Currently dccp_check_seqno returns 0 (indicating a valid packet) if the
acknowledgment number is out of bounds and the sync that RFC 4340 mandates at
this point is currently being rate-limited. This function should return -1,
indicating an invalid packet.
Signed-off-by: Samuel Jero <sj323707@ohio.edu>
Acked-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Minor formatting fixup since the information which core was associated
with the MCE is not always valid.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Building for X86_32 produces shift count warnings, so use BIT_64() to
eliminate the warnings.
drivers/edac/mce_amd.c:778: warning: left shift count >= width of type
drivers/edac/mce_amd.c:778: warning: left shift count >= width of type
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Doug Thompson <dougthompson@xmission.com>
Cc: bluesmoke-devel@lists.sourceforge.net
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Now that everything is inplace, enable MCE decoding on F15h. Make
initcall routine a bit more readable.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Shorten up MCi_STATUS flags and add BD's new deferred and poison types.
Also, simplify formatting.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
MCE bank 2 is redefined from a BU to a CU (Combined Unit) bank on F15h.
Add a decoder function for CU MCEs.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Add a decoder for F15h DC MCEs to support the new types of DC MCEs
introduced by the BD microarchitecture.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
F15h enlarges the extended error code of an MCE to a 5-bit field
(MCi_STATUS[20:16]). Add a mask variable which default 0xf is overridden
on F15h.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
K8 does not allow for an atomic RMW to a cacheline as F10h does so
disable the error injection interface for it.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Make the ->{get|set}_sdram_scrub_rate return the actual scrub rate
bandwidth it succeeded setting and remove superfluous arg pointer used
for that. A negative value returned still means that an error occurred
while setting the scrubrate. Document this for future reference.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Now that all prerequisites are in place, drop the two-stage driver
instances initialization in favor of the following simple init sequence:
1. Probe PCI device: we only test ECC capabilities here and if none exit
early.
2. If the hw supports ECC and it is/can be enabled, we init the per-node
instance.
Remove "amd64_" prefix from static functions touched, while at it.
There actually should be no visible functional change resulting from
this patch.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Rework the code to check the hardware ECC capabilities at PCI probing
time. We do all further initialization only if we actually can/have ECC
enabled.
While at it:
0. Fix function naming.
1. Simplify/clarify debug output.
2. Remove amd64_ prefix from the static functions
3. Reorganize code.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
This is in preparation for the init path reorganization where we want
only to
1) test whether a particular node supports ECC
2) can it be enabled
and only then do the necessary allocation/initialization. For that,
we need to decouple the ECC settings of the node from the instance's
descriptor.
The should be no functional change introduced by this patch.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
PCI ECS is being enabled by default since 2.6.26 on AMD so this code is
just superfluous now, remove it.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Remove static allocation in favor of dynamically allocating space for as
many driver instances as northbridges present on the system.
There should be no functional change resulting from this patch.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Add a macro per printk level, shorten up error messages. Add relevant
information to KERN_INFO level. No functional change.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Rename variables representing PCI devices to their BKDG names for faster
search and shorter, clearer code.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Move the remaining per-family init code into the proper place and
simplify the rest of the initialization. Reorganize error handling in
amd64_init_one_instance().
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Run a per-family init function which does all the settings based on
the family this driver instance is running on. Move the scrubrate
calculation in it and simplify code.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
The problem that this patch aims to fix is vfsmount refcounting scalability.
We need to take a reference on the vfsmount for every successful path lookup,
which often go to the same mount point.
The fundamental difficulty is that a "simple" reference count can never be made
scalable, because any time a reference is dropped, we must check whether that
was the last reference. To do that requires communication with all other CPUs
that may have taken a reference count.
We can make refcounts more scalable in a couple of ways, involving keeping
distributed counters, and checking for the global-zero condition less
frequently.
- check the global sum once every interval (this will delay zero detection
for some interval, so it's probably a showstopper for vfsmounts).
- keep a local count and only taking the global sum when local reaches 0 (this
is difficult for vfsmounts, because we can't hold preempt off for the life of
a reference, so a counter would need to be per-thread or tied strongly to a
particular CPU which requires more locking).
- keep a local difference of increments and decrements, which allows us to sum
the total difference and hence find the refcount when summing all CPUs. Then,
keep a single integer "long" refcount for slow and long lasting references,
and only take the global sum of local counters when the long refcount is 0.
This last scheme is what I implemented here. Attached mounts and process root
and working directory references are "long" references, and everything else is
a short reference.
This allows scalable vfsmount references during path walking over mounted
subtrees and unattached (lazy umounted) mounts with processes still running
in them.
This results in one fewer atomic op in the fastpath: mntget is now just a
per-CPU inc, rather than an atomic inc; and mntput just requires a spinlock
and non-atomic decrement in the common case. However code is otherwise bigger
and heavier, so single threaded performance is basically a wash.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Suggested by Andreas, mnt_ prefix is clearer namespace, follows kernel
conventions better, and is easier for tab complete. I introduced these
names so I'll admit they were not good choices.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
The standard memcmp function on a Westmere system shows up hot in
profiles in the `git diff` workload (both parallel and single threaded),
and it is likely due to the costs associated with trapping into
microcode, and little opportunity to improve memory access (dentry
name is not likely to take up more than a cacheline).
So replace it with an open-coded byte comparison. This increases code
size by 8 bytes in the critical __d_lookup_rcu function, but the
speedup is huge, averaging 10 runs of each:
git diff st user sys elapsed CPU
before 1.15 2.57 3.82 97.1
after 1.14 2.35 3.61 96.8
git diff mt user sys elapsed CPU
before 1.27 3.85 1.46 349
after 1.26 3.54 1.43 333
Elapsed time for single threaded git diff at 95.0% confidence:
-0.21 +/- 0.01
-5.45% +/- 0.24%
It's -0.66% +/- 0.06% elapsed time on my Opteron, so rep cmp costs on the
fam10h seem to be relatively smaller, but there is still a win.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
This makes single threaded git diff -1.25% +/- 0.05% elapsed time on my
2s12c24t Westmere system, and -0.86% +/- 0.05% on my 2s8c Barcelona, by
prefetching the important first cacheline of the inode in while we do the
actual name compare and other operations on the dentry.
There was no measurable slowdown in the single file stat case, or the creat
case (where negative dentries would be common).
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Regardless of how much we possibly try to scale dcache, there is likely
always going to be some fundamental contention when adding or removing children
under the same parent. Pseudo filesystems do not seem need to have connected
dentries because by definition they are disconnected.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
dcache_inode_lock can be replaced with per-inode locking. Use existing
inode->i_lock for this. This is slightly non-trivial because we sometimes
need to find the inode from the dentry, which requires d_inode to be
stabilised (either with refcount or d_lock).
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Introduce a type of hlist that can support the use of the lowest bit in the
hlist_head. This will be subsequently used to implement per-bucket bit spinlock
for inode and dentry hashes, and may be useful in other cases such as network
hashes.
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
This simple implementation just checks for no ACLs on the inode, and
if so, then the rcu-walk may proceed, otherwise fail it.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
This simple implementation just checks for no ACLs on the inode, and
if so, then the rcu-walk may proceed, otherwise fail it.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
This simple implementation just checks for no ACLs on the inode, and
if so, then the rcu-walk may proceed, otherwise fail it.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
This simple implementation just checks for no ACLs on the inode, and
if so, then the rcu-walk may proceed, otherwise fail it.
This could easily be extended to put acls under RCU and check them
under seqlock, if need be. But this implementation is enough to show
the rcu-walk aware permissions code for path lookups is working, and
will handle cases where there are no ACLs or ACLs in just the final
element.
This patch implicity converts tmpfs to rcu-aware permission check.
Subsequent patches onvert ext*, xfs, and, btrfs. Each of these uses
acl/permission code in a different way, so convert them all to provide
templates and proof of concept.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Require filesystems be aware of .d_revalidate being called in rcu-walk
mode (nd->flags & LOOKUP_RCU). For now do a simple push down, returning
-ECHILD from all implementations.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Put dentry and inode fields into top of data structure. This allows RCU path
traversal to perform an RCU dentry lookup in a path walk by touching only the
first 56 bytes of the dentry.
We also fit in 8 bytes of inline name in the first 64 bytes, so for short
names, only 64 bytes needs to be touched to perform the lookup. We should
get rid of the hash->prev pointer from the first 64 bytes, and fit 16 bytes
of name in there, which will take care of 81% rather than 32% of the kernel
tree.
inode is also rearranged so that RCU lookup will only touch a single cacheline
in the inode, plus one in the i_ops structure.
This is important for directory component lookups in RCU path walking. In the
kernel source, directory names average is around 6 chars, so this works.
When we reach the last element of the lookup, we need to lock it and take its
refcount which requires another cacheline access.
Align dentry and inode operations structs, so members will be at predictable
offsets and we can group common operations into head of structure.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Reduce some branches and memory accesses in dcache lookup by adding dentry
flags to indicate common d_ops are set, rather than having to check them.
This saves a pointer memory access (dentry->d_op) in common path lookup
situations, and saves another pointer load and branch in cases where we
have d_op but not the particular operation.
Patched with:
git grep -E '[.>]([[:space:]])*d_op([[:space:]])*=' | xargs sed -e 's/\([^\t ]*\)->d_op = \(.*\);/d_set_d_op(\1, \2);/' -e 's/\([^\t ]*\)\.d_op = \(.*\);/d_set_d_op(\&\1, \2);/' -i
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Rather than keep a d_mounted count in the dentry, set a dentry flag instead.
The flag can be cleared by checking the hash table to see if there are any
mounts left, which is not time critical because it is performed at detach time.
The mounted state of a dentry is only used to speculatively take a look in the
mount hash table if it is set -- before following the mount, vfsmount lock is
taken and mount re-checked without races.
This saves 4 bytes on 32-bit, nothing on 64-bit but it does provide a hole I
might use later (and some configs have larger than 32-bit spinlocks which might
make use of the hole).
Autofs4 conversion and changelog by Ian Kent <raven@themaw.net>:
In autofs4, when expring direct (or offset) mounts we need to ensure that we
block user path walks into the autofs mount, which is covered by another mount.
To do this we clear the mounted status so that follows stop before walking into
the mount and are essentially blocked until the expire is completed. The
automount daemon still finds the correct dentry for the umount due to the
follow mount logic in fs/autofs4/root.c:autofs4_follow_link(), which is set as
an inode operation for direct and offset mounts only and is called following
the lookup that stopped at the covered mount.
At the end of the expire the covering mount probably has gone away so the
mounted status need not be restored. But we need to check this and only restore
the mounted status if the expire failed.
XXX: autofs may not work right if we have other mounts go over the top of it?
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Use a seqlock in the fs_struct to enable us to take an atomic copy of the
complete cwd and root paths. Use this in the RCU lookup path to avoid a
thread-shared spinlock in RCU lookup operations.
Multi-threaded apps may now perform path lookups with scalability matching
multi-process apps. Operations such as stat(2) become very scalable for
multi-threaded workload.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>