 rq_weight(A)

To compute 2's load we do:

	  weight(2)      weight(B)
	------------ * -----------
	rq_weight(B)   rw_weight(A)

This yields load fractions in comparable units.

The consequence is that it changes virtual time. We used to have:

                time_{i}
  vtime_{i} = ------------
               weight_{i}

  vtime = \Sum vtime_{i} = time / rq_weight.

But with the new way of load calculation we get that vtime equals time.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Peter Zijlstra
4a55bd5e97 sched: fair-group: de-couple load-balancing from the rb-trees
De-couple load-balancing from the rb-trees, so that I can change their
organization.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Peter Zijlstra
ac884dec6d sched: fair-group scheduling vs latency
Currently FAIR_GROUP sched grows the scheduler latency outside of
sysctl_sched_latency, invert this so it stays within.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Peter Zijlstra
18d95a2832 sched: fair-group: SMP-nice for group scheduling
Implement SMP nice support for the full group hierarchy.

On each load-balance action, compile a sched_domain wide view of the full
task_group tree. We compute the domain wide view when walking down the
hierarchy, and readjust the weights when walking back up.

After collecting and readjusting the domain wide view, we try to balance the
tasks within the task_groups. The current approach is a naively balance each
task group until we've moved the targeted amount of load.

Inspired by Srivatsa Vaddsgiri's previous code and Abhishek Chandra's H-SMP
paper.

XXX: there will be some numerical issues due to the limited nature of
     SCHED_LOAD_SCALE wrt to representing a task_groups influence on the
     total weight. When the tree is deep enough, or the task weight small
     enough, we'll run out of bits.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Abhishek Chandra <chandra@cs.umn.edu>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Hidetoshi Seto
1d3504fcf5 sched, cpuset: customize sched domains, core
[rebased for sched-devel/latest]

 - Add a new cpuset file, having levels:
     sched_relax_domain_level

 - Modify partition_sched_domains() and build_sched_domains()
   to take attributes parameter passed from cpuset.

 - Fill newidle_idx for node domains which currently unused but
   might be required if sched_relax_domain_level become higher.

 - We can change the default level by boot option 'relax_domain_level='.

Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Peter Zijlstra
b758149c02 sched: prepatory code movement
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:45:00 +02:00
Dhaval Giani
354d60c2ff sched: mix tasks and groups
This patch allows tasks and groups to exist in the same cfs_rq. With this
change the CFS group scheduling follows a 1/(M+N) model from a 1/(1+N)
fairness model where M tasks and N groups exist at the cfs_rq level.

[a.p.zijlstra@chello.nl: rt bits and assorted fixes]
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:59 +02:00
Peter Zijlstra
112f53f5d7 sched: old sleeper bonus
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:59 +02:00
Peter Zijlstra
79b3feffb1 sched: fix regression with sched yield
Balbir Singh reported:

> 1:mon> t
> [c0000000e7677da0] c000000000067de0 .sys_sched_yield+0x6c/0xbc
> [c0000000e7677e30] c000000000008748 syscall_exit+0x0/0x40
> --- Exception: c01 (System Call) at 00000400001d09e4
> SP (4000664cb10) is in userspace
> 1:mon> r
> cpu 0x1: Vector: 300 (Data Access) at [c0000000e7677aa0]
>     pc: c000000000068e50: .yield_task_fair+0x94/0xc4
>     lr: c000000000067de0: .sys_sched_yield+0x6c/0xbc

the check that should have avoided that is:

        /*
         * Are we the only task in the tree?
         */
        if (unlikely(rq->load.weight == curr->se.load.weight))
                return;

But I guess that overlooks rt tasks, they also increase the load.
So I guess something like this ought to fix it..

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:57 +02:00
Ingo Molnar
50df5d6aea sched: remove sysctl_sched_batch_wakeup_granularity
it's unused.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:57 +02:00
Peter Zijlstra
0bbd3336ee sched: fix wakeup granularity for buddies
The wakeup buddy logic didn't use the same wakeup granularity logic as the
wakeup preemption did, this might cause the ->next buddy to be selected past
the point where we would have preempted had the task been a single running
instance.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:57 +02:00
Ingo Molnar
018d6db4cb sched: re-do "sched: fix fair sleepers"
re-apply:

| commit e22ecef1d2
| Author: Ingo Molnar <mingo@elte.hu>
| Date:   Fri Mar 14 22:16:08 2008 +0100
|
|     sched: fix fair sleepers
|
|     Fair sleepers need to scale their latency target down by runqueue
|     weight. Otherwise busy systems will gain ever larger sleep bonus.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:57 +02:00
Ingo Molnar
e2df9e0905 revert "sched: fix fair sleepers"
revert "sched: fix fair sleepers" (e22ecef1d2),
because it is causing audio skipping, see:

   http://bugzilla.kernel.org/show_bug.cgi?id=10428

the patch is correct and the real cause of the skipping is not
understood (tracing makes it go away), but time has run out so we'll
revert it and re-try in 2.6.26.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 14:26:23 +02:00
Peter Zijlstra
2070ee01d3 sched: cleanup old and rarely used 'debug' features.
TREE_AVG and APPROX_AVG are initial task placement policies that have been
disabled for a long while.. time to remove them.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-21 16:43:47 +01:00
Ingo Molnar
74e3cd7f48 sched: retune wake granularity
reduce wake-up granularity for better interactivity.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-19 04:27:53 +01:00
Ingo Molnar
4ae7d5cefd sched: improve affine wakeups
improve affine wakeups. Maintain the 'overlap' metric based on CFS's
sum_exec_runtime - which means the amount of time a task executes
after it wakes up some other task.

Use the 'overlap' for the wakeup decisions: if the 'overlap' is short,
it means there's strong workload coupling between this task and the
woken up task. If the 'overlap' is large then the workload is decoupled
and the scheduler will move them to separate CPUs more easily.

( Also slightly move the preempt_check within try_to_wake_up() - this has
  no effect on functionality but allows 'early wakeups' (for still-on-rq
  tasks) to be correctly accounted as well.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-19 04:27:53 +01:00
Ingo Molnar
f48273860e sched: clean up wakeup balancing, code flow
Clean up the code flow. No code changed:

kernel/sched.o:

   text	   data	    bss	    dec	    hex	filename
  42521	   2858	    232	  45611	   b22b	sched.o.before
  42521	   2858	    232	  45611	   b22b	sched.o.after

md5:
   09b31c44e9aff8666f72773dc433e2df  sched.o.before.asm
   09b31c44e9aff8666f72773dc433e2df  sched.o.after.asm

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-19 04:27:53 +01:00
Ingo Molnar
ac192d3921 sched: clean up wakeup balancing, rename variables
rename 'cpu' to 'prev_cpu'. No code changed:

kernel/sched.o:

   text	   data	    bss	    dec	    hex	filename
  42521	   2858	    232	  45611	   b22b	sched.o.before
  42521	   2858	    232	  45611	   b22b	sched.o.after

md5:
   09b31c44e9aff8666f72773dc433e2df  sched.o.before.asm
   09b31c44e9aff8666f72773dc433e2df  sched.o.after.asm

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-19 04:27:52 +01:00
Ingo Molnar
098fb9db2c sched: clean up wakeup balancing, move wake_affine()
split out the affine-wakeup bits.

No code changed:

kernel/sched.o:

   text	   data	    bss	    dec	    hex	filename
  42521	   2858	    232	  45611	   b22b	sched.o.before
  42521	   2858	    232	  45611	   b22b	sched.o.after

md5:
   9d76738f1272aa82f0b7affd2f51df6b  sched.o.before.asm
   09b31c44e9aff8666f72773dc433e2df  sched.o.after.asm

(the md5's changed because stack slots changed and some registers
get scheduled by gcc in a different order - but otherwise the before
and after assembly is instruction for instruction equivalent.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-19 04:27:52 +01:00
Ingo Molnar
6a6029b8ce sched: simplify sched_slice()
Use the existing calc_delta_mine() calculation for sched_slice(). This
saves a divide and simplifies the code because we share it with the
other /cfs_rq->load users.

It also improves code size:

      text    data     bss     dec     hex filename
     42659    2740     144   45543    b1e7 sched.o.before
     42093    2740     144   44977    afb1 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2008-03-15 03:02:50 +01:00
Ingo Molnar
e22ecef1d2 sched: fix fair sleepers
Fair sleepers need to scale their latency target down by runqueue
weight. Otherwise busy systems will gain ever larger sleep bonus.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2008-03-15 03:02:50 +01:00
Peter Zijlstra
aa2ac25229 sched: fix overload performance: buddy wakeups
Currently we schedule to the leftmost task in the runqueue. When the
runtimes are very short because of some server/client ping-pong,
especially in over-saturated workloads, this will cycle through all
tasks trashing the cache.

Reduce cache trashing by keeping dependent tasks together by running
newly woken tasks first. However, by not running the leftmost task first
we could starve tasks because the wakee can gain unlimited runtime.

Therefore we only run the wakee if its within a small
(wakeup_granularity) window of the leftmost task. This preserves
fairness, but does alternate server/client task groups.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-15 03:02:50 +01:00
Peter Zijlstra
3fe69747da sched: min_vruntime fix
Current min_vruntime tracking is incorrect and will cause serious
problems when we don't run the leftmost task for some reason.

min_vruntime does two things; 1) it's used to determine a forward
direction when the u64 vruntime wraps, 2) it's used to track the
leftmost vruntime to position newly enqueued tasks from.

The current logic advances min_vruntime whenever the current task's
vruntime advance. Because the current task may pass the leftmost task
still waiting we're failing the second goal. This causes new tasks to be
placed too far ahead and thus penalizes their runtime.

Fix this by making min_vruntime the min_vruntime of the waiting tasks by
tracking it in enqueue/dequeue, and compare against current's vruntime
to obtain the absolute minimum when placing new tasks.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-15 03:02:49 +01:00
Peter Zijlstra
810b38179e sched: retain vruntime
Kei Tokunaga reported an interactivity problem when moving tasks
between control groups.

Tasks would retain their old vruntime when moved between groups, this
can cause funny lags. Re-set the vruntime on group move to fit within
the new tree.

Reported-by: Kei Tokunaga <tokunaga.keiich@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-07 16:42:59 +01:00
Peter Zijlstra
62fb185130 sched: revert load_balance_monitor() changes
The following commits cause a number of regressions:

  commit 58e2d4ca58
  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  Date:   Fri Jan 25 21:08:00 2008 +0100
  sched: group scheduling, change how cpu load is calculated

  commit 6b2d770026
  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  Date:   Fri Jan 25 21:08:00 2008 +0100
  sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups

Namely:
 - very frequent wakeups on SMP, reported by PowerTop users.
 - cacheline trashing on (large) SMP
 - some latencies larger than 500ms

While there is a mergeable patch to fix the latter, the former issues
are not fixable in a manner suitable for .25 (we're at -rc3 now).

Hence we revert them and try again in v2.6.26.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Tested-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-03-04 17:54:06 +01:00
Ingo Molnar
7eee3e677d sched: clean up __pick_last_entity() a bit
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-25 16:34:17 +01:00
Balbir Singh
70eee74b70 sched: remove duplicate code from sched_fair.c
pick_task_entity() duplicates existing code. This functionality can be
easily obtained using rb_last(). Avoid code duplication by using rb_last().

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-25 16:34:17 +01:00
Peter Zijlstra
ef9884e6f2 sched: let +nice tasks have smaller impact
Michel Dänzr has bisected an interactivity problem with
plus-reniced tasks back to this commit:

 810e95ccd5 is first bad commit
 commit 810e95ccd5
 Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
 Date:   Mon Oct 15 17:00:14 2007 +0200

 sched: another wakeup_granularity fix

      unit mis-match: wakeup_gran was used against a vruntime

fix this by assymetrically scaling the vtime of positive reniced
tasks.

Bisected-by: Michel Dänzer <michel@tungstengraphics.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-31 22:45:22 +01:00
Srivatsa Vaddagiri
296825cbe1 sched: fix high wake up latencies with FAIR_USER_SCHED
The reason why we are getting better wakeup latencies for
!FAIR_USER_SCHED is because of this snippet of code in place_entity():

	if (!initial) {
		/* sleeps upto a single latency don't count. */
		if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se))
						     ^^^^^^^^^^^^^^^^^^
			vruntime -= sysctl_sched_latency;

		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
	}

NEW_FAIR_SLEEPERS feature gives credit for sleeping only to tasks and
not group-level entities. With the patch attached, I could see that
wakeup latencies with FAIR_USER_SCHED are restored to the same level as
!FAIR_USER_SCHED.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-31 22:45:22 +01:00
Arjan van de Ven
6d082592b6 sched: keep total / count stats in addition to the max for
Right now, the linux kernel (with scheduler statistics enabled) keeps track
of the maximum time a process is waiting to be scheduled. While the maximum
is a very useful metric, tracking average and total is equally useful
(at least for latencytop) to figure out the accumulated effect of scheduler
delays. The accumulated effect is important to judge the performance impact
of scheduler tuning/behavior.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:35 +01:00
Peter Zijlstra
5973e5b954 sched: fix: don't take a mutex from interrupt context
print_cfs_stats is callable from interrupt context (sysrq), hence it should
not take mutexes. Change it to use RCU since the task group data is RCU
freed anyway.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:34 +01:00
Arjan van de Ven
9745512ce7 sched: latencytop support
LatencyTOP kernel infrastructure; it measures latencies in the
scheduler and tracks it system wide and per process.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:34 +01:00
Peter Zijlstra
8f4d37ec07 sched: high-res preemption tick
Use HR-timers (when available) to deliver an accurate preemption tick.

The regular scheduler tick that runs at 1/HZ can be too coarse when nice
level are used. The fairness system will still keep the cpu utilisation 'fair'
by then delaying the task that got an excessive amount of CPU time but try to
minimize this by delivering preemption points spot-on.

The average frequency of this extra interrupt is sched_latency / nr_latency.
Which need not be higher than 1/HZ, its just that the distribution within the
sched_latency period is important.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:29 +01:00
Steven Rostedt
cb46984504 sched: RT-balance, add new methods to sched_class
Dmitry Adamushko found that the current implementation of the RT
balancing code left out changes to the sched_setscheduler and
rt_mutex_setprio.

This patch addresses this issue by adding methods to the schedule classes
to handle being switched out of (switched_from) and being switched into
(switched_to) a sched_class. Also a method for changing of priorities
is also added (prio_changed).

This patch also removes some duplicate logic between rt_mutex_setprio and
sched_setscheduler.

Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:22 +01:00
Peter Zijlstra
4bf0b77158 sched: remove do_div() from __sched_slice()
Yanmin Zhang noticed a nice optimization:

  p = l * nr / nl, nl = l/g -> p = g * nr

which eliminates a do_div() from __sched_period().

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:21 +01:00
Dmitry Adamushko
9ec3b77e11 sched: no need for 'affine wakeup' balancing
No need to do a check for 'affine wakeup and passive balancing possibilities'
in select_task_rq_fair() when task_cpu(p) == this_cpu.

I guess, this part got missed upon introduction of per-sched_class
select_task_rq() in try_to_wake_up().

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:21 +01:00
Gregory Haskins
e7693a362e sched: de-SCHED_OTHER-ize the RT path
The current wake-up code path tries to determine if it can optimize the
wake-up to "this_cpu" by computing load calculations.  The problem is that
these calculations are only relevant to SCHED_OTHER tasks where load is king.
For RT tasks, priority is king.  So the load calculation is completely wasted
bandwidth.

Therefore, we create a new sched_class interface to help with
pre-wakeup routing decisions and move the load calculation as a function
of CFS task's class.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:09 +01:00
Srivatsa Vaddagiri
6b2d770026 sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups
The current load balancing scheme isn't good enough for precise
group fairness.

For example: on a 8-cpu system, I created 3 groups as under:

	a = 8 tasks (cpu.shares = 1024)
	b = 4 tasks (cpu.shares = 1024)
	c = 3 tasks (cpu.shares = 1024)

a, b and c are task groups that have equal weight. We would expect each
of the groups to receive 33.33% of cpu bandwidth under a fair scheduler.

This is what I get with the latest scheduler git tree:

Signed-off-by: Ingo Molnar <mingo@elte.hu>
--------------------------------------------------------------------------------
Col1  | Col2    | Col3  |  Col4
------|---------|-------|-------------------------------------------------------
a     | 277.676 | 57.8% | 54.1%  54.1%  54.1%  54.2%  56.7%  62.2%  62.8% 64.5%
b     | 116.108 | 24.2% | 47.4%  48.1%  48.7%  49.3%
c     |  86.326 | 18.0% | 47.5%  47.9%  48.5%
--------------------------------------------------------------------------------

Explanation of o/p:

Col1 -> Group name
Col2 -> Cumulative execution time (in seconds) received by all tasks of that
	group in a 60sec window across 8 cpus
Col3 -> CPU bandwidth received by the group in the 60sec window, expressed in
        percentage. Col3 data is derived as:
		Col3 = 100 * Col2 / (NR_CPUS * 60)
Col4 -> CPU bandwidth received by each individual task of the group.
		Col4 = 100 * cpu_time_recd_by_task / 60

[I can share the test case that produces a similar o/p if reqd]

The deviation from desired group fairness is as below:

	a = +24.47%
	b = -9.13%
	c = -15.33%

which is quite high.

After the patch below is applied, here are the results:

--------------------------------------------------------------------------------
Col1  | Col2    | Col3  |  Col4
------|---------|-------|-------------------------------------------------------
a     | 163.112 | 34.0% | 33.2%  33.4%  33.5%  33.5%  33.7%  34.4%  34.8% 35.3%
b     | 156.220 | 32.5% | 63.3%  64.5%  66.1%  66.5%
c     | 160.653 | 33.5% | 85.8%  90.6%  91.4%
--------------------------------------------------------------------------------

Deviation from desired group fairness is as below:

	a = +0.67%
	b = -0.83%
	c = +0.17%

which is far better IMO. Most of other runs have yielded a deviation within
+-2% at the most, which is good.

Why do we see bad (group) fairness with current scheuler?
=========================================================

Currently cpu's weight is just the summation of individual task weights.
This can yield incorrect results. For ex: consider three groups as below
on a 2-cpu system:

	CPU0	CPU1
---------------------------
	A (10)  B(5)
		C(5)
---------------------------

Group A has 10 tasks, all on CPU0, Group B and C have 5 tasks each all
of which are on CPU1. Each task has the same weight (NICE_0_LOAD =
1024).

The current scheme would yield a cpu weight of 10240 (10*1024) for each cpu and
the load balancer will think both CPUs are perfectly balanced and won't
move around any tasks. This, however, would yield this bandwidth:

	A = 50%
	B = 25%
	C = 25%

which is not the desired result.

What's changing in the patch?
=============================

	- How cpu weights are calculated when CONFIF_FAIR_GROUP_SCHED is
	  defined (see below)
	- API Change
		- Two tunables introduced in sysfs (under SCHED_DEBUG) to
		  control the frequency at which the load balance monitor
		  thread runs.

The basic change made in this patch is how cpu weight (rq->load.weight) is
calculated. Its now calculated as the summation of group weights on a cpu,
rather than summation of task weights. Weight exerted by a group on a
cpu is dependent on the shares allocated to it and also the number of
tasks the group has on that cpu compared to the total number of
(runnable) tasks the group has in the system.

Let,
	W(K,i)  = Weight of group K on cpu i
	T(K,i)  = Task load present in group K's cfs_rq on cpu i
	T(K)    = Total task load of group K across various cpus
	S(K) 	= Shares allocated to group K
	NRCPUS	= Number of online cpus in the scheduler domain to
	 	  which group K is assigned.

Then,
	W(K,i) = S(K) * NRCPUS * T(K,i) / T(K)

A load balance monitor thread is created at bootup, which periodically
runs and adjusts group's weight on each cpu. To avoid its overhead, two
min/max tunables are introduced (under SCHED_DEBUG) to control the rate
at which it runs.

Fixes from: Peter Zijlstra <a.p.zijlstra@chello.nl>

- don't start the load_balance_monitor when there is only a single cpu.
- rename the kthread because its currently longer than TASK_COMM_LEN

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:00 +01:00
Srivatsa Vaddagiri
58e2d4ca58 sched: group scheduling, change how cpu load is calculated
This patch changes how the cpu load exerted by fair_sched_class tasks
is calculated. Load exerted by fair_sched_class tasks on a cpu is now
a summation of the group weights, rather than summation of task weights.
Weight exerted by a group on a cpu is dependent on the shares allocated
to it.

This version of patch has a minor impact on code size, but should have
no runtime/functional impact for !CONFIG_FAIR_GROUP_SCHED.

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:08:00 +01:00
Srivatsa Vaddagiri
ec2c507fe8 sched: group scheduling, minor fixes
Minor bug fixes for the group scheduler:

- Use a mutex to serialize add/remove of task groups and also when
  changing shares of a task group. Use the same mutex when printing
  cfs_rq debugging stats for various task groups.

- Use list_for_each_entry_rcu in for_each_leaf_cfs_rq macro (when
  walking task group list)

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-25 21:07:59 +01:00
Ingo Molnar
6cbf1c126c sched: do not hurt SCHED_BATCH on wakeup
measurements by Yanmin Zhang have shown that SCHED_BATCH tasks benefit
if they run the same place_entity() logic as SCHED_OTHER tasks - so
uniformize behavior in this area.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-12-18 15:21:13 +01:00
Ingo Molnar
db292ca302 sched: default to more agressive yield for SCHED_BATCH tasks
do more agressive yield for SCHED_BATCH tuned tasks: they are all
about throughput anyway. This allows a gentler migration path for
any apps that relied on stronger yield.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-12-04 17:04:39 +01:00
Srivatsa Vaddagiri
d842de871c sched: cpu accounting controller (V2)
Commit cfb5285660 removed a useful feature for
us, which provided a cpu accounting resource controller.  This feature would be
useful if someone wants to group tasks only for accounting purpose and doesnt
really want to exercise any control over their cpu consumption.

The patch below reintroduces the feature. It is based on Paul Menage's
original patch (Commit 62d0df6406), with
these differences:

        - Removed load average information. I felt it needs more thought (esp
	  to deal with SMP and virtualized platforms) and can be added for
	  2.6.25 after more discussions.
        - Convert group cpu usage to be nanosecond accurate (as rest of the cfs
	  stats are) and invoke cpuacct_charge() from the respective scheduler
	  classes
	- Make accounting scalable on SMP systems by splitting the usage
	  counter to be per-cpu
	- Move the code from kernel/cpu_acct.c to kernel/sched.c (since the
	  code is not big enough to warrant a new file and also this rightly
	  needs to live inside the scheduler. Also things like accessing
	  rq->lock while reading cpu usage becomes easier if the code lived in
	  kernel/sched.c)

The patch also modifies the cpu controller not to provide the same accounting
information.

Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com>

 Tested the patches on top of 2.6.24-rc3. The patches work fine. Ran
 some simple tests like cpuspin (spin on the cpu), ran several tasks in
 the same group and timed them. Compared their time stamps with
 cpuacct.usage.

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-12-02 20:04:49 +01:00
Zou Nan hai
722aab0c3b sched: fix minimum granularity tunings
increase the default minimum granularity some more - this gives us
more performance in aim7 benchmarks.

also correct some comments: we scale with ilog(ncpus) + 1.

Signed-off-by: Zou Nan hai <nanhai.zou@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-26 21:21:49 +01:00
Adrian Bunk
518b22e990 sched: make sched_nr_latency static
sched_nr_latency can now become static.

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-15 20:57:40 +01:00
Srivatsa Vaddagiri
3c90e6e99b sched: fix copy_namespace() <-> sched_fork() dependency in do_fork
Sukadev Bhattiprolu reported a kernel crash with control groups.
There are couple of problems discovered by Suka's test:

- The test requires the cgroup filesystem to be mounted with
  atleast the cpu and ns options (i.e both namespace and cpu 
  controllers are active in the same hierarchy). 

	# mkdir /dev/cpuctl
	# mount -t cgroup -ocpu,ns none cpuctl
	(or simply)
	# mount -t cgroup none cpuctl -> Will activate all controllers
					 in same hierarchy.

- The test invokes clone() with CLONE_NEWNS set. This causes a a new child
  to be created, also a new group (do_fork->copy_namespaces->ns_cgroup_clone->
  cgroup_clone) and the child is attached to the new group (cgroup_clone->
  attach_task->sched_move_task). At this point in time, the child's scheduler 
  related fields are uninitialized (including its on_rq field, which it has
  inherited from parent). As a result sched_move_task thinks its on
  runqueue, when it isn't.

  As a solution to this problem, I moved sched_fork() call, which
  initializes scheduler related fields on a new task, before
  copy_namespaces(). I am not sure though whether moving up will
  cause other side-effects. Do you see any issue?

- The second problem exposed by this test is that task_new_fair()
  assumes that parent and child will be part of the same group (which 
  needn't be as this test shows). As a result, cfs_rq->curr can be NULL
  for the child.

  The solution is to test for curr pointer being NULL in
  task_new_fair().

With the patch below, I could run ns_exec() fine w/o a crash.

Reported-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:39 +01:00
Ingo Molnar
502d26b524 sched: clean up the wakeup preempt check, #2
clean up the preemption check to not use unnecessary 64-bit
variables. This improves code size:

   text    data     bss     dec     hex filename
  44227    3326      36   47589    b9e5 sched.o.before
  44201    3326      36   47563    b9cb sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:39 +01:00
Ingo Molnar
77d9cc44b5 sched: clean up the wakeup preempt check
clean up the wakeup preemption check. No code changed:

   text    data     bss     dec     hex filename
  44227    3326      36   47589    b9e5 sched.o.before
  44227    3326      36   47589    b9e5 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:39 +01:00
Ingo Molnar
8bc6767acb sched: wakeup preemption fix
wakeup preemption fix: do not make it dependent on p->prio.
Preemption purely depends on ->vruntime.

This improves preemption in mixed-nice-level workloads.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:39 +01:00
Ingo Molnar
3e3e13f399 sched: remove PREEMPT_RESTRICT
remove PREEMPT_RESTRICT. (this is a separate commit so that any
regression related to the removal itself is bisectable)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:39 +01:00
Ingo Molnar
19978ca610 sched: reintroduce SMP tunings again
Yanmin Zhang reported an aim7 regression and bisected it down to:

 |  commit 38ad464d41
 |  Author: Ingo Molnar <mingo@elte.hu>
 |  Date:   Mon Oct 15 17:00:02 2007 +0200
 |
 |     sched: uniform tunings
 |
 |     use the same defaults on both UP and SMP.

fix this by reintroducing similar SMP tunings again. This resolves
the regression.

(also update the comments to match the ilog2(nr_cpus) tuning effect)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:38 +01:00
Peter Zijlstra
b2be5e96dc sched: reintroduce the sched_min_granularity tunable
we lost the sched_min_granularity tunable to a clever optimization
that uses the sched_latency/min_granularity ratio - but the ratio
is quite unintuitive to users and can also crash the kernel if the
ratio is set to 0. So reintroduce the min_granularity tunable,
while keeping the ratio maintained internally.

no functionality changed.

[ mingo@elte.hu: some fixlets. ]

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:37 +01:00
Peter Zijlstra
2cb8600e6b sched: documentation: place_entity() comments
Add a few comments to place_entity(). No code changed.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:37 +01:00
Peter Zijlstra
10b777246c sched: fix vslice
vslice was missing a factor NICE_0_LOAD, as weight is in
weight*NICE_0_LOAD units.

the effect of this bug was larger initial slices and
thus latency-noisier forks.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-11-09 22:39:37 +01:00
Ingo Molnar
8eb172d941 sched: fix style of swap() macro in kernel/sched_fair.c
fix style of swap() macro in kernel/sched_fair.c.

( this macro should eventually move to a general header, as ext3 uses
  a similar construct too. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-29 21:18:11 +01:00
Peter Williams
681f3e6854 sched: isolate SMP balancing code a bit more
At the moment, a lot of load balancing code that is irrelevant to non
SMP systems gets included during non SMP builds.

This patch addresses this issue and reduces the binary size on non
SMP systems:

   text    data     bss     dec     hex filename
  10983      28    1192   12203    2fab sched.o.before
  10739      28    1192   11959    2eb7 sched.o.after

Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-24 18:23:51 +02:00
Peter Williams
e1d1484f72 sched: reduce balance-tasks overhead
At the moment, balance_tasks() provides low level functionality for both
  move_tasks() and move_one_task() (indirectly) via the load_balance()
function (in the sched_class interface) which also provides dual
functionality.  This dual functionality complicates the interfaces and
internal mechanisms and makes the run time overhead of operations that
are called with two run queue locks held.

This patch addresses this issue and reduces the overhead of these
operations.

Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-24 18:23:51 +02:00
Srivatsa Vaddagiri
b9dca1e0fc sched: fix new task startup crash
Child task may be added on a different cpu that the one on which parent
is running. In which case, task_new_fair() should check whether the new
born task's parent entity should be added as well on the cfs_rq.

Patch below fixes the problem in task_new_fair.

This could fix the put_prev_task_fair() crashes reported.

Reported-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Reported-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-17 16:55:11 +02:00
Ingo Molnar
da84d96176 sched: reintroduce cache-hot affinity
reintroduce a simplified version of cache-hot/cold scheduling
affinity. This improves performance with certain SMP workloads,
such as sysbench.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:18 +02:00
Ingo Molnar
e5f32a3856 sched: speed up context-switches a bit
speed up context-switches a bit by not clearing p->exec_start.

(as a side-effect, this also makes p->exec_start a universal timestamp
available to cache-hot estimations.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:18 +02:00
Ingo Molnar
91c234b4e3 sched: do not wakeup-preempt with SCHED_BATCH tasks
do not wakeup-preempt with SCHED_BATCH tasks, their preemption
is batched too, driven by the tick.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:18 +02:00
Ingo Molnar
d274a4cee1 sched: update comment
update comment: clarify time-slices and remove obsolete tuning detail.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:14 +02:00
Mike Galbraith
95938a35c5 sched: prevent wakeup over-scheduling
Prevent wakeup over-scheduling.  Once a task has been preempted by a
task of the same or lower priority, it becomes ineligible for repeated
preemption by same until it has been ticked, or slept.  Instead, the
task is marked for preemption at the next tick.  Tasks of higher
priority still preempt immediately.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:14 +02:00
Peter Zijlstra
ce6c131131 sched: disable forced preemption by default
Implement feature bit to disable forced preemption. This way
it can be checked whether a workload is overscheduling or not.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:14 +02:00
Dmitry Adamushko
e62dd02ed0 sched: fix group scheduling for SCHED_BATCH
The following patch (sched: disable sleeper_fairness on SCHED_BATCH)
seems to break GROUP_SCHED. Although, it may be 'oops'-less due to the
possibility of 'p' being always a valid address.

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:14 +02:00
Peter Zijlstra
8ca0e14ffb sched: disable sleeper_fairness on SCHED_BATCH
disable sleeper fairness for batch tasks - they are about
batch processing after all.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:14 +02:00
Peter Zijlstra
810e95ccd5 sched: another wakeup_granularity fix
unit mis-match: wakeup_gran was used against a vruntime

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:14 +02:00
Ingo Molnar
00bf7bfc2e sched: fix: move the CPU check into ->task_new_fair()
noticed by Peter Zijlstra:

fix: move the CPU check into ->task_new_fair(), this way we
can call place_entity() and get child ->vruntime right at
initial wakeup time.

(without this there can be large latencies)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:14 +02:00
Ingo Molnar
0702e3ebc1 sched: cleanup: function prototype cleanups
noticed by Thomas Gleixner:

cleanup: function prototype cleanups - move into single line
wherever possible.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:14 +02:00
Ingo Molnar
06877c33fe sched: cleanup: rename SCHED_FEAT_USE_TREE_AVG to SCHED_FEAT_TREE_AVG
cleanup: rename SCHED_FEAT_USE_TREE_AVG to SCHED_FEAT_TREE_AVG, to
make SCHED_FEAT_ names more consistent.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:13 +02:00
Dmitry Adamushko
a2a2d68073 sched: cleanup, make dequeue_entity() and update_stats_wait_end() similar
make dequeue_entity() / enqueue_entity() and update_stats_dequeue() /
update_stats_enqueue() look similar, structure-wise.

zero effect, functionality-wise:

   text    data     bss     dec     hex filename
  34550    3026     100   37676    932c sched.o.before
  34550    3026     100   37676    932c sched.o.after

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:13 +02:00
Dmitry Adamushko
a03c9061d9 sched: cleanup, remove calc_weighted()
remove obsolete code -- calc_weighted()

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:13 +02:00
Alexey Dobriyan
a9957449b0 sched: uninline scheduler
* save ~300 bytes
* activate_idle_task() was moved to avoid a warning

bloat-o-meter output:

add/remove: 6/0 grow/shrink: 0/16 up/down: 438/-733 (-295)		<===
function                                     old     new   delta
__enqueue_entity                               -     165    +165
finish_task_switch                             -     110    +110
update_curr_rt                                 -      79     +79
__load_balance_iterator                        -      32     +32
__task_rq_unlock                               -      28     +28
find_process_by_pid                            -      24     +24
do_sched_setscheduler                        133     123     -10
sys_sched_rr_get_interval                    176     165     -11
sys_sched_getparam                           156     145     -11
normalize_rt_tasks                           482     470     -12
sched_getaffinity                            112      99     -13
sys_sched_getscheduler                        86      72     -14
sched_setaffinity                            226     212     -14
sched_setscheduler                           666     642     -24
load_balance_start_fair                       33       9     -24
load_balance_next_fair                        33       9     -24
dequeue_task_rt                              133      67     -66
put_prev_task_rt                              97      28     -69
schedule_tail                                133      50     -83
schedule                                     682     594     -88
enqueue_entity                               499     366    -133
task_new_fair                                317     180    -137

Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:13 +02:00
Ingo Molnar
155bb293ae sched: tweak wakeup granularity
tweak wakeup granularity.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:13 +02:00
Dmitry Adamushko
08ec3df510 sched: fix __pick_next_entity()
The thing is that __pick_next_entity() must never be called when
first_fair(cfs_rq) == NULL. It wouldn't be a problem, should 'run_node'
be the very first field of 'struct sched_entity' (and it's the second).

The 'nr_running != 0' check is _not_ enough, due to the fact that
'current' is not within the tree. Generic paths are ok (e.g. schedule()
as put_prev_task() is called previously)... I'm more worried about e.g.
migration_call() -> CPU_DEAD_FROZEN -> migrate_dead_tasks()... if
'current' == rq->idle, no problems.. if it's one of the SCHED_NORMAL
tasks (or imagine, some other use-cases in the future -- i.e. we should
not make outer world dependent on internal details of sched_fair class)
-- it may be "Houston, we've got a problem" case.

it's +16 bytes to the ".text". Another variant is to make 'run_node' the
first data member of 'struct sched_entity' but an additional check (se !
= NULL) is still needed in pick_next_entity().

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:13 +02:00
Ingo Molnar
647e7cac2d sched: vslice fixups for non-0 nice levels
Make vslice accurate wrt nice levels, and add some comments
while we're at it.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:13 +02:00
Ingo Molnar
5522d5d5f7 sched: mark scheduling classes as const
mark scheduling classes as const. The speeds up the code
a bit and shrinks it:

   text    data     bss     dec     hex filename
  40027    4018     292   44337    ad31 sched.o.before
  40190    3842     292   44324    ad24 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:12 +02:00
Srivatsa Vaddagiri
b9fa3df33f sched: group scheduler, fix latency
There is a possibility that because of task of a group moving from one
cpu to another, it may gain more cpu time that desired. See 
http://marc.info/?l=linux-kernel&m=119073197730334 for details.

This is an attempt to fix that problem. Basically it simulates dequeue
of higher level entities as if they are going to sleep. Similarly it
simulate wakeup of higher level entities as if they are waking up from
sleep.

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:12 +02:00
Srivatsa Vaddagiri
fad095a7b9 sched: group scheduler, fix bloat
Recent fix to check_preempt_wakeup() to check for preemption at higher
levels caused a size bloat for !CONFIG_FAIR_GROUP_SCHED.

Fix the problem.

  42277   10598     320   53195    cfcb kernel/sched.o-before_this_patch
  42216   10598     320   53134    cf8e kernel/sched.o-after_this_patch

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:12 +02:00
Ingo Molnar
b39c5dd7f9 sched: cleanup, remove stale comment
cleanup, remove stale comment.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:12 +02:00
Peter Zijlstra
5f6d858ecc sched: speed up and simplify vslice calculations
speed up and simplify vslice calculations.

[ From: Mike Galbraith <efault@gmx.de>: build fix ]

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:12 +02:00
Peter Zijlstra
b0ffd246ea sched: clean up min_vruntime use
clean up min_vruntime use.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:12 +02:00
Dmitry Adamushko
2b1e315dd2 sched: yield fix
fix yield bugs due to the current-not-in-rbtree changes: the task is
not in the rbtree so rbtree-removal is a no-no.

[ From: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>: build fix. ]

also, nice code size reduction:

kernel/sched.o:
   text    data     bss     dec     hex filename
  38323    3506      24   41853    a37d sched.o.before
  38236    3506      24   41766    a326 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:12 +02:00
Srivatsa Vaddagiri
8651a86c34 sched: group scheduler wakeup latency fix
group scheduler wakeup latency fix: when checking for preemption
we must check cross-group too, not just intra-group.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-15 17:00:12 +02:00
Ingo Molnar
57cb499df2 sched: remove set_leftmost()
Lee Schermerhorn noticed that set_leftmost() contains dead code,
remove this.

Reported-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:11 +02:00
Peter Zijlstra
368059a977 sched: max_vruntime() simplification
max_vruntime() simplification.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:11 +02:00
Ingo Molnar
b8487b9241 sched: fix sign check error in place_entity()
fix sign check error in place_entity() - we'd get excessive
latencies due to negatives being converted to large u64's.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:11 +02:00
Ingo Molnar
94359f05cb sched: undo some of the recent changes
undo some of the recent changes that are not needed after all,
such as last_min_vruntime.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:11 +02:00
Ingo Molnar
dc1f31c90c sched: remove last_min_vruntime effect
remove last_min_vruntime use - prepare to remove it.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:11 +02:00
Ingo Molnar
8465e792e8 sched: entity_key() fix
entity_key() fix - we'd occasionally end up with a 0 vruntime
in the !initial case.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:11 +02:00
Peter Zijlstra
ddc9729750 sched debug: check spread
debug feature: check how well we schedule within a reasonable
vruntime 'spread' range. (note that CPU overload can increase
the spread, so this is not a hard condition, but normal loads
should be within the spread.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:10 +02:00
Peter Zijlstra
67e9fb2a39 sched: add vslice
add vslice: the load-dependent "virtual slice" a task should
run ideally, so that the observed latency stays within the
sched_latency window.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:10 +02:00
Ingo Molnar
c18b8a7cbc sched: remove unneeded tunables
remove unneeded tunables.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:10 +02:00
Srivatsa Vaddagiri
9b5b77512d sched: clean up code under CONFIG_FAIR_GROUP_SCHED
With the view of supporting user-id based fair scheduling (and not just
container-based fair scheduling), this patch renames several functions
and makes them independent of whether they are being used for container
or user-id based fair scheduling.

Also fix a problem reported by KAMEZAWA Hiroyuki (wrt allocating
less-sized array for tg->cfs_rq[] and tf->se[]).

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:09 +02:00
Srivatsa Vaddagiri
75c28ace9f sched: print &rq->cfs stats
- Print &rq->cfs statistics as well (useful for group scheduling)

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:09 +02:00
Srivatsa Vaddagiri
72ea22f8fb sched: fix minor bug in yield
- fix a minor bug in yield (seen for CONFIG_FAIR_GROUP_SCHED),
  group scheduling would skew when yield was called.

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:08 +02:00
Srivatsa Vaddagiri
83b699ed20 sched: revert recent removal of set_curr_task()
Revert removal of set_curr_task.
Use put_prev_task/set_curr_task when changing groups/policies

Signed-off-by: Srivatsa Vaddagiri < vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:08 +02:00
Ingo Molnar
edcb60a309 sched: kernel/sched_fair.c whitespace cleanups
some trivial whitespace cleanups.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:08 +02:00
Dmitry Adamushko
f6b53205e1 sched: rework enqueue/dequeue_entity() to get rid of set_curr_task()
rework enqueue/dequeue_entity() to get rid of 
sched_class::set_curr_task(). This simplifies sched_setscheduler(), 
rt_mutex_setprio() and sched_move_tasks().

   text    data     bss     dec     hex filename
  24330    2734      20   27084    69cc sched.o.before
  24233    2730      20   26983    6967 sched.o.after

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:08 +02:00
Dmitry Adamushko
4530d7ab0f sched: simplify sched_class::yield_task()
the 'p' (task_struct) parameter in the sched_class :: yield_task() is
redundant as the caller is always the 'current'. Get rid of it.

   text    data     bss     dec     hex filename
  24341    2734      20   27095    69d7 sched.o.before
  24330    2734      20   27084    69cc sched.o.after

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:08 +02:00
Dmitry Adamushko
87fefa381e sched: optimize task_new_fair()
due to the fact that we no longer keep the 'current' within the tree, 
dequeue/enqueue_entity() is useless for the 'current' in 
task_new_fair(). We are about to reschedule and 
sched_class->put_prev_task() will put the 'current' back into the tree, 
based on its new key.

   text    data     bss     dec     hex filename
  24388    2734      20   27142    6a06 sched.o.before
  24341    2734      20   27095    69d7 sched.o.after

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:08 +02:00
Dmitry Adamushko
30cfdcfc5f sched: do not keep current in the tree and get rid of sched_entity::fair_key
Get rid of 'sched_entity::fair_key'.

As a side effect, 'current' is not kept withing the tree for 
SCHED_NORMAL/BATCH tasks anymore. This simplifies some parts of code 
(e.g. entity_tick() and yield_task_fair()) and also somewhat optimizes 
them (e.g. a single update_curr() now vs. dequeue/enqueue() before in 
entity_tick()).

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:07 +02:00
Dmitry Adamushko
d02e5ed8d5 sched: sched_setscheduler() fix
Fix a problem in the 'sched-group' patch for !CONFIG_FAIR_GROUP_SCHED.

description:

sched_setscheduler()
{
...
if (task_running()) p->sched_class->put_prev_entity();

[ this one sets up cfs_rq->curr to NULL ]

...

if (task_running) p->sched_class->set_curr_task();

[ and this one is a _NOP_ (empty) for !CONFIG_FAIR_GROUP_SCHED ]

As a result, the task continues to run with cfs_rq->curr == NULL... no 
crashes (due to checks for !NULL in place) but e.g. update_curr() 
effectively becomes a NOP... i.e. runtime statistics for this task is 
not accounted untill it's rescheduled anew.

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:07 +02:00
Srivatsa Vaddagiri
29f59db3a7 sched: group-scheduler core
Add interface to control cpu bandwidth allocation to task-groups.

(not yet configurable, due to missing CONFIG_CONTAINERS)

Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-10-15 17:00:07 +02:00
Peter Zijlstra
02e0431a3d sched: better min_vruntime tracking
Better min_vruntime tracking: update it every time 'curr' is
updated - not just when a task is enqueued into the tree.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:07 +02:00
Dmitry Adamushko
db36cc7d6d sched: clean up schedstat block in dequeue_entity()
Better placement of #ifdef CONFIG_SCHEDSTAT block in dequeue_entity().

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:06 +02:00
Ingo Molnar
bbdba7c0e1 sched: remove wait_runtime fields and features
remove wait_runtime based fields and features, now that the CFS
math has been changed over to the vruntime metric.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:06 +02:00
Ingo Molnar
e22f5bbf86 sched: remove wait_runtime limit
remove the wait_runtime-limit fields and the code depending on it, now
that the math has been changed over to rely on the vruntime metric.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:06 +02:00
Dmitry Adamushko
495eca494a sched: clean up struct load_stat
'struct load_stat' is redundant now so let's get rid of it.

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:06 +02:00
Ingo Molnar
7a62eabc4d sched: debug: update exec_clock only when SCHED_DEBUG
micro-optimization: update cfs_rq->exec_clock only if
CONFIG_SCHED_DEBUG=y.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:06 +02:00
Peter Zijlstra
9014623c0e sched: handle vruntime 64-bit overflow
Handle vruntime overflow by centering the key space around min_vruntime.

( otherwise we could overflow 64-bit vruntime in a few days with SCHED_IDLE
 tasks - or in a few years with nice +19. )

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:05 +02:00
Peter Zijlstra
94dfb5e75e sched: add tree based averages
add support for tree based vruntime averages.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:05 +02:00
Ingo Molnar
28a1f6fa2f sched: remove SCHED_FEAT_SKIP_INITIAL
remove SCHED_FEAT_SKIP_INITIAL - it was off by default and even
when enabled it never made any real difference.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:05 +02:00
Peter Zijlstra
aeb73b0403 sched: clean up new task placement
clean up new task placement.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
2007-10-15 17:00:05 +02:00
Ingo Molnar
2e09bf556f sched: wakeup granularity increase
increase wakeup granularity - we were overscheduling a bit.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
2007-10-15 17:00:05 +02:00
Ingo Molnar
5c6b5964a0 sched: simplify check_preempt() methods
simplify the check_preempt() methods.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
2007-10-15 17:00:05 +02:00
Peter Zijlstra
6d0f0ebd06 sched: simplify adaptive latency
simplify adaptive latency.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:05 +02:00
Peter Zijlstra
4d78e7b656 sched: new task placement for vruntime
add proper new task placement for the vruntime based math too.

( note: introduces a swap() macro, but the swap token is too
  widely used in the kernel namespace for a generic version
  to be added without changing non-scheduler code - so this
  cleanup will be done separately. )

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:04 +02:00
Ingo Molnar
6cb5819514 sched: optimize vruntime based scheduling
optimize vruntime based scheduling.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:04 +02:00
Ingo Molnar
bf5c91ba8c sched: move sched_feat() definitions
move sched_feat() definitions so that it can be used sooner by generic
code too.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:04 +02:00
Ingo Molnar
e9acbff648 sched: introduce se->vruntime
introduce se->vruntime as a sum of weighted delta-exec's, and use that
as the key into the tree.

the idea to use absolute virtual time as the basic metric of scheduling
has been first raised by William Lee Irwin, advanced by Tong Li and first
prototyped by Roman Zippel in the "Really Fair Scheduler" (RFS) patchset.

also see:

   http://lkml.org/lkml/2007/9/2/76

for a simpler variant of this patch.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:04 +02:00
Ingo Molnar
08e2388aa1 sched: clean up calc_weighted()
clean up calc_weighted() - we always use the normalized shift so
it's not needed to pass that in. Also, push the non-nice0 branch
into the function.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:04 +02:00
Ingo Molnar
19ccd97a03 sched: uninline __enqueue_entity()/__dequeue_entity()
suggested by Roman Zippel: uninline __enqueue_entity() and
__dequeue_entity().

this reduces code size:

      text    data     bss     dec     hex filename
     25385    2386      16   27787    6c8b sched.o.before
     25257    2386      16   27659    6c0b sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:04 +02:00
Peter Zijlstra
e59c80c5bb sched: simplify SCHED_FEAT_* code
Peter Zijlstra suggested to simplify SCHED_FEAT_* checks via the
sched_feat(x) macro.

No code changed:

   text    data     bss     dec     hex filename
   38895    3550      24   42469    a5e5 sched.o.before
   38895    3550      24   42469    a5e5 sched.o.after

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:03 +02:00
Ingo Molnar
429d43bcc0 sched: cleanup: simplify cfs_rq_curr() methods
cleanup: simplify cfs_rq_curr() methods - now that the cfs_rq->curr
pointer is unconditionally present, remove the wrappers.

  kernel/sched.o:
      text    data     bss     dec     hex filename
     11784     224    2012   14020    36c4 sched.o.before
     11784     224    2012   14020    36c4 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:03 +02:00
Ingo Molnar
62160e3f4a sched: track cfs_rq->curr on !group-scheduling too
Noticed by Roman Zippel: use cfs_rq->curr in the !group-scheduling
case too. Small micro-optimization and cleanup effect:

   text    data     bss     dec     hex filename
   36269    3482      24   39775    9b5f sched.o.before
   36177    3486      24   39687    9b07 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:03 +02:00
Ingo Molnar
a25707f3ae sched: remove precise CPU load
CPU load calculations are statistical anyway, and there's little benefit
from having it calculated on every scheduling event. So remove this code,
it gets rid of a divide from the scheduler wakeup and context-switch
fastpath.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:03 +02:00
Ingo Molnar
8ebc91d936 sched: remove stat_gran
remove the stat_gran code - it was disabled by default and it causes
unnecessary overhead.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:03 +02:00
Ingo Molnar
2bd8e6d422 sched: use constants if !CONFIG_SCHED_DEBUG
use constants if !CONFIG_SCHED_DEBUG.

this speeds up the code and reduces code-size:

    text    data     bss     dec     hex filename
   27464    3014      16   30494    771e sched.o.before
   26929    3010      20   29959    7507 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:02 +02:00
Ingo Molnar
eba1ed4b7e sched: debug: track maximum 'slice'
track the maximum amount of time a task has executed while
the CPU load was at least 2x. (i.e. at least two nice-0
tasks were runnable)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:02 +02:00
Ingo Molnar
bb61c21083 sched: resched task in task_new_fair()
to get full child-runs-first semantics make sure the parent is
rescheduled.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2007-10-15 17:00:02 +02:00
Ingo Molnar
30084fbd1c sched: fix profile=sleep
fix sleep profiling - we lost this chunk in the CFS merge.

Found-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-02 14:13:08 +02:00
Ingo Molnar
1799e35d5b sched: add /proc/sys/kernel/sched_compat_yield
add /proc/sys/kernel/sched_compat_yield to make sys_sched_yield()
more agressive, by moving the yielding task to the last position
in the rbtree.

with sched_compat_yield=0:

   PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
  2539 mingo     20   0  1576  252  204 R   50  0.0   0:02.03 loop_yield
  2541 mingo     20   0  1576  244  196 R   50  0.0   0:02.05 loop

with sched_compat_yield=1:

   PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
  2584 mingo     20   0  1576  248  196 R   99  0.0   0:52.45 loop
  2582 mingo     20   0  1576  256  204 R    0  0.0   0:00.00 loop_yield

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-09-19 23:34:46 +02:00
Peter Zijlstra
1169783085 sched: fix ideal_runtime calculations for reniced tasks
fix ideal_runtime:

  - do not scale it using niced_granularity()
    it is against sum_exec_delta, so its wall-time, not fair-time.

  - move the whole check into __check_preempt_curr_fair()
    so that wakeup preemption can also benefit from the new logic.

this also results in code size reduction:

   text    data     bss     dec     hex filename
  13391     228    1204   14823    39e7 sched.o.before
  13369     228    1204   14801    39d1 sched.o.after

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-09-05 14:32:49 +02:00
Peter Zijlstra
4a55b45036 sched: improve prev_sum_exec_runtime setting
Second preparatory patch for fix-ideal runtime:

Mark prev_sum_exec_runtime at the beginning of our run, the same spot
that adds our wait period to wait_runtime. This seems a more natural
location to do this, and it also reduces the code a bit:

   text    data     bss     dec     hex filename
  13397     228    1204   14829    39ed sched.o.before
  13391     228    1204   14823    39e7 sched.o.after

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-09-05 14:32:49 +02:00
Peter Zijlstra
7c92e54f6f sched: simplify __check_preempt_curr_fair()
Preparatory patch for fix-ideal-runtime:

simplify __check_preempt_curr_fair(): get rid of the integer return.

   text    data     bss     dec     hex filename
  13404     228    1204   14836    39f4 sched.o.before
  13393     228    1204   14825    39e9 sched.o.after

functionality is unchanged.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-09-05 14:32:49 +02:00
Ingo Molnar
a206c07213 sched: debug: fix cfs_rq->wait_runtime accounting
the cfs_rq->wait_runtime debug/statistics counter was not maintained
properly - fix this.

this also removes some code:

   text    data     bss     dec     hex filename
  13420     228    1204   14852    3a04 sched.o.before
  13404     228    1204   14836    39f4 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-09-05 14:32:49 +02:00
Ingo Molnar
a0dc72601d sched: fix niced_granularity() shift
fix niced_granularity(). This resulted in under-scheduling for
CPU-bound negative nice level tasks (and this in turn caused
higher than necessary latencies in nice-0 tasks).

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-09-05 14:32:49 +02:00
Ingo Molnar
9f508f8258 sched: clean up task_new_fair()
cleanup: we have the 'se' and 'curr' entity-pointers already,
no need to use p->se and current->se.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
2007-08-28 12:53:24 +02:00
Ingo Molnar
213c8af67f sched: small schedstat fix
small schedstat fix: the cfs_rq->wait_runtime 'sum of all runtimes'
statistics counters missed newly forked tasks and thus had a constant
negative skew. Fix this.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
2007-08-28 12:53:24 +02:00
Ingo Molnar
b77d69db9f sched: fix wait_start_fair condition in update_stats_wait_end()
Peter Zijlstra noticed the following bug in SCHED_FEAT_SKIP_INITIAL (which
is disabled by default at the moment): it relies on se.wait_start_fair
being 0 while update_stats_wait_end() did not recognize a 0 value,
so instead of 'skipping' the initial interval we gave the new child
a maximum boost of +runtime-limit ...

(No impact on the default kernel, but nice to fix for completeness.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
2007-08-28 12:53:24 +02:00
Ting Yang
7109c4429a sched: call update_curr() in task_tick_fair()
update the fair-clock before using it for the key value.

[ mingo@elte.hu: small cleanups. ]

Signed-off-by: Ting Yang <tingy@cs.umass.edu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-08-28 12:53:24 +02:00
Ingo Molnar
f6cf891c4d sched: make the scheduler converge to the ideal latency
de-HZ-ification of the granularity defaults unearthed a pre-existing
property of CFS: while it correctly converges to the granularity goal,
it does not prevent run-time fluctuations in the range of
[-gran ... 0 ... +gran].

With the increase of the granularity due to the removal of HZ
dependencies, this becomes visible in chew-max output (with 5 tasks
running):

 out:  28 . 27. 32 | flu:  0 .  0 | ran:    9 .   13 | per:   37 .   40
 out:  27 . 27. 32 | flu:  0 .  0 | ran:   17 .   13 | per:   44 .   40
 out:  27 . 27. 32 | flu:  0 .  0 | ran:    9 .   13 | per:   36 .   40
 out:  29 . 27. 32 | flu:  2 .  0 | ran:   17 .   13 | per:   46 .   40
 out:  28 . 27. 32 | flu:  0 .  0 | ran:    9 .   13 | per:   37 .   40
 out:  29 . 27. 32 | flu:  0 .  0 | ran:   18 .   13 | per:   47 .   40
 out:  28 . 27. 32 | flu:  0 .  0 | ran:    9 .   13 | per:   37 .   40

average slice is the ideal 13 msecs and the period is picture-perfect 40
msecs. But the 'ran' field fluctuates around 13.33 msecs and there's no
mechanism in CFS to keep that from happening: it's a perfectly valid
solution that CFS finds.

to fix this we add a granularity/preemption rule that knows about
the "target latency", which makes tasks that run longer than the ideal
latency run a bit less. The simplest approach is to simply decrease the
preemption granularity when a task overruns its ideal latency. For this
we have to track how much the task executed since its last preemption.

( this adds a new field to task_struct, but we can eliminate that
  overhead in 2.6.24 by putting all the scheduler timestamps into an
  anonymous union. )

with this change in place, chew-max output is fluctuation-less all
around:

 out:  28 . 27. 39 | flu:  0 .  2 | ran:   13 .   13 | per:   41 .   40
 out:  28 . 27. 39 | flu:  0 .  2 | ran:   13 .   13 | per:   41 .   40
 out:  28 . 27. 39 | flu:  0 .  2 | ran:   13 .   13 | per:   41 .   40
 out:  28 . 27. 39 | flu:  0 .  2 | ran:   13 .   13 | per:   41 .   40
 out:  28 . 27. 39 | flu:  0 .  1 | ran:   13 .   13 | per:   41 .   40
 out:  28 . 27. 39 | flu:  0 .  1 | ran:   13 .   13 | per:   41 .   40

this patch has no impact on any fastpath or on any globally observable
scheduling property. (unless you have sharp enough eyes to see
millisecond-level ruckles in glxgears smoothness :-)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mike Galbraith <efault@gmx.de>
2007-08-28 12:53:24 +02:00
Mike Galbraith
5f01d519e6 sched: fix sleeper bonus limit
There is an Amarok song switch time increase (regression) under
hefty load.

What is happening is that sleeper_bonus is never consumed, and only
rarely goes below runtime_limit, so for the most part, Amarok isn't
getting any bonus at all.  We're keeping sleeper_bonus right at
runtime_limit (sched_latency == sched_runtime_limit == 40ms) forever, ie
we don't consume if we're lower that that, and don't add if we're above
it.  One Amarok thread waking (or anybody else) will push us past the
threshold, so the next thread waking gets nada, but will reap pain from
the previous thread waking until we drop back to runtime_limit.  It
looks to me like under load, some random task gets a bonus, and
everybody else pays, whether deserving or not.

This diff fixed the regression for me at any load rate.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-08-28 12:53:24 +02:00
Ingo Molnar
172ac3dbb7 sched: cleanup, sched_granularity -> sched_min_granularity
due to adaptive granularity scheduling the role of sched_granularity
has changed to "minimum granularity", so rename the variable (and the
tunable) accordingly.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2007-08-25 18:41:53 +02:00
Peter Zijlstra
218050855e sched: adaptive scheduler granularity
Instead of specifying the preemption granularity, specify the wanted
latency. By fixing the granlarity to a constany the wakeup latency
it a function of the number of running tasks on the rq.

Invert this relation.

sysctl_sched_granularity becomes a minimum for the dynamic granularity
computed from the new sysctl_sched_latency.

Then use this latency to do more intelligent granularity decisions: if
there are fewer tasks running then we can schedule coarser. This helps
performance while still always keeping the latency target.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-25 18:41:53 +02:00
Ingo Molnar
095e56c703 sched: fix startup penalty calculation
fix task startup penalty miscalculation: sysctl_sched_granularity is
unsigned int and wait_runtime is long so we first have to convert it
to long before turning it negative ...

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-24 20:39:10 +02:00
Peter Zijlstra
ea0aa3b23a sched: simplify bonus calculation #2
current code:

 delta = calc_delta_mine(delta_exec, curr->load.weight, lw);
 delta = min((u64)delta, cfs_rq->sleeper_bonus);

Notice that this calc_delta_mine() line is exactly delta_mine, which
gives:

 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-24 20:39:10 +02:00
Peter Zijlstra
a6f2994042 sched: simplify bonus calculation #1
current code:

 delta = min(cfs_rq->sleeper_bonus, (u64)delta_exec);
 delta = calc_delta_mine(delta, curr->load.weight, lw);
 delta = min((u64)delta, cfs_rq->sleeper_bonus);

drop the first min(), because we clip against sleeper_bonus in the 3rd line
again. That gives:

 delta = calc_delta_mine(delta_exec, curr->load.weight, lw);
 delta = min((u64)delta, cfs_rq->sleeper_bonus);

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-24 20:39:10 +02:00
Ingo Molnar
b2133c8b1e sched: tidy up and simplify the bonus balance
make the bonus balance more consistent: do not hand out a bonus if
there's too much in flight already, and only deduct as much from a
runner as it has the capacity. This makes the bonus engine a zero-sum
game (as intended).

this also simplifies the code:

   text    data     bss     dec     hex filename
  34770    2998      24   37792    93a0 sched.o.before
  34749    2998      24   37771    938b sched.o.after

and it also avoids overscheduling in sleep-happy workloads like
hackbench.c.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-24 20:39:10 +02:00
Ingo Molnar
71fd371463 sched: remove HZ dependency from the granularity default
remove HZ dependency from the granularity default. Use 10 msec for
the base granularity, 1 msec for wakeup granularity and 25 msec for
batch wakeup granularity. (These defaults are close to the values
that the default HZ=250 setting got previously, and thus it's the
most common setting.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-24 20:39:10 +02:00
Bruce Ashfield
7c6c16f354 sched: CONFIG_SCHED_GROUP_FAIR=y fixlet
when I built with CONFIG_FAIR_GROUP_SCHED=y, I need the following change
to make things right.

[ From: mingo@elte.hu ]

this config option is not upstream-configurable right now but lets fix
this for completeness.

Signed-off-by: Bruce Ashfield <bruce.ashfield@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-24 20:39:10 +02:00
Ingo Molnar
5d2b3d3695 sched: fix sleeper bonus
Peter Ziljstra noticed that the sleeper bonus deduction code
was not properly rate-limited: a task that scheduled more
frequently would get a disproportionately large deduction.
So limit the deduction to delta_exec.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-12 18:08:19 +02:00
Ingo Molnar
e56f31aad9 sched: fix typo in the FAIR_GROUP_SCHED branch
while there's no in-tree way to turn group scheduling at the moment,
fix a typo in it nevertheless.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-10 23:05:11 +02:00
Ingo Molnar
7cff8cf61c sched: refine negative nice level granularity
refine the granularity of negative nice level tasks: let them
reschedule more often to offset the effect of them consuming
their wait_runtime proportionately slower. (This makes nice-0
task scheduling smoother in the presence of negatively
reniced tasks.)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:52 +02:00
Ingo Molnar
a69edb5560 sched: fix update_stats_enqueue() reniced codepath
the key has to be rescaled to /weight even if it has a positive value.

(this change only affects the scheduling of reniced tasks)

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:52 +02:00
Ingo Molnar
c3b64f1e4f sched: clean up set_curr_task_fair()
clean up set_curr_task_fair().

( identity transformation that causes no change in functionality. )

   text    data     bss     dec     hex filename
  39170    3750      36   42956    a7cc sched.o.before
  39170    3750      36   42956    a7cc sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:51 +02:00
Ingo Molnar
d9e0e6aa6d sched: remove __update_rq_clock() call from entity_tick()
remove __update_rq_clock() call from entity_tick().

no change in functionality because scheduler_tick() already calls
__update_rq_clock().

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:51 +02:00
Ingo Molnar
bdd4dfa89c sched: remove the 'u64 now' local variables
final step: remove all (now superfluous) 'u64 now' variables.

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:51 +02:00
Ingo Molnar
ee0827d8b5 sched: remove the 'u64 now' parameter from ->task_new()
remove the 'u64 now' parameter from ->task_new().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:49 +02:00
Ingo Molnar
31ee529cc2 sched: remove the 'u64 now' parameter from ->put_prev_task()
remove the 'u64 now' parameter from ->put_prev_task().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:49 +02:00
Ingo Molnar
fb8d472402 sched: remove the 'u64 now' parameter from ->pick_next_task()
remove the 'u64 now' parameter from ->pick_next_task().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
f02231e51a sched: remove the 'u64 now' parameter from ->dequeue_task()
remove the 'u64 now' parameter from ->dequeue_task().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
fd390f6a04 sched: remove the 'u64 now' parameter from ->enqueue_task()
remove the 'u64 now' parameter from ->enqueue_task().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
ab6cde2692 sched: remove the 'u64 now' parameter from put_prev_entity()
remove the 'u64 now' parameter from put_prev_entity().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
9948f4b2a7 sched: remove the 'u64 now' parameter from pick_next_entity()
remove the 'u64 now' parameter from pick_next_entity().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
8494f412ed sched: remove the 'u64 now' parameter from set_next_entity()
remove the 'u64 now' parameter from set_next_entity().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
525c2716a4 sched: remove the 'u64 now' parameter from dequeue_entity()
remove the 'u64 now' parameter from dequeue_entity().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
668031ca8f sched: remove the 'u64 now' parameter from enqueue_entity()
remove the 'u64 now' parameter from enqueue_entity().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
2396af69be sched: remove the 'u64 now' parameter from enqueue_sleeper()
remove the 'u64 now' parameter from enqueue_sleeper().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
dfdc119e54 sched: remove the 'u64 now' parameter from __enqueue_sleeper()
remove the 'u64 now' parameter from __enqueue_sleeper().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
c7e9b5b293 sched: remove the 'u64 now' parameter from update_stats_curr_end()
remove the 'u64 now' parameter from update_stats_curr_end().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
19b6a2e370 sched: remove the 'u64 now' parameter from update_stats_dequeue()
remove the 'u64 now' parameter from update_stats_dequeue().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:48 +02:00
Ingo Molnar
79303e9e02 sched: remove the 'u64 now' parameter from update_stats_curr_start()
remove the 'u64 now' parameter from update_stats_curr_start().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
9ef0a9615b sched: remove the 'u64 now' parameter from update_stats_wait_end()
remove the 'u64 now' parameter from update_stats_wait_end().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
eac55ea376 sched: remove the 'u64 now' parameter from __update_stats_wait_end()
remove the 'u64 now' parameter from __update_stats_wait_end().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
d2417e5a3e sched: remove the 'u64 now' parameter from update_stats_enqueue()
remove the 'u64 now' parameter from update_stats_enqueue().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
5870db5b83 sched: remove the 'u64 now' parameter from update_stats_wait_start()
remove the 'u64 now' parameter from update_stats_wait_start().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
b7cc089657 sched: remove the 'u64 now' parameter from update_curr()
remove the 'u64 now' parameter from update_curr().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
5cef9eca38 sched: remove the 'u64 now' parameter from print_cfs_rq()
remove the 'u64 now' parameter from print_cfs_rq().

( identity transformation that causes no change in functionality. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
d281918d7c sched: remove 'now' use from assignments
change all 'now' timestamp uses in assignments to rq->clock.

( this is an identity transformation that causes no functionality change:
  all such new rq->clock is necessarily preceded by an update_rq_clock()
  call. )

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
c1b3da3ecd sched: eliminate __rq_clock() use
eliminate __rq_clock() use by changing it to:

   __update_rq_clock(rq)
   now = rq->clock;

identity transformation - no change in behavior.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Ingo Molnar
a8e504d2a5 sched: eliminate rq_clock() use
eliminate rq_clock() use by changing it to:

   update_rq_clock(rq)
   now = rq->clock;

identity transformation - no change in behavior.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:47 +02:00
Peter Williams
a4ac01c36e sched: fix bug in balance_tasks()
There are two problems with balance_tasks() and how it used:

1. The variables best_prio and best_prio_seen (inherited from the old
move_tasks()) were only required to handle problems caused by the
active/expired arrays, the order in which they were processed and the
possibility that the task with the highest priority could be on either.
  These issues are no longer present and the extra overhead associated
with their use is unnecessary (and possibly wrong).

2. In the absence of CONFIG_FAIR_GROUP_SCHED being set, the same
this_best_prio variable needs to be used by all scheduling classes or
there is a risk of moving too much load.  E.g. if the highest priority
task on this at the beginning is a fairly low priority task and the rt
class migrates a task (during its turn) then that moved task becomes the
new highest priority task on this_rq but when the sched_fair class
initializes its copy of this_best_prio it will get the priority of the
original highest priority task as, due to the run queue locks being
held, the reschedule triggered by pull_task() will not have taken place.
  This could result in inappropriate overriding of skip_for_load and
excessive load being moved.

The attached patch addresses these problems by deleting all reference to
best_prio and best_prio_seen and making this_best_prio a reference
parameter to the various functions involved.

load_balance_fair() has also been modified so that this_best_prio is
only reset (in the loop) if CONFIG_FAIR_GROUP_SCHED is set.  This should
preserve the effect of helping spread groups' higher priority tasks
around the available CPUs while improving system performance when
CONFIG_FAIR_GROUP_SCHED isn't set.

Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:46 +02:00
Ingo Molnar
fd8bb43e27 sched: delta_exec accounting fix
small delta_exec accounting fix: increase delta_exec and increase
sum_exec_runtime even if the task is not on the runqueue anymore.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:46 +02:00
Ingo Molnar
c5dcfe72aa sched: clean up delta_mine
cleanup: delta_mine is an unsigned value.

no code impact:

   text    data     bss     dec     hex filename
   27823    2726      16   30565    7765 sched.o.before
   27823    2726      16   30565    7765 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:46 +02:00
Josh Triplett
291ae5a120 sched: mark print_cfs_stats static
sched_fair.c defines print_cfs_stats, and sched_debug.c uses it, but sched.c
includes both sched_fair.c and sched_debug.c, so all the references to
print_cfs_stats occur in the same compilation unit.  Thus, mark
print_cfs_stats static.

Eliminates a sparse warning:
warning: symbol 'print_cfs_stats' was not declared. Should it be static?

Signed-off-by: Josh Triplett <josh@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:46 +02:00
Peter Williams
4301065920 sched: simplify move_tasks()
The move_tasks() function is currently multiplexed with two distinct
capabilities:

1. attempt to move a specified amount of weighted load from one run
queue to another; and
2. attempt to move a specified number of tasks from one run queue to
another.

The first of these capabilities is used in two places, load_balance()
and load_balance_idle(), and in both of these cases the return value of
move_tasks() is used purely to decide if tasks/load were moved and no
notice of the actual number of tasks moved is taken.

The second capability is used in exactly one place,
active_load_balance(), to attempt to move exactly one task and, as
before, the return value is only used as an indicator of success or failure.

This multiplexing of sched_task() was introduced, by me, as part of the
smpnice patches and was motivated by the fact that the alternative, one
function to move specified load and one to move a single task, would
have led to two functions of roughly the same complexity as the old
move_tasks() (or the new balance_tasks()).  However, the new modular
design of the new CFS scheduler allows a simpler solution to be adopted
and this patch addresses that solution by:

1. adding a new function, move_one_task(), to be used by
active_load_balance(); and
2. making move_tasks() a single purpose function that tries to move a
specified weighted load and returns 1 for success and 0 for failure.

One of the consequences of these changes is that neither move_one_task()
or the new move_tasks() care how many tasks sched_class.load_balance()
moves and this enables its interface to be simplified by returning the
amount of load moved as its result and removing the load_moved pointer
from the argument list.  This helps simplify the new move_tasks() and
slightly reduces the amount of work done in each of
sched_class.load_balance()'s implementations.

Further simplification, e.g. changes to balance_tasks(), are possible
but (slightly) complicated by the special needs of load_balance_fair()
so I've left them to a later patch (if this one gets accepted).

NB Since move_tasks() gets called with two run queue locks held even
small reductions in overhead are worthwhile.

[ mingo@elte.hu ]

this change also reduces code size nicely:

   text    data     bss     dec     hex filename
   39216    3618      24   42858    a76a sched.o.before
   39173    3618      24   42815    a73f sched.o.after

Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:46 +02:00
Ingo Molnar
0915c4e89d sched: batch sleeper bonus
batch up the sleeper bonus sum a bit more. Anything below
sched-granularity is too small to make a practical difference
anyway.

this optimization reduces the math in high-frequency scheduling
scenarios.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:45 +02:00
Ingo Molnar
6cfb0d5d06 [PATCH] sched: reduce debug code
move the rest of the debugging/instrumentation code to under
CONFIG_SCHEDSTATS too. This reduces code size and speeds code up:

    text    data     bss     dec     hex filename
   33044    4122      28   37194    914a sched.o.before
   32708    4122      28   36858    8ffa sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-02 17:41:40 +02:00
Ingo Molnar
8179ca23d5 [PATCH] sched: use schedstat_set() API
make use of the new schedstat_set() API to eliminate two #ifdef sections.

No functional changes:

    text    data     bss     dec     hex filename
   29009    4122      28   33159    8187 sched.o.before
   29009    4122      28   33159    8187 sched.o.after

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-02 17:41:40 +02:00
Ingo Molnar
cad60d93e1 [PATCH] sched: ->task_new cleanup
make sched_class.task_new == NULL a 'default method', this
allows the removal of task_rt_new.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-02 17:41:40 +02:00
Ingo Molnar
bf0f6f24a1 sched: cfs core, kernel/sched_fair.c
add kernel/sched_fair.c - which implements the bulk of CFS's
behavioral changes for SCHED_OTHER tasks.

see Documentation/sched-design-CFS.txt about details.

Authors:

 Ingo Molnar <mingo@elte.hu>
 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 Mike Galbraith <efault@gmx.de>

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
2007-07-09 18:51:58 +02:00