Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Make schedstats a runtime tunable (disabled by default) and
optimize it via static keys.
As most distributions enable CONFIG_SCHEDSTATS=y due to its
instrumentation value, this is a nice performance enhancement.
(Mel Gorman)
- Implement 'simple waitqueues' (swait): these are just pure
waitqueues without any of the more complex features of full-blown
waitqueues (callbacks, wake flags, wake keys, etc.). Simple
waitqueues have less memory overhead and are faster.
Use simple waitqueues in the RCU code (in 4 different places) and
for handling KVM vCPU wakeups.
(Peter Zijlstra, Daniel Wagner, Thomas Gleixner, Paul Gortmaker,
Marcelo Tosatti)
- sched/numa enhancements (Rik van Riel)
- NOHZ performance enhancements (Rik van Riel)
- Various sched/deadline enhancements (Steven Rostedt)
- Various fixes (Peter Zijlstra)
- ... and a number of other fixes, cleanups and smaller enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
sched/cputime: Fix steal_account_process_tick() to always return jiffies
sched/deadline: Remove dl_new from struct sched_dl_entity
Revert "kbuild: Add option to turn incompatible pointer check into error"
sched/deadline: Remove superfluous call to switched_to_dl()
sched/debug: Fix preempt_disable_ip recording for preempt_disable()
sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity
time, acct: Drop irq save & restore from __acct_update_integrals()
acct, time: Change indentation in __acct_update_integrals()
sched, time: Remove non-power-of-two divides from __acct_update_integrals()
sched/rt: Kick RT bandwidth timer immediately on start up
sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug
sched/debug: Move sched_domain_sysctl to debug.c
sched/debug: Move the /sys/kernel/debug/sched_features file setup into debug.c
sched/rt: Fix PI handling vs. sched_setscheduler()
sched/core: Remove duplicated sched_group_set_shares() prototype
sched/fair: Consolidate nohz CPU load update code
sched/fair: Avoid using decay_load_missed() with a negative value
sched/deadline: Always calculate end of period on sched_yield()
sched/cgroup: Fix cgroup entity load tracking tear-down
rcu: Use simple wait queues where possible in rcutree
...
* pm-cpufreq: (94 commits)
intel_pstate: Do not skip samples partially
intel_pstate: Remove freq calculation from intel_pstate_calc_busy()
intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance()
intel_pstate: Optimize calculation for max/min_perf_adj
intel_pstate: Remove extra conversions in pid calculation
cpufreq: Move scheduler-related code to the sched directory
Revert "cpufreq: postfix policy directory with the first CPU in related_cpus"
cpufreq: Reduce cpufreq_update_util() overhead a bit
cpufreq: Select IRQ_WORK if CPU_FREQ_GOV_COMMON is set
cpufreq: Remove 'policy->governor_enabled'
cpufreq: Rename __cpufreq_governor() to cpufreq_governor()
cpufreq: Relocate handle_update() to kill its declaration
cpufreq: governor: Drop unnecessary checks from show() and store()
cpufreq: governor: Fix race in dbs_update_util_handler()
cpufreq: governor: Make gov_set_update_util() static
cpufreq: governor: Narrow down the dbs_data_mutex coverage
cpufreq: governor: Make dbs_data_mutex static
cpufreq: governor: Relocate definitions of tuners structures
cpufreq: governor: Move per-CPU data to the common code
cpufreq: governor: Make governor private data per-policy
...
Create cpufreq.c under kernel/sched/ and move the cpufreq code
related to the scheduler to that file and to sched.h.
Redefine cpufreq_update_util() as a static inline function to avoid
function calls at its call sites in the scheduler code (as suggested
by Peter Zijlstra).
Also move the definition of struct update_util_data and declaration
of cpufreq_set_update_util_data() from include/linux/cpufreq.h to
include/linux/sched.h.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poision prior to returning.
In the case of CPU hotplug, CPUs exit the kernel a number of levels deep
in C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
When a CPU is subsequently brought back into the kernel via a different
path, depending on stackframe, layout calls to instrumented functions
may hit this stale poison, resulting in (spurious) KASAN splats to the
console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a mechanism by which parts of the cpufreq subsystem
("setpolicy" drivers or the core) can register callbacks to be
executed from cpufreq_update_util() which is invoked by the
scheduler's update_load_avg() on CPU utilization changes.
This allows the "setpolicy" drivers to dispense with their timers
and do all of the computations they need and frequency/voltage
adjustments in the update_load_avg() code path, among other things.
The update_load_avg() changes were suggested by Peter Zijlstra.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Pull nohz enhancements from Frederic Weisbecker:
"Currently in nohz full configs, the tick dependency is checked
asynchronously by nohz code from interrupt and context switch for each
concerned subsystem with a set of function provided by these. Such
functions are made of many conditions and details that can be heavyweight
as they are called on fastpath: sched_can_stop_tick(),
posix_cpu_timer_can_stop_tick(), perf_event_can_stop_tick()...
Thomas suggested a few months ago to make that tick dependency check
synchronous. Instead of checking subsystems details from each interrupt
to guess if the tick can be stopped, every subsystem that may have a tick
dependency should set itself a flag specifying the state of that
dependency. This way we can verify if we can stop the tick with a single
lightweight mask check on fast path.
This conversion from a pull to a push model to implement tick dependency
is the core feature of this patchset that is split into:
* Nohz wide kick simplification
* Improve nohz tracing
* Introduce tick dependency mask
* Migrate scheduler, posix timers, perf events and sched clock tick
dependencies to the tick dependency mask."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The callers of steal_account_process_tick() expect it to return
whether a jiffy should be considered stolen or not.
Currently the return value of steal_account_process_tick() is in
units of cputime, which vary between either jiffies or nsecs
depending on CONFIG_VIRT_CPU_ACCOUNTING_GEN.
If cputime has nsecs granularity and there is a tiny amount of
stolen time (a few nsecs, say) then we will consider the entire
tick stolen and will not account the tick on user/system/idle,
causing /proc/stats to show invalid data.
The fix is to change steal_account_process_tick() to accumulate
the stolen time and only account it once it's worth a jiffy.
(Thanks to Frederic Weisbecker for suggestions to fix a bug in my
first version of the patch.)
Signed-off-by: Chris Friesen <chris.friesen@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/56DBBDB8.40305@mail.usask.ca
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The dl_new field of struct sched_dl_entity is currently used to
identify new deadline tasks, so that their deadline and runtime
can be properly initialised.
However, these tasks can be easily identified by checking if
their deadline is smaller than the current time when they switch
to SCHED_DEADLINE. So, dl_new can be removed by introducing this
check in switched_to_dl(); this allows to simplify the
SCHED_DEADLINE code.
Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457350024-7825-2-git-send-email-luca.abeni@unitn.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On CPU hotplug the steal time accounting can keep a stale rq->prev_steal_time
value over CPU down and up. So after the CPU comes up again the delta
calculation in steal_account_process_tick() wreckages itself due to the
unsigned math:
u64 steal = paravirt_steal_clock(smp_processor_id());
steal -= this_rq()->prev_steal_time;
So if steal is smaller than rq->prev_steal_time we end up with an insane large
value which then gets added to rq->prev_steal_time, resulting in a permanent
wreckage of the accounting. As a consequence the per CPU stats in /proc/stat
become stale.
Nice trick to tell the world how idle the system is (100%) while the CPU is
100% busy running tasks. Though we prefer realistic numbers.
None of the accounting values which use a previous value to account for
fractions is reset at CPU hotplug time. update_rq_clock_task() has a sanity
check for prev_irq_time and prev_steal_time_rq, but that sanity check solely
deals with clock warps and limits the /proc/stat visible wreckage. The
prev_time values are still wrong.
Solution is simple: Reset rq->prev_*_time when the CPU is plugged in again.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: commit 095c0aa83e "sched: adjust scheduler cpu power for stolen time"
Fixes: commit aa48380851 "sched: Remove irq time from available CPU power"
Fixes: commit e6e6685acc "KVM guest: Steal time accounting"
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603041539490.3686@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of checking sched_clock_stable from the nohz subsystem to verify
its tick dependency, migrate it to the new mask in order to include it
to the all-in-one check.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Instead of providing asynchronous checks for the nohz subsystem to verify
sched tick dependency, migrate sched to the new mask.
Everytime a task is enqueued or dequeued, we evaluate the state of the
tick dependency on top of the policy of the tasks in the runqueue, by
order of priority:
SCHED_DEADLINE: Need the tick in order to periodically check for runtime
SCHED_FIFO : Don't need the tick (no round-robin)
SCHED_RR : Need the tick if more than 1 task of the same priority
for round robin (simplified with checking if more than
one SCHED_RR task no matter what priority).
SCHED_NORMAL : Need the tick if more than 1 task for round-robin.
We could optimize that further with one flag per sched policy on the tick
dependency mask and perform only the checks relevant to the policy
concerned by an enqueue/dequeue operation.
Since the checks aren't based on the current task anymore, we could get
rid of the task switch hook but it's still needed for posix cpu
timers.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
In order to evaluate the scheduler tick dependency without probing
context switches, we need to know how much SCHED_RR and SCHED_FIFO tasks
are enqueued as those policies don't have the same preemption
requirements.
To prepare for that, let's account SCHED_RR tasks, we'll be able to
deduce SCHED_FIFO tasks as well from it and the total RT tasks in the
runqueue.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Given that wq_worker_sleeping() could only be called for a
CPU it is running on, we do not need passing a CPU ID as an
argument.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Make the RCU CPU_DYING_IDLE callback an explicit function call, so it gets
invoked at the proper place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.870167933@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Kill the busy spinning on the control side and just wait for the hotplugged
cpu to tell that it reached the dead state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.776157858@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Let the upcoming cpu kick the hotplug thread and let itself complete the
bringup. That way the controll side can just wait for the completion or later
when we made the hotplug machinery async not care at all.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.697655464@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the scheduler cpu online notifier part to the hotplug core. This is
anyway the highest priority callback and we need that functionality right now
for the next changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.200791046@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
if (A || B) {
} else if (A && !B) {
}
If A we'll take the first branch, if !A we will not satisfy the second.
Therefore the second branch will never be taken.
Reported-by: luca abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160225140149.GK6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The preempt_disable() invokes preempt_count_add() which saves the caller
in ->preempt_disable_ip. It uses CALLER_ADDR1 which does not look for
its caller but for the parent of the caller. Which means we get the correct
caller for something like spin_lock() unless the architectures inlines
those invocations. It is always wrong for preempt_disable() or
local_bh_disable().
This patch makes the function get_lock_parent_ip() which tries
CALLER_ADDR0,1,2 if the former is a locking function.
This seems to record the preempt_disable() caller properly for
preempt_disable() itself as well as for get_cpu_var() or
local_bh_disable().
Steven asked for the get_parent_ip() -> get_lock_parent_ip() rename.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160226135456.GB18244@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When profiling syscall overhead on nohz-full kernels,
after removing __acct_update_integrals() from the profile,
native_sched_clock() remains as the top CPU user. This can be
reduced by moving VIRT_CPU_ACCOUNTING_GEN to jiffy granularity.
This will reduce timing accuracy on nohz_full CPUs to jiffy
based sampling, just like on normal CPUs. It results in
totally removing native_sched_clock from the profile, and
significantly speeding up the syscall entry and exit path,
as well as irq entry and exit, and KVM guest entry & exit.
Additionally, only call the more expensive functions (and
advance the seqlock) when jiffies actually changed.
This code relies on another CPU advancing jiffies when the
system is busy. On a nohz_full system, this is done by a
housekeeping CPU.
A microbenchmark calling an invalid syscall number 10 million
times in a row speeds up an additional 30% over the numbers
with just the previous patches, for a total speedup of about
40% over 4.4 and 4.5-rc1.
Run times for the microbenchmark:
4.4 3.8 seconds
4.5-rc1 3.7 seconds
4.5-rc1 + first patch 3.3 seconds
4.5-rc1 + first 3 patches 3.1 seconds
4.5-rc1 + all patches 2.3 seconds
A non-NOHZ_FULL cpu (not the housekeeping CPU):
all kernels 1.86 seconds
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: clark@redhat.com
Cc: eric.dumazet@gmail.com
Cc: fweisbec@gmail.com
Cc: luto@amacapital.net
Link: http://lkml.kernel.org/r/1455152907-18495-5-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I've been debugging why deadline tasks can cause the RT scheduler to
throttle, even when the deadline tasks are only taking up 50% of the
CPU and RT tasks are not even using 1% of the CPU. Here's what I found.
In order to keep a CPU from being hogged by RT tasks, the deadline
scheduler adds its run time (delta_exec) to the rt_time of the RT
bandwidth. That way, if the two use more than 95% of the CPU within one
second (default settings), the RT tasks are throttled to allow non RT
tasks to run.
Although the deadline tasks add their run time to the RT bandwidth, it
lets the RT tasks do the accounting. This is where the problem lies. If
a deadline task runs for a bit, and no RT tasks are running, then it
will continually add to the RT rt_time that is used to calculate how
much CPU the RT tasks use. But no RT period is in play, and this
accumulation of the runtime never gets reset.
When an RT task finally gets to run, and the watchdog goes off, it can
see that the RT task has used more than it should of, because the
deadline task added all this runtime to its rt_time. Then the RT task
that just woke up gets throttled for no good reason.
I also noticed that when an RT task is queued, it starts the timer to
account for overload and such. But that timer goes off one period
later, which may be too late and the extra rt_time will trigger a
throttle.
This is a quick work around to the problem. When a new RT task is
queued, the bandwidth timer is set to go off immediately. Then the
timer can clear out the extra time added to the rt_time while there was
no RT task running. This stops my tests from triggering the throttle,
and it will still throttle if an RT task runs too much, even while a
deadline task is running.
A better solution may be to subtract the bandwidth that the deadline
task uses from the rt_runtime, and add it back when its finished. Then
there wont be a need for runtime tracking of the time used by deadline
tasks.
I may play with that solution tomorrow.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <juri.lelli@gmail.com>
Cc: <williams@redhat.com>
Cc: Clark Williams
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160216183746.349ec98b@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Playing with SCHED_DEADLINE and cpusets, I found that I was unable to create
new SCHED_DEADLINE tasks, with the error of EBUSY as if the bandwidth was
already used up. I then realized there wa no way to see what bandwidth is
used by the runqueues to debug the issue.
By adding the dl_bw->bw and dl_bw->total_bw to the output of the deadline
info in /proc/sched_debug, this allows us to see what bandwidth has been
reserved and where a problem may exist.
For example, before the issue we see the ratio of the bandwidth:
# cat /proc/sys/kernel/sched_rt_runtime_us
950000
# cat /proc/sys/kernel/sched_rt_period_us
1000000
# grep dl /proc/sched_debug
dl_rq[0]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[1]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[2]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[3]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[4]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[5]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[6]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[7]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
Note: (950000 / 1000000) << 20 == 996147
After I played with cpusets and hit the issue, the result is now:
# grep dl /proc/sched_debug
dl_rq[0]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
dl_rq[1]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 104857
dl_rq[2]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 104857
dl_rq[3]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 104857
dl_rq[4]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
dl_rq[5]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
dl_rq[6]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
dl_rq[7]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
This shows that there is definitely a problem as we should never have a
negative total bandwidth.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.756849091@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The sched_domain_sysctl setup is only enabled when SCHED_DEBUG is
configured. As debug.c is only compiled when SCHED_DEBUG is configured as
well, move the setup of sched_domain_sysctl into that file.
Note, the (un)register_sched_domain_sysctl() functions had to be changed
from static to allow access to them from core.c.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.599278093@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As /sys/kernel/debug/sched_features is only created when SCHED_DEBUG is enabled, and the file
debug.c is only compiled when SCHED_DEBUG is enabled, it makes sense to move
sched_feature setup into that file and get rid of the #ifdef.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.464193063@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andrea Parri reported:
> I found that the following scenario (with CONFIG_RT_GROUP_SCHED=y) is not
> handled correctly:
>
> T1 (prio = 20)
> lock(rtmutex);
>
> T2 (prio = 20)
> blocks on rtmutex (rt_nr_boosted = 0 on T1's rq)
>
> T1 (prio = 20)
> sys_set_scheduler(prio = 0)
> [new_effective_prio == oldprio]
> T1 prio = 20 (rt_nr_boosted = 0 on T1's rq)
>
> The last step is incorrect as T1 is now boosted (c.f., rt_se_boosted());
> in particular, if we continue with
>
> T1 (prio = 20)
> unlock(rtmutex)
> wakeup(T2)
> adjust_prio(T1)
> [prio != rt_mutex_getprio(T1)]
> dequeue(T1)
> rt_nr_boosted = (unsigned long)(-1)
> ...
> T1 prio = 0
>
> then we end up leaving rt_nr_boosted in an "inconsistent" state.
>
> The simple program attached could reproduce the previous scenario; note
> that, as a consequence of the presence of this state, the "assertion"
>
> WARN_ON(!rt_nr_running && rt_nr_boosted)
>
> from dec_rt_group() may trigger.
So normally we dequeue/enqueue tasks in sched_setscheduler(), which
would ensure the accounting stays correct. However in the early PI path
we fail to do so.
So this was introduced at around v3.14, by:
c365c292d0 ("sched: Consider pi boosting in setscheduler()")
which fixed another problem exactly because that dequeue/enqueue, joy.
Fix this by teaching rt about DEQUEUE_SAVE/ENQUEUE_RESTORE and have it
preserve runqueue location with that option. This requires decoupling
the on_rt_rq() state from being on the list.
In order to allow for explicit movement during the SAVE/RESTORE,
introduce {DE,EN}QUEUE_MOVE. We still must use SAVE/RESTORE in these
cases to preserve other invariants.
Respecting the SAVE/RESTORE flags also has the (nice) side-effect that
things like sys_nice()/sys_sched_setaffinity() also do not reorder
FIFO tasks (whereas they used to before this patch).
Reported-by: Andrea Parri <parri.andrea@gmail.com>
Tested-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lets factorize a bit of code there. We'll even have a third user soon.
While at it, standardize the idle update function name against the
others.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1452700891-21807-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
decay_load_missed() cannot handle nagative values, so we need to prevent
using the function with a negative value.
Reported-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: perterz@infradead.org
Fixes: 5954327548 ("sched/fair: Prepare __update_cpu_load() to handle active tickless")
Link: http://lkml.kernel.org/r/20160115070749.GA1914@X58A-UD3R
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Steven noticed that occasionally a sched_yield() call would not result
in a wait for the next period edge as expected.
It turns out that when we call update_curr_dl() and end up with
delta_exec <= 0, we will bail early and fail to throttle.
Further inspection of the yield code revealed that yield_task_dl()
clearing dl.runtime is wrong too, it will not account the last bit of
runtime which could result in dl.runtime < 0, which in turn means that
replenish would gift us with too much runtime.
Fix both issues by not relying on the dl.runtime value for yield.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160223122822.GP6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a cgroup's CPU runqueue is destroyed, it should remove its
remaining load accounting from its parent cgroup.
The current site for doing so it unsuited because its far too late and
unordered against other cgroup removal (->css_free() will be, but we're also
in an RCU callback).
Put it in the ->css_offline() callback, which is the start of cgroup
destruction, right after the group has been made unavailable to
userspace. The ->css_offline() callbacks are called in hierarchical order
after the following v4.4 commit:
aa226ff4a1 ("cgroup: make sure a parent css isn't offlined before its children")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160121212416.GL6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_GCOV is enabled, gcc decides to put context_switch()
out-of-line, which is inconsistent with its normal behavior.
It also causes an objtool warning because __schedule() no longer inlines
context_switch(), so the "STACK_FRAME_NON_STANDARD(__schedule)"
statement loses its effect.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/d62aee926b6e303394e34a06999a964dc2773cf6.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
objtool reports the following warnings for __schedule():
kernel/sched/core.o: warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
kernel/sched/core.o: warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
kernel/sched/core.o: warning: objtool:__schedule()+0x40a: call without frame pointer save/setup
kernel/sched/core.o: warning: objtool:__schedule()+0x7fd: frame pointer state mismatch
kernel/sched/core.o: warning: objtool:__schedule()+0x421: frame pointer state mismatch
Basically it's confused by two unusual attributes of the switch_to()
macro:
1. It saves prev's frame pointer to the old stack and restores next's
frame pointer from the new stack.
2. For new tasks it jumps directly to ret_from_fork.
Eventually it would probably be a good idea to clean up the
ret_from_fork hack so that new tasks are created with a valid initial
stack, as suggested by Andy:
https://lkml.kernel.org/r/CALCETrWsqCw4L1qKO9j9L5F+4ED4viuLQTFc=n1pKBZfFPQUFg@mail.gmail.com
Then __schedule() could return normally into the new code and objtool
hopefully wouldn't have a problem anymore.
In the meantime, mark its stack frame as non-standard so we can have a
baseline with no objtool warnings. The marker also serves as a reminder
that this code could be improved a bit.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/91190e324ebd7fcd01748d508d0dfd4693e84d91.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The existing wait queue support has support for custom wake up call
backs, wake flags, wake key (passed to call back) and exclusive
flags that allow wakers to be tagged as exclusive, for limiting
the number of wakers.
In a lot of cases, none of these features are used, and hence we
can benefit from a slimmed down version that lowers memory overhead
and reduces runtime overhead.
The concept originated from -rt, where waitqueues are a constant
source of trouble, as we can't convert the head lock to a raw
spinlock due to fancy and long lasting callbacks.
With the removal of custom callbacks, we can use a raw lock for
queue list manipulations, hence allowing the simple wait support
to be used in -rt.
[Patch is from PeterZ which is based on Thomas version. Commit message is
written by Paul G.
Daniel: - Fixed some compile issues
- Added non-lazy implementation of swake_up_locked as suggested
by Boqun Feng.]
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-2-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove an unnecessary assignment of variable not used any more.
( This has no runtime effects as GCC is smart enough to optimize
this out. )
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455159578-17256-1-git-send-email-byungchul.park@lge.com
[ Edited the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Export fetch_or() that's implemented and used internally by the
scheduler. We are going to use it for NO_HZ so make it generally
available.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The pseudo-interleaving in NUMA placement has a fundamental problem:
using hard usage thresholds to spread memory equally between nodes
can prevent workloads from converging, or keep memory "trapped" on
nodes where the workload is barely running any more.
In order for workloads to properly converge, the memory migration
should not be stopped when nodes reach parity, but instead be
distributed according to how heavily memory is used from each node.
This way memory migration and task migration reinforce each other,
instead of one putting the brakes on the other.
Remove the hard thresholds from the pseudo-interleaving code, and
instead use a more gradual policy on memory placement. This also
seems to improve convergence of workloads that do not run flat out,
but sleep in between bursts of activity.
We still want to slow down NUMA scanning and migration once a workload
has settled on a few actively used nodes, so keep the 3/4 hysteresis
in place. Keep track of whether a workload is actively running on
multiple nodes, so task_numa_migrate does a full scan of the system
for better task placement.
In the case of running 3 SPECjbb2005 instances on a 4 node system,
this code seems to result in fairer distribution of memory between
nodes, with more memory bandwidth for each instance.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/20160125170739.2fc9a641@annuminas.surriel.com
[ Minor readability tweaks. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
schedstats is very useful during debugging and performance tuning but it
incurs overhead to calculate the stats. As such, even though it can be
disabled at build time, it is often enabled as the information is useful.
This patch adds a kernel command-line and sysctl tunable to enable or
disable schedstats on demand (when it's built in). It is disabled
by default as someone who knows they need it can also learn to enable
it when necessary.
The benefits are dependent on how scheduler-intensive the workload is.
If it is then the patch reduces the number of cycles spent calculating
the stats with a small benefit from reducing the cache footprint of the
scheduler.
These measurements were taken from a 48-core 2-socket
machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a
single socket machine 8-core machine with Intel i7-3770 processors.
netperf-tcp
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%)
Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%)
Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%)
Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%)
Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%)
Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%)
Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%)
Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%)
Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%)
Small gains here, UDP_STREAM showed nothing intresting and neither did
the TCP_RR tests. The gains on the 8-core machine were very similar.
tbench4
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%)
Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%)
Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%)
Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%)
Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%)
Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%)
Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%)
Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%)
Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%)
Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%)
Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%)
Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%)
Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%)
Small gains of 2-4% at low thread counts and otherwise flat. The
gains on the 8-core machine were slightly different
tbench4 on 8-core i7-3770 single socket machine
Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%)
Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%)
Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%)
Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%)
Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%)
Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%)
Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%)
Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%)
Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%)
Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%)
In constract, this shows a relatively steady 2-3% gain at higher thread
counts. Due to the nature of the patch and the type of workload, it's
not a surprise that the result will depend on the CPU used.
hackbench-pipes
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%)
Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%)
Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%)
Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%)
Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%)
Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%)
Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%)
Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%)
Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%)
Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%)
Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%)
Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%)
Some small gains and losses and while the variance data is not included,
it's close to the noise. The UMA machine did not show anything particularly
different
pipetest
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v2r2
Min Time 4.13 ( 0.00%) 3.99 ( 3.39%)
1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%)
2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%)
3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%)
Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%)
Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%)
Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%)
Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%)
Max Time 4.93 ( 0.00%) 4.83 ( 2.03%)
Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%)
Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%)
Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%)
Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%)
Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%)
Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%)
Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%)
Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%)
Small improvement and similar gains were seen on the UMA machine.
The gain is small but it stands to reason that doing less work in the
scheduler is a good thing. The downside is that the lack of schedstats and
tracepoints may be surprising to experts doing performance analysis until
they find the existence of the schedstats= parameter or schedstats sysctl.
It will be automatically activated for latencytop and sleep profiling to
alleviate the problem. For tracepoints, there is a simple warning as it's
not safe to activate schedstats in the context when it's known the tracepoint
may be wanted but is unavailable.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The isolcpus= kernel boot parameter restricts userspace from scheduling on
the specified CPUs.
If a CPU is specified that is outside the range of 0 to nr_cpu_ids,
cpulist_parse() will return -ERANGE, return an empty cpulist, and
fail silently.
This patch adds an error message to isolated_cpu_setup() to indicate to
the user that something has gone awry, and returns 0 on error.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454596680-10367-1-git-send-email-prarit@redhat.com
[ Twiddled some details. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Thomas Gleixner:
"Three small fixes in the scheduler/core:
- use after free in the numa code
- crash in the numa init code
- a simple spelling fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
pid: Fix spelling in comments
sched/numa: Fix use-after-free bug in the task_numa_compare
sched: Fix crash in sched_init_numa()
* pm-cpuidle:
cpuidle: coupled: remove unused define cpuidle_coupled_lock
cpuidle: fix fallback mechanism for suspend to idle in absence of enter_freeze
* pm-cpufreq:
cpufreq: cpufreq-dt: avoid uninitialized variable warnings:
cpufreq: pxa2xx: fix pxa_cpufreq_change_voltage prototype
cpufreq: Use list_is_last() to check last entry of the policy list
cpufreq: Fix NULL reference crash while accessing policy->governor_data
* pm-domains:
PM / Domains: Fix typo in comment
PM / Domains: Fix potential deadlock while adding/removing subdomains
PM / domains: fix lockdep issue for all subdomains
* pm-sleep:
PM: APM_EMULATION does not depend on PM
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The following message can be observed on the Ubuntu v3.13.0-65 with KASan
backported:
==================================================================
BUG: KASan: use after free in task_numa_find_cpu+0x64c/0x890 at addr ffff880dd393ecd8
Read of size 8 by task qemu-system-x86/3998900
=============================================================================
BUG kmalloc-128 (Tainted: G B ): kasan: bad access detected
-----------------------------------------------------------------------------
INFO: Allocated in task_numa_fault+0xc1b/0xed0 age=41980 cpu=18 pid=3998890
__slab_alloc+0x4f8/0x560
__kmalloc+0x1eb/0x280
task_numa_fault+0xc1b/0xed0
do_numa_page+0x192/0x200
handle_mm_fault+0x808/0x1160
__do_page_fault+0x218/0x750
do_page_fault+0x1a/0x70
page_fault+0x28/0x30
SyS_poll+0x66/0x1a0
system_call_fastpath+0x1a/0x1f
INFO: Freed in task_numa_free+0x1d2/0x200 age=62 cpu=18 pid=0
__slab_free+0x2ab/0x3f0
kfree+0x161/0x170
task_numa_free+0x1d2/0x200
finish_task_switch+0x1d2/0x210
__schedule+0x5d4/0xc60
schedule_preempt_disabled+0x40/0xc0
cpu_startup_entry+0x2da/0x340
start_secondary+0x28f/0x360
Call Trace:
[<ffffffff81a6ce35>] dump_stack+0x45/0x56
[<ffffffff81244aed>] print_trailer+0xfd/0x170
[<ffffffff8124ac36>] object_err+0x36/0x40
[<ffffffff8124cbf9>] kasan_report_error+0x1e9/0x3a0
[<ffffffff8124d260>] kasan_report+0x40/0x50
[<ffffffff810dda7c>] ? task_numa_find_cpu+0x64c/0x890
[<ffffffff8124bee9>] __asan_load8+0x69/0xa0
[<ffffffff814f5c38>] ? find_next_bit+0xd8/0x120
[<ffffffff810dda7c>] task_numa_find_cpu+0x64c/0x890
[<ffffffff810de16c>] task_numa_migrate+0x4ac/0x7b0
[<ffffffff810de523>] numa_migrate_preferred+0xb3/0xc0
[<ffffffff810e0b88>] task_numa_fault+0xb88/0xed0
[<ffffffff8120ef02>] do_numa_page+0x192/0x200
[<ffffffff81211038>] handle_mm_fault+0x808/0x1160
[<ffffffff810d7dbd>] ? sched_clock_cpu+0x10d/0x160
[<ffffffff81068c52>] ? native_load_tls+0x82/0xa0
[<ffffffff81a7bd68>] __do_page_fault+0x218/0x750
[<ffffffff810c2186>] ? hrtimer_try_to_cancel+0x76/0x160
[<ffffffff81a6f5e7>] ? schedule_hrtimeout_range_clock.part.24+0xf7/0x1c0
[<ffffffff81a7c2ba>] do_page_fault+0x1a/0x70
[<ffffffff81a772e8>] page_fault+0x28/0x30
[<ffffffff8128cbd4>] ? do_sys_poll+0x1c4/0x6d0
[<ffffffff810e64f6>] ? enqueue_task_fair+0x4b6/0xaa0
[<ffffffff810233c9>] ? sched_clock+0x9/0x10
[<ffffffff810cf70a>] ? resched_task+0x7a/0xc0
[<ffffffff810d0663>] ? check_preempt_curr+0xb3/0x130
[<ffffffff8128b5c0>] ? poll_select_copy_remaining+0x170/0x170
[<ffffffff810d3bc0>] ? wake_up_state+0x10/0x20
[<ffffffff8112a28f>] ? drop_futex_key_refs.isra.14+0x1f/0x90
[<ffffffff8112d40e>] ? futex_requeue+0x3de/0xba0
[<ffffffff8112e49e>] ? do_futex+0xbe/0x8f0
[<ffffffff81022c89>] ? read_tsc+0x9/0x20
[<ffffffff8111bd9d>] ? ktime_get_ts+0x12d/0x170
[<ffffffff8108f699>] ? timespec_add_safe+0x59/0xe0
[<ffffffff8128d1f6>] SyS_poll+0x66/0x1a0
[<ffffffff81a830dd>] system_call_fastpath+0x1a/0x1f
As commit 1effd9f193 ("sched/numa: Fix unsafe get_task_struct() in
task_numa_assign()") points out, the rcu_read_lock() cannot protect the
task_struct from being freed in the finish_task_switch(). And the bug
happens in the process of calculation of imp which requires the access of
p->numa_faults being freed in the following path:
do_exit()
current->flags |= PF_EXITING;
release_task()
~~delayed_put_task_struct()~~
schedule()
...
...
rq->curr = next;
context_switch()
finish_task_switch()
put_task_struct()
__put_task_struct()
task_numa_free()
The fix here to get_task_struct() early before end of dst_rq->lock to
protect the calculation process and also put_task_struct() in the
corresponding point if finally the dst_rq->curr somehow cannot be
assigned.
Additional credit to Liang Chen who helped fix the error logic and add the
put_task_struct() to the place it missed.
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jay.vosburgh@canonical.com
Cc: liang.chen@canonical.com
Link: http://lkml.kernel.org/r/1453264618-17645-1-git-send-email-gavin.guo@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 51164251f5 "sched / idle: Drop default_idle_call() fallback
from call_cpuidle()" made find_deepest_state() return non-negative
value and check all the states with index > 0. Also as a result,
find_deepest_state() returns 0 even when enter_freeze callbacks are not
implemented and enter_freeze_proper() is called which ends up crashing
the kernel.
This patch updates the check for index > 0 in cpuidle_enter_freeze and
cpuidle_idle_call(when idle_should_freeze is true) to restore the
suspend-to-idle functionality in absence of enter_freeze callback.
Fixes: 51164251f5 "sched / idle: Drop default_idle_call() fallback from call_cpuidle()"
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Modify the driver core and the USB subsystem to allow USB devices
to stay suspended over system suspend/resume cycles if they have
been runtime-suspended already beforehand and fix some bugs on
top of these changes (Tomeu Vizoso, Rafael Wysocki).
- Update ACPICA to upstream revision 20160108, including updates
of the ACPICA's copyright notices, a code fixup resulting from
a regression fix that was necessary in the upstream code only
(the regression fixed by it has never been present in Linux)
and a compiler warning fix (Bob Moore, Lv Zheng).
- Fix a recent regression in the cpuidle menu governor that broke
it on practically all architectures other than x86 and make a
couple of optimizations on top of that fix (Rafael Wysocki).
- Clean up the selection of cpuidle governors depending on whether
or not the kernel is configured for tickless systems (Jean Delvare).
- Revert a recent commit that introduced a regression in the ACPI
backlight driver, address the problem it attempted to fix in a
different way and revert one more cosmetic change depending on
the problematic commit (Hans de Goede).
- Add two more ACPI backlight quirks (Hans de Goede).
- Fix a few minor problems in the core devfreq code, clean it up
a bit and update the MAINTAINERS information related to it
(Chanwoo Choi, MyungJoo Ham).
- Improve an error message in the ACPI fan driver (Andy Lutomirski).
- Fix a recent build regression in the cpupower tool (Shreyas Prabhu).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJWoCQ4AAoJEILEb/54YlRxLscQALEFVKSRnNaco72OqqRZs9Bu
1RI6TgHTpZxR+Ef0+QWqE1QMnDwfImGhKDbSRm/t3S2sMYYZbAOL8cu4y6GmkBv4
bOon/f9WEoPlQCFoo/6U4u8H45rNT5W9zX5+Bva8x+4Wu3n2J1QdvirnS5JHeHe1
o6tGLaHuZXSwX8SLnCk8gJYK1VhATxbubJtpcVtvlnAhO11qUAwsscCrkUmB60i7
5hLyrZb06hoa/hZVcIefGFuSd9qPhzDMQE2M20EohQ7UVkNJQdY9QNHMqCk2P42T
nMWCNSwGnwfiO1p9ByXqunOFBCmyL7P+KV/DHsz6TFCVjz+jeG53Kqey9SkSJ/2W
iaAE80K9MfOMvg8j7rib6fTn5uXBwRfqdeUDF/Hr64QqJoRn3R2LX4HmZe4L8ufb
zA1rece67o8FD+7p7GkNbT3rPV/kA62tn/moFk446X5N+b261Kz90t1DVci8kRVf
k+1gcvEdqO0GPpEHoirfXrBvQFixqkXakKj4r2aAob/DldQeLX7CkOUuRRJ1ykec
bxwI9R0v8MlVe5rDxg+rPB0I9EFxRDmxqxpU5j0MRWxKnMRzLvBtHuk8YNVS/eU1
xwyJOGcwF6yI0PaCFggPqmhebSrWLE7wJxaK+3bC+yiDTvHYPjB+4MfQrmkRAwwM
azgb+ZgXDYx5wXeb8EjB
=bKJ9
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management and ACPI updates from Rafael Wysocki:
"This includes fixes on top of the previous batch of PM+ACPI updates
and some new material as well.
From the new material perspective the most significant are the driver
core changes that should allow USB devices to stay suspended over
system suspend/resume cycles if they have been runtime-suspended
already beforehand. Apart from that, ACPICA is updated to upstream
revision 20160108 (cosmetic mostly, but including one fixup on top of
the previous ACPICA update) and there are some devfreq updates the
didn't make it before (due to timing).
A few recent regressions are fixed, most importantly in the cpuidle
menu governor and in the ACPI backlight driver and some x86 platform
drivers depending on it.
Some more bugs are fixed and cleanups are made on top of that.
Specifics:
- Modify the driver core and the USB subsystem to allow USB devices
to stay suspended over system suspend/resume cycles if they have
been runtime-suspended already beforehand and fix some bugs on top
of these changes (Tomeu Vizoso, Rafael Wysocki).
- Update ACPICA to upstream revision 20160108, including updates of
the ACPICA's copyright notices, a code fixup resulting from a
regression fix that was necessary in the upstream code only (the
regression fixed by it has never been present in Linux) and a
compiler warning fix (Bob Moore, Lv Zheng).
- Fix a recent regression in the cpuidle menu governor that broke it
on practically all architectures other than x86 and make a couple
of optimizations on top of that fix (Rafael Wysocki).
- Clean up the selection of cpuidle governors depending on whether or
not the kernel is configured for tickless systems (Jean Delvare).
- Revert a recent commit that introduced a regression in the ACPI
backlight driver, address the problem it attempted to fix in a
different way and revert one more cosmetic change depending on the
problematic commit (Hans de Goede).
- Add two more ACPI backlight quirks (Hans de Goede).
- Fix a few minor problems in the core devfreq code, clean it up a
bit and update the MAINTAINERS information related to it (Chanwoo
Choi, MyungJoo Ham).
- Improve an error message in the ACPI fan driver (Andy Lutomirski).
- Fix a recent build regression in the cpupower tool (Shreyas
Prabhu)"
* tag 'pm+acpi-4.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (32 commits)
cpuidle: menu: Avoid pointless checks in menu_select()
sched / idle: Drop default_idle_call() fallback from call_cpuidle()
cpupower: Fix build error in cpufreq-info
cpuidle: Don't enable all governors by default
cpuidle: Default to ladder governor on ticking systems
time: nohz: Expose tick_nohz_enabled
ACPICA: Update version to 20160108
ACPICA: Silence a -Wbad-function-cast warning when acpi_uintptr_t is 'uintptr_t'
ACPICA: Additional 2016 copyright changes
ACPICA: Reduce regression fix divergence from upstream ACPICA
ACPI / video: Add disable_backlight_sysfs_if quirk for the Toshiba Satellite R830
ACPI / video: Revert "thinkpad_acpi: Use acpi_video_handles_brightness_key_presses()"
ACPI / video: Document acpi_video_handles_brightness_key_presses() a bit
ACPI / video: Fix using an uninitialized mutex / list_head in acpi_video_handles_brightness_key_presses()
ACPI / video: Revert "ACPI / video: driver must be registered before checking for keypresses"
ACPI / fan: Improve acpi_device_update_power error message
ACPI / video: Add disable_backlight_sysfs_if quirk for the Toshiba Portege R700
cpuidle: menu: Fix menu_select() for CPUIDLE_DRIVER_STATE_START == 0
MAINTAINERS: Add devfreq-event entry
MAINTAINERS: Add missing git repository and directory for devfreq
...
* pm-cpuidle:
cpuidle: menu: Avoid pointless checks in menu_select()
sched / idle: Drop default_idle_call() fallback from call_cpuidle()
cpuidle: Don't enable all governors by default
cpuidle: Default to ladder governor on ticking systems
time: nohz: Expose tick_nohz_enabled
cpuidle: menu: Fix menu_select() for CPUIDLE_DRIVER_STATE_START == 0
After commit 9c4b2867ed (cpuidle: menu: Fix menu_select() for
CPUIDLE_DRIVER_STATE_START == 0) it is clear that menu_select()
cannot return negative values. Moreover, ladder_select_state()
will never return a negative value too, so make find_deepest_state()
return non-negative values too and drop the default_idle_call()
fallback from call_cpuidle().
This eliminates one branch from the idle loop and makes the governors
and find_deepest_state() handle the case when all states have been
disabled from sysfs consistently.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
The following PowerPC commit:
c118baf802 ("arch/powerpc/mm/numa.c: do not allocate bootmem memory for non existing nodes")
avoids allocating bootmem memory for non existent nodes.
But when DEBUG_PER_CPU_MAPS=y is enabled, my powerNV system failed to boot
because in sched_init_numa(), cpumask_or() operation was done on
unallocated nodes.
Fix that by making cpumask_or() operation only on existing nodes.
[ Tested with and w/o DEBUG_PER_CPU_MAPS=y on x86 and PowerPC. ]
Reported-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: <gkurz@linux.vnet.ibm.com>
Cc: <grant.likely@linaro.org>
Cc: <nikunj@linux.vnet.ibm.com>
Cc: <vdavydov@parallels.com>
Cc: <linuxppc-dev@lists.ozlabs.org>
Cc: <linux-mm@kvack.org>
Cc: <peterz@infradead.org>
Cc: <benh@kernel.crashing.org>
Cc: <paulus@samba.org>
Cc: <mpe@ellerman.id.au>
Cc: <anton@samba.org>
Link: http://lkml.kernel.org/r/1452884483-11676-1-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the vmstat updater is not deferrable as a result of commit
ba4877b9ca ("vmstat: do not use deferrable delayed work for
vmstat_update"). This in turn can cause multiple interruptions of the
applications because the vmstat updater may run at
Make vmstate_update deferrable again and provide a function that folds
the differentials when the processor is going to idle mode thus
addressing the issue of the above commit in a clean way.
Note that the shepherd thread will continue scanning the differentials
from another processor and will reenable the vmstat workers if it
detects any changes.
Fixes: ba4877b9ca ("vmstat: do not use deferrable delayed work for vmstat_update")
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
- cgroup v2 interface is now official. It's no longer hidden behind a
devel flag and can be mounted using the new cgroup2 fs type.
Unfortunately, cpu v2 interface hasn't made it yet due to the
discussion around in-process hierarchical resource distribution and
only memory and io controllers can be used on the v2 interface at the
moment.
- The existing documentation which has always been a bit of mess is
relocated under Documentation/cgroup-v1/. Documentation/cgroup-v2.txt
is added as the authoritative documentation for the v2 interface.
- Some features are added through for-4.5-ancestor-test branch to
enable netfilter xt_cgroup match to use cgroup v2 paths. The actual
netfilter changes will be merged through the net tree which pulled in
the said branch.
- Various cleanups
* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: rename cgroup documentations
cgroup: fix a typo.
cgroup: Remove resource_counter.txt in Documentation/cgroup-legacy/00-INDEX.
cgroup: demote subsystem init messages to KERN_DEBUG
cgroup: Fix uninitialized variable warning
cgroup: put controller Kconfig options in meaningful order
cgroup: clean up the kernel configuration menu nomenclature
cgroup_pids: fix a typo.
Subject: cgroup: Fix incomplete dd command in blkio documentation
cgroup: kill cgrp_ss_priv[CGROUP_CANFORK_COUNT] and friends
cpuset: Replace all instances of time_t with time64_t
cgroup: replace unified-hierarchy.txt with a proper cgroup v2 documentation
cgroup: rename Documentation/cgroups/ to Documentation/cgroup-legacy/
cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type
- Stolen ticks and PV wallclock support for arm/arm64.
- Add grant copy ioctl to gntdev device.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJWk5IUAAoJEFxbo/MsZsTRLxwH/1BDcrbQDRc5hxUOG9JEYSUt
H/lMjvZRShPkzweijdNon95ywAXhcSbkS9IV2Mp0+CZV7VyeymW7QIW/g4+G6iRg
+LnoV77PAhPv/cmsr1pENXqRCclvemlxQOf7UyWLezuKhB71LC+oNaEnpk/tPIZS
et/qef+m/SgSP5R91nO0Esv2KfP7za0UrgJf3Ee4GzjSeDkya0Hko06Cy3yc1/RT
082kHpQ1/KFcHHh2qhdCQwyzhq/cwFkuDA6ksKYJoxC6YAVC2mvvkuIOZYbloHDL
c/dzuP9qjjxOZ7Gblv2cmg+RE4UqRfBhxmMycxSCcwW/Mt5LaftCpAxpBQKq2/8=
=6F/q
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.5-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Xen features and fixes for 4.5-rc0:
- Stolen ticks and PV wallclock support for arm/arm64
- Add grant copy ioctl to gntdev device"
* tag 'for-linus-4.5-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/gntdev: add ioctl for grant copy
x86/xen: don't reset vcpu_info on a cancelled suspend
xen/gntdev: constify mmu_notifier_ops structures
xen/grant-table: constify gnttab_ops structure
xen/time: use READ_ONCE
xen/x86: convert remaining timespec to timespec64 in xen_pvclock_gtod_notify
xen/x86: support XENPF_settime64
xen/arm: set the system time in Xen via the XENPF_settime64 hypercall
xen/arm: introduce xen_read_wallclock
arm: extend pvclock_wall_clock with sec_hi
xen: introduce XENPF_settime64
xen/arm: introduce HYPERVISOR_platform_op on arm and arm64
xen: rename dom0_op to platform_op
xen/arm: account for stolen ticks
arm64: introduce CONFIG_PARAVIRT, PARAVIRT_TIME_ACCOUNTING and pv_time_ops
arm: introduce CONFIG_PARAVIRT, PARAVIRT_TIME_ACCOUNTING and pv_time_ops
missing include asm/paravirt.h in cputime.c
xen: move xen_setup_runstate_info and get_runstate_snapshot to drivers/xen/time.c
Pull workqueue update from Tejun Heo:
"Workqueue changes for v4.5. One cleanup patch and three to improve
the debuggability.
Workqueue now has a stall detector which dumps workqueue state if any
worker pool hasn't made forward progress over a certain amount of time
(30s by default) and also triggers a warning if a workqueue which can
be used in memory reclaim path tries to wait on something which can't
be.
These should make workqueue hangs a lot easier to debug."
* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: simplify the apply_workqueue_attrs_locked()
workqueue: implement lockup detector
watchdog: introduce touch_softlockup_watchdog_sched()
workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- tickless load average calculation enhancements (Byungchul Park)
- vtime handling enhancements (Frederic Weisbecker)
- scalability improvement via properly aligning a key structure field
(Jiri Olsa)
- various stop_machine() fixes (Oleg Nesterov)
- sched/numa enhancement (Rik van Riel)
- various fixes and improvements (Andi Kleen, Dietmar Eggemann,
Geliang Tang, Hiroshi Shimamoto, Joonwoo Park, Peter Zijlstra,
Waiman Long, Wanpeng Li, Yuyang Du)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
sched/fair: Fix new task's load avg removed from source CPU in wake_up_new_task()
sched/core: Move sched_entity::avg into separate cache line
x86/fpu: Properly align size in CHECK_MEMBER_AT_END_OF() macro
sched/deadline: Fix the earliest_dl.next logic
sched/fair: Disable the task group load_avg update for the root_task_group
sched/fair: Move the cache-hot 'load_avg' variable into its own cacheline
sched/fair: Avoid redundant idle_cpu() call in update_sg_lb_stats()
sched/core: Move the sched_to_prio[] arrays out of line
sched/cputime: Convert vtime_seqlock to seqcount
sched/cputime: Introduce vtime accounting check for readers
sched/cputime: Rename vtime_accounting_enabled() to vtime_accounting_cpu_enabled()
sched/cputime: Correctly handle task guest time on housekeepers
sched/cputime: Clarify vtime symbols and document them
sched/cputime: Remove extra cost in task_cputime()
sched/fair: Make it possible to account fair load avg consistently
sched/fair: Modify the comment about lock assumptions in migrate_task_rq_fair()
stop_machine: Clean up the usage of the preemption counter in cpu_stopper_thread()
stop_machine: Shift the 'done != NULL' check from cpu_stop_signal_done() to callers
stop_machine: Kill cpu_stop_done->executed
stop_machine: Change __stop_cpus() to rely on cpu_stop_queue_work()
...
Pull locking updates from Ingo Molnar:
"So we have a laundry list of locking subsystem changes:
- continuing barrier API and code improvements
- futex enhancements
- atomics API improvements
- pvqspinlock enhancements: in particular lock stealing and adaptive
spinning
- qspinlock micro-enhancements"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op
futex: Cleanup the goto confusion in requeue_pi()
futex: Remove pointless put_pi_state calls in requeue()
futex: Document pi_state refcounting in requeue code
futex: Rename free_pi_state() to put_pi_state()
futex: Drop refcount if requeue_pi() acquired the rtmutex
locking/barriers, arch: Remove ambiguous statement in the smp_store_mb() documentation
lcoking/barriers, arch: Use smp barriers in smp_store_release()
locking/cmpxchg, arch: Remove tas() definitions
locking/pvqspinlock: Queue node adaptive spinning
locking/pvqspinlock: Allow limited lock stealing
locking/pvqspinlock: Collect slowpath lock statistics
sched/core, locking: Document Program-Order guarantees
locking, sched: Introduce smp_cond_acquire() and use it
locking/pvqspinlock, x86: Optimize the PV unlock code path
locking/qspinlock: Avoid redundant read of next pointer
locking/qspinlock: Prefetch the next node cacheline
locking/qspinlock: Use _acquire/_release() versions of cmpxchg() & xchg()
atomics: Add test for atomic operations with _relaxed variants
Pull RCU updates from Ingo Molnar:
"The changes in this cycle were:
- Adding transitivity uniformly to rcu_node structure ->lock
acquisitions. (This is implemented by the first two commits on top
of v4.4-rc2 due to the pervasive nature of this change.)
- Documentation updates, including RCU requirements.
- Expedited grace-period changes.
- Miscellaneous fixes.
- Linked-list fixes, courtesy of KTSAN.
- Torture-test updates.
- Late-breaking fix to sysrq-generated crash.
One thing I should note is that these pieces of documentation are
fairly large files:
.../RCU/Design/Requirements/Requirements.html | 2897 ++++++++++++++++++++
.../RCU/Design/Requirements/Requirements.htmlx | 2741 ++++++++++++++++++
and are written in HTML, not the usual .txt style. I hope they are
fine"
Paul McKenney explains the html docs:
"For whatever it is worth, the reason for this unconventional choice
was that attempts to do the diagrams in ASCII art failed miserably.
And attempts to do ASCII art for the upcoming documentation of the
data structures failed even more miserably"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
sysrq: Fix warning in sysrq generated crash.
list: Add lockless list traversal primitives
rcu: Make rcu_gp_init() be bool rather than int
rcu: Move wakeup out from under rnp->lock
rcu: Fix comment for rcu_dereference_raw_notrace
rcu: Don't redundantly disable irqs in rcu_irq_{enter,exit}()
rcu: Make cpu_needs_another_gp() be bool
rcu: Eliminate unused rcu_init_one() argument
rcu: Remove TINY_RCU bloat from pointless boot parameters
torture: Place console.log files correctly from the get-go
torture: Abbreviate console error dump
rcutorture: Print symbolic name for ->gp_state
rcutorture: Print symbolic name for rcu_torture_writer_state
rcutorture: Remove CONFIG_RCU_USER_QS from rcutorture selftest doc
rcutorture: Default grace period to three minutes, allow override
rcutorture: Dump stack when GP kthread stalls
rcutorture: Flag nonexistent RCU GP kthread
rcutorture: Add batch number to script printout
Documentation/memory-barriers.txt: Fix ACCESS_ONCE thinko
documentation: Update RCU requirements based on expedited changes
...
Pull RCU changes from Paul E. McKenney:
- Adding transitivity uniformly to rcu_node structure ->lock
acquisitions. (This is implemented by the first two commits
on top of v4.4-rc2 due to the pervasive nature of this change.)
- Documentation updates, including RCU requirements.
- Expedited grace-period changes.
- Miscellaneous fixes.
- Linked-list fixes, courtesy of KTSAN.
- Torture-test updates.
- Late-breaking fix to sysrq-generated crash.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a newly created task is selected to go to a different CPU in fork
balance when it wakes up the first time, its load averages should
not be removed from the source CPU since they are never added to
it before. The same is also applicable to a never used group entity.
Fix it in remove_entity_load_avg(): when entity's last_update_time
is 0, simply return. This should precisely identify the case in
question, because in other migrations, the last_update_time is set
to 0 after remove_entity_load_avg().
Reported-by: Steve Muckle <steve.muckle@linaro.org>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
[peterz: cfs_rq_last_update_time]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20151216233427.GJ28098@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
earliest_dl.next should cache deadline of the earliest ready task that
is also enqueued in the pushable rbtree, as pull algorithm uses this
information to find candidates for migration: if the earliest_dl.next
deadline of source rq is earlier than the earliest_dl.curr deadline of
destination rq, the task from the source rq can be pulled.
However, current implementation only guarantees that earliest_dl.next is
the deadline of the next ready task instead of the next pushable task;
which will result in potentially holding both rqs' lock and find nothing
to migrate because of affinity constraints. In addition, current logic
doesn't update the next candidate for pushing in pick_next_task_dl(),
even if the running task is never eligible.
This patch fixes both problems by updating earliest_dl.next when
pushable dl task is enqueued/dequeued, similar to what we already do for
RT.
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449135730-27202-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make 'r' 64-bit type to avoid overflow in 'r * LOAD_AVG_MAX'
on 32-bit systems:
UBSAN: Undefined behaviour in kernel/sched/fair.c:2785:18
signed integer overflow:
87950 * 47742 cannot be represented in type 'int'
The most likely effect of this bug are bad load average numbers
resulting in weird scheduling. It's also likely that this can
persist for a longer time - until the system goes idle for
a long time so that all load avg numbers get reset.
[ This is the CFS load average metric, not the procfs output, which
is separate. ]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
Link: http://lkml.kernel.org/r/1450097243-30137-1-git-send-email-aryabinin@virtuozzo.com
[ Improved the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add include asm/paravirt.h to cputime.c, as steal_account_process_tick
calls paravirt_steal_clock, which is defined in asm/paravirt.h.
The ifdef CONFIG_PARAVIRT is necessary because not all archs have an
asm/paravirt.h to include.
The reason why currently cputime.c compiles, even though include
<asm/paravirt.h> is missing, is that on x86 asm/paravirt.h is included
by one of the other headers included in kernel/sched/cputime.c:
On arm and arm64, where I am about to introduce asm/paravirt.h and
stolen time support, without #include <asm/paravirt.h> in cputime.c, I
would get an error.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Jan Stancek reported that I wrecked things for him by fixing things for
Vladimir :/
His report was due to an UNINTERRUPTIBLE wait getting -EINTR, which
should not be possible, however my previous patch made this possible by
unconditionally checking signal_pending().
We cannot use current->state as was done previously, because the
instruction after the store to that variable it can be changed. We must
instead pass the initial state along and use that.
Fixes: 68985633bc ("sched/wait: Fix signal handling in bit wait helpers")
Reported-by: Jan Stancek <jstancek@redhat.com>
Reported-by: Chris Mason <clm@fb.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Chris Mason <clm@fb.com>
Reviewed-by: Paul Turner <pjt@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: tglx@linutronix.de
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: hpa@zytor.com
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup fixes from Tejun Heo:
"More change than I'd have liked at this stage. The pids controller
and the changes made to cgroup core to support it introduced and
revealed several important issues.
- Assigning membership to a newly created task and migrating it can
race leading to incorrect accounting. Oleg fixed it by widening
threadgroup synchronization. It looks like we'll be able to merge
it with a different percpu rwsem which is used in fork path making
things simpler and cheaper.
- The recent change to extend cgroup membership to zombies (so that
pid accounting can extend till the pid is actually released) missed
pinning the underlying data structures leading to use-after-free.
Fixed.
- v2 hierarchy was calling subsystem callbacks with the wrong target
cgroup_subsys_state based on the incorrect assumption that they
share the same target. pids is the first controller affected by
this. Subsys callbacks updated so that they can deal with
multi-target migrations"
* 'for-4.4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup_pids: don't account for the root cgroup
cgroup: fix handling of multi-destination migration from subtree_control enabling
cgroup_freezer: simplify propagation of CGROUP_FROZEN clearing in freezer_attach()
cgroup: pids: kill pids_fork(), simplify pids_can_fork() and pids_cancel_fork()
cgroup: pids: fix race between cgroup_post_fork() and cgroup_migrate()
cgroup: make css_set pin its css's to avoid use-afer-free
cgroup: fix cftype->file_offset handling
Pull perf fixes from Ingo Molnar:
"This tree includes four core perf fixes for misc bugs, three fixes to
x86 PMU drivers, and two updates to old email addresses"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Do not send exit event twice
perf/x86/intel: Fix INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA macro
perf/x86/intel: Make L1D_PEND_MISS.FB_FULL not constrained on Haswell
perf: Fix PERF_EVENT_IOC_PERIOD deadlock
treewide: Remove old email address
perf/x86: Fix LBR call stack save/restore
perf: Update email address in MAINTAINERS
perf/core: Robustify the perf_cgroup_from_task() RCU checks
perf/core: Fix RCU problem with cgroup context switching code
touch_softlockup_watchdog() is used to tell watchdog that scheduler
stall is expected. One group of usage is from paths where the task
may not be able to yield for a long time such as performing slow PIO
to finicky device and coming out of suspend. The other is to account
for scheduler and timer going idle.
For scheduler softlockup detection, there's no reason to distinguish
the two cases; however, workqueue lockup detector is planned and it
can use the same signals from the former group while the latter would
spuriously prevent detection. This patch introduces a new function
touch_softlockup_watchdog_sched() and convert the latter group to call
it instead. For now, it just calls touch_softlockup_watchdog() and
there's no functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
The following commit which went into mainline through networking tree
3b13758f51 ("cgroups: Allow dynamically changing net_classid")
conflicts in net/core/netclassid_cgroup.c with the following pending
fix in cgroup/for-4.4-fixes.
1f7dd3e5a6 ("cgroup: fix handling of multi-destination migration from subtree_control enabling")
The former separates out update_classid() from cgrp_attach() and
updates it to walk all fds of all tasks in the target css so that it
can be used from both migration and config change paths. The latter
drops @css from cgrp_attach().
Resolve the conflict by making cgrp_attach() call update_classid()
with the css from the first task. We can revive @tset walking in
cgrp_attach() but given that net_cls is v1 only where there always is
only one target css during migration, this is fine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Nina Schiff <ninasc@fb.com>
We need the scheduler's fastpaths to be, well, fast, and unnecessarily
disabling and re-enabling interrupts is not necessarily consistent with
this goal. Especially given that there are regions of the scheduler that
already have interrupts disabled.
This commit therefore moves the call to rcu_note_context_switch()
to one of the interrupts-disabled regions of the scheduler, and
removes the now-redundant disabling and re-enabling of interrupts from
rcu_note_context_switch() and the functions it calls.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Shift rcu_note_context_switch() to avoid deadlock, as suggested
by Peter Zijlstra. ]
Currently, the update_tg_load_avg() function attempts to update the
tg's load_avg value whenever the load changes even for root_task_group
where the load_avg value will never be used. This patch will disable
the load_avg update when the given task group is the root_task_group.
Running a Java benchmark with noautogroup and a 4.3 kernel on a
16-socket IvyBridge-EX system, the amount of CPU time (as reported by
perf) consumed by task_tick_fair() which includes update_tg_load_avg()
decreased from 0.71% to 0.22%, a more than 3X reduction. The Max-jOPs
results also increased slightly from 983015 to 986449.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-4-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a system with large number of sockets was driven to full
utilization, it was found that the clock tick handling occupied a
rather significant proportion of CPU time when fair group scheduling
and autogroup were enabled.
Running a java benchmark on a 16-socket IvyBridge-EX system, the perf
profile looked like:
10.52% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
9.66% 0.05% java [kernel.vmlinux] [k] hrtimer_interrupt
8.65% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
8.56% 0.00% java [kernel.vmlinux] [k] update_process_times
8.07% 0.03% java [kernel.vmlinux] [k] scheduler_tick
6.91% 1.78% java [kernel.vmlinux] [k] task_tick_fair
5.24% 5.04% java [kernel.vmlinux] [k] update_cfs_shares
In particular, the high CPU time consumed by update_cfs_shares()
was mostly due to contention on the cacheline that contained the
task_group's load_avg statistical counter. This cacheline may also
contains variables like shares, cfs_rq & se which are accessed rather
frequently during clock tick processing.
This patch moves the load_avg variable into another cacheline
separated from the other frequently accessed variables. It also
creates a cacheline aligned kmemcache for task_group to make sure
that all the allocated task_group's are cacheline aligned.
By doing so, the perf profile became:
9.44% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
8.74% 0.01% java [kernel.vmlinux] [k] hrtimer_interrupt
7.83% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
7.74% 0.00% java [kernel.vmlinux] [k] update_process_times
7.27% 0.03% java [kernel.vmlinux] [k] scheduler_tick
5.94% 1.74% java [kernel.vmlinux] [k] task_tick_fair
4.15% 3.92% java [kernel.vmlinux] [k] update_cfs_shares
The %cpu time is still pretty high, but it is better than before. The
benchmark results before and after the patch was as follows:
Before patch - Max-jOPs: 907533 Critical-jOps: 134877
After patch - Max-jOPs: 916011 Critical-jOps: 142366
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Part of the responsibility of the update_sg_lb_stats() function is to
update the idle_cpus statistical counter in struct sg_lb_stats. This
check is done by calling idle_cpu(). The idle_cpu() function, in
turn, checks a number of fields within the run queue structure such
as rq->curr and rq->nr_running.
With the current layout of the run queue structure, rq->curr and
rq->nr_running are in separate cachelines. The rq->curr variable is
checked first followed by nr_running. As nr_running is also accessed
by update_sg_lb_stats() earlier, it makes no sense to load another
cacheline when nr_running is not 0 as idle_cpu() will always return
false in this case.
This patch eliminates this redundant cacheline load by checking the
cached nr_running before calling idle_cpu().
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448478580-26467-2-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building a kernel with a gcc 6 snapshot the compiler complains
about unused const static variables for prio_to_weight and prio_to_mult
for multiple scheduler files (all but core.c and autogroup.c)
The way the array is currently declared it will be duplicated in
every scheduler file that includes sched.h, which seems rather wasteful.
Move the array out of line into core.c. I also added a sched_ prefix
to avoid any potential name space collisions.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448859583-3252-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cputime can only be updated by the current task itself, even in
vtime case. So we can safely use seqcount instead of seqlock as there
is no writer concurrency involved.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-8-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Readers need to know if vtime runs at all on some CPU somewhere, this
is a fast-path check to determine if we need to check further the need
to add up any tickless cputime delta.
This fast path check uses context tracking state because vtime is tied
to context tracking as of now. This check appears to be confusing though
so lets use a vtime function that deals with context tracking details
in vtime implementation instead.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-7-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
vtime_accounting_enabled() checks if vtime is running on the current CPU
and is as such a misnomer. Lets rename it to a function that reflect its
locality. We are going to need the current name for a function that tells
if vtime runs at all on some CPU.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task runs on a housekeeper (a CPU running with the periodic tick
with neighbours running tickless), it doesn't account cputime using vtime
but relies on the tick. Such a task has its vtime_snap_whence value set
to VTIME_INACTIVE.
Readers won't handle that correctly though. As long as vtime is running
on some CPU, readers incorretly assume that vtime runs on all CPUs and
always compute the tickless cputime delta, which is only junk on
housekeepers.
So lets fix this with checking that the target runs on a vtime CPU through
the appropriate state check before computing the tickless delta.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
VTIME_SLEEPING state happens either when:
1) The task is sleeping and no tickless delta is to be added on the task
cputime stats.
2) The CPU isn't running vtime at all, so the same properties of 1) applies.
Lets rename the vtime symbol to reflect both states.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is an extra cost in task_cputime() and task_cputime_scaled() when
nohz_full is not activated. When vtime accounting is not enabled, we
don't need to get deltas of utime and stime under vtime seqlock.
This patch removes that cost with adding a shortcut route if vtime
accounting is not enabled.
Use context_tracking_is_enabled() to check if vtime is accounting on
some cpu, in which case only we need to check the tickless cputime delta.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code accounts for the time a task was absent from the fair
class (per ATTACH_AGE_LOAD). However it does not work correctly when a
task got migrated or moved to another cgroup while outside of the fair
class.
This patch tries to address that by aging on migration. We locklessly
read the 'last_update_time' stamp from both the old and new cfs_rq,
ages the load upto the old time, and sets it to the new time.
These timestamps should in general not be more than 1 tick apart from
one another, so there is a definite bound on things.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Changelog, a few edits and !SMP build fix ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445616981-29904-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These are some notes on the scheduler locking and how it provides
program order guarantees on SMP systems.
( This commit is in the locking tree, because the new documentation
refers to a newly introduced locking primitive. )
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce smp_cond_acquire() which combines a control dependency and a
read barrier to form acquire semantics.
This primitive has two benefits:
- it documents control dependencies,
- its typically cheaper than using smp_load_acquire() in a loop.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Oleg noticed that its possible to falsely observe p->on_cpu == 0 such
that we'll prematurely continue with the wakeup and effectively run p on
two CPUs at the same time.
Even though the overlap is very limited; the task is in the middle of
being scheduled out; it could still result in corruption of the
scheduler data structures.
CPU0 CPU1
set_current_state(...)
<preempt_schedule>
context_switch(X, Y)
prepare_lock_switch(Y)
Y->on_cpu = 1;
finish_lock_switch(X)
store_release(X->on_cpu, 0);
try_to_wake_up(X)
LOCK(p->pi_lock);
t = X->on_cpu; // 0
context_switch(Y, X)
prepare_lock_switch(X)
X->on_cpu = 1;
finish_lock_switch(Y)
store_release(Y->on_cpu, 0);
</preempt_schedule>
schedule();
deactivate_task(X);
X->on_rq = 0;
if (X->on_rq) // false
if (t) while (X->on_cpu)
cpu_relax();
context_switch(X, ..)
finish_lock_switch(X)
store_release(X->on_cpu, 0);
Avoid the load of X->on_cpu being hoisted over the X->on_rq load.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Explain how the control dependency and smp_rmb() end up providing
ACQUIRE semantics and pair with smp_store_release() in
finish_lock_switch().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
/proc/stats shows invalid gtime when the thread is running in guest.
When vtime accounting is not enabled, we cannot get a valid delta.
The delta is calculated with now - tsk->vtime_snap, but tsk->vtime_snap
is only updated when vtime accounting is runtime enabled.
This patch makes task_gtime() just return gtime without computing the
buggy non-existing tickless delta when vtime accounting is not enabled.
Use context_tracking_is_enabled() to check if vtime is accounting on
some cpu, in which case only we need to check the tickless delta. This
way we fix the gtime value regression on machines not running nohz full.
The kernel config contains CONFIG_VIRT_CPU_ACCOUNTING_GEN=y and
CONFIG_NO_HZ_FULL_ALL=n and boot without nohz_full.
I ran and stop a busy loop in VM and see the gtime in host.
Dump the 43rd field which shows the gtime in every second:
# while :; do awk '{print $3" "$43}' /proc/3955/task/4014/stat; sleep 1; done
S 4348
R 7064566
R 7064766
R 7064967
R 7065168
S 4759
S 4759
During running busy loop, it returns large value.
After applying this patch, we can see right gtime.
# while :; do awk '{print $3" "$43}' /proc/10913/task/10956/stat; sleep 1; done
S 5338
R 5365
R 5465
R 5566
R 5666
S 5726
S 5726
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
root_domain::rto_mask allocated through alloc_cpumask_var()
contains garbage data, this may cause problems. For instance,
When doing pull_rt_task(), it may do useless iterations if
rto_mask retains some extra garbage bits. Worse still, this
violates the isolated domain rule for clustered scheduling
using cpuset, because the tasks(with all the cpus allowed)
belongs to one root domain can be pulled away into another
root domain.
The patch cleans the garbage by using zalloc_cpumask_var()
instead of alloc_cpumask_var() for root_domain::rto_mask
allocation, thereby addressing the issues.
Do the same thing for root_domain's other cpumask memembers:
dlo_mask, span, and online.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449057179-29321-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because wakeups can (fundamentally) be late, a task might not be in
the expected state. Therefore testing against a task's state is racy,
and can yield false positives.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: oleg@redhat.com
Fixes: 9067ac85d5 ("wake_up_process() should be never used to wakeup a TASK_STOPPED/TRACED task")
Link: http://lkml.kernel.org/r/1448933660-23082-1-git-send-email-sasha.levin@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vladimir reported getting RCU stall warnings and bisected it back to
commit:
743162013d ("sched: Remove proliferation of wait_on_bit() action functions")
That commit inadvertently reversed the calls to schedule() and signal_pending(),
thereby not handling the case where the signal receives while we sleep.
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mark.rutland@arm.com
Cc: neilb@suse.de
Cc: oleg@redhat.com
Fixes: 743162013d ("sched: Remove proliferation of wait_on_bit() action functions")
Fixes: cbbce82209 ("SCHED: add some "wait..on_bit...timeout()" interfaces.")
Link: http://lkml.kernel.org/r/20151201130404.GL3816@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nobody use the "priv" arg passed to can_fork/cancel_fork/fork we can
kill CGROUP_CANFORK_COUNT/SUBSYS_TAG/etc and cgrp_ss_priv[] in copy_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Consider the following v2 hierarchy.
P0 (+memory) --- P1 (-memory) --- A
\- B
P0 has memory enabled in its subtree_control while P1 doesn't. If
both A and B contain processes, they would belong to the memory css of
P1. Now if memory is enabled on P1's subtree_control, memory csses
should be created on both A and B and A's processes should be moved to
the former and B's processes the latter. IOW, enabling controllers
can cause atomic migrations into different csses.
The core cgroup migration logic has been updated accordingly but the
controller migration methods haven't and still assume that all tasks
migrate to a single target css; furthermore, the methods were fed the
css in which subtree_control was updated which is the parent of the
target csses. pids controller depends on the migration methods to
move charges and this made the controller attribute charges to the
wrong csses often triggering the following warning by driving a
counter negative.
WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
Modules linked in:
CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
...
ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
Call Trace:
[<ffffffff81551ffc>] dump_stack+0x4e/0x82
[<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
[<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
[<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
[<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
[<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
[<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
[<ffffffff81189016>] cgroup_attach_task+0x176/0x200
[<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
[<ffffffff81189684>] cgroup_procs_write+0x14/0x20
[<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
[<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
[<ffffffff81265f88>] __vfs_write+0x28/0xe0
[<ffffffff812666fc>] vfs_write+0xac/0x1a0
[<ffffffff81267019>] SyS_write+0x49/0xb0
[<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76
This patch fixes the bug by removing @css parameter from the three
migration methods, ->can_attach, ->cancel_attach() and ->attach() and
updating cgroup_taskset iteration helpers also return the destination
css in addition to the task being migrated. All controllers are
updated accordingly.
* Controllers which don't care whether there are one or multiple
target csses can be converted trivially. cpu, io, freezer, perf,
netclassid and netprio fall in this category.
* cpuset's current implementation assumes that there's single source
and destination and thus doesn't support v2 hierarchy already. The
only change made by this patchset is how that single destination css
is obtained.
* memory migration path already doesn't do anything on v2. How the
single destination css is obtained is updated and the prep stage of
mem_cgroup_can_attach() is reordered to accomodate the change.
* pids is the only controller which was affected by this bug. It now
correctly handles multi-destination migrations and no longer causes
counter underflow from incorrect accounting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
The comment describing migrate_task_rq_fair() says that the caller
should hold p->pi_lock. But in some cases the caller can hold
task_rq(p)->lock instead of p->pi_lock. So the comment is broken and
this patch fixes it.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447806899-20303-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use list_is_singular() to check if run_list has only one entry.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a5453fafd735affcf28e53a1d0a3d6965cb5dbb5.1447582547.git.geliangtang@163.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At present scheduler resets task's wait start timestamp when the task
migrates to another rq. This misleads scheduler itself into reporting
less wait time than actual by omitting time spent for waiting prior to
migration and also more wait count than actual by counting migration as
wait end event which can be seen by trace or /proc/<pid>/sched with
CONFIG_SCHEDSTATS=y.
Carry forward migrating task's wait time prior to migration and
don't count migration as a wait end event to fix such statistics error.
In order to determine whether task is migrating mark task->on_rq with
TASK_ON_RQ_MIGRATING while dequeuing and enqueuing due to migration.
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: ohaugan@codeaurora.org
Link: http://lkml.kernel.org/r/20151113033854.GA4247@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There were still a number of references to my old Red Hat email
address in the kernel source. Remove these while keeping the
Red Hat copyright notices intact.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a fundamental mismatch between the runtime based NUMA scanning
at the task level, and the wall clock time NUMA scanning at the mm level.
On a severely overloaded system, with very large processes, this mismatch
can cause the system to spend all of its time in change_prot_numa().
This can happen if the task spends at least two ticks in change_prot_numa(),
and only gets two ticks of CPU time in the real time between two scan
intervals of the mm.
This patch ensures that a task never spends more than 3% of run
time scanning PTEs. It does that by ensuring that in-between
task_numa_work() runs, the task spends at least 32x as much time on
other things than it did on task_numa_work().
This is done stochastically: if a timer tick happens, or the task
gets rescheduled during task_numa_work(), we delay a future run of
task_numa_work() until the task has spent at least 32x the amount of
CPU time doing something else, as it spent inside task_numa_work().
The longer task_numa_work() takes, the more likely it is this happens.
If task_numa_work() takes very little time, chances are low that that
code will do anything, but we will not care.
Reported-and-tested-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/1446756983-28173-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Usually the tick can be stopped for an idle CPU in NOHZ. However in NOHZ_FULL
mode, a non-idle CPU's tick can also be stopped. However, update_cpu_load_nohz()
does not consider the case a non-idle CPU's tick has been stopped at all.
This patch makes the update_cpu_load_nohz() know if the calling path comes
from NOHZ_FULL or idle NOHZ.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447115762-19734-3-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are some cases where distance between ticks is more than one tick
while the CPU is not idle, e.g. full NOHZ.
However __update_cpu_load() assumes it is the idle tickless case if the
distance between ticks is more than 1, even though it can be the active
tickless case as well. Thus in the active tickless case, updating the CPU
load will not be performed correctly.
Where the current code assumes the load for each tick is zero, this is
(obviously) not true in non-idle tickless case. We can approximately
consider the load ~= this_rq->cpu_load[0] during tickless in non-idle
tickless case.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1444816056-11886-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit cd126afe83 ("sched/fair: Remove rq's runnable avg") got rid of
rq->avg and so there is no need to update it any more when entering or
exiting idle.
Remove the now empty functions idle_{enter|exit}_fair().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1445342681-17171-1-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The push_irq_work_func() function is conditionally defined only
when both CONFIG_SMP and HAVE_RT_PUSH_IPI are defined, but the
forward declaration remains visibile without HAVE_RT_PUSH_IPI,
causing a gcc warning in ARM64 allnoconfig:
kernel/sched/rt.c:68:13: warning: 'push_irq_work_func' declared 'static' but never defined [-Wunused-function]
This changes the code to use the same condition for both the
declaration and the function definition, which gets rid of the
warning.
As Peter Zijlstra, we can possibly get rid of the whole HAVE_RT_PUSH_IPI
thing after:
8053871d0f ("smp: Fix smp_call_function_single_async() locking")
Until that is done, this patch can be used to avoid the warning.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: b6366f048e ("sched/rt: Use IPI to trigger RT task push migration instead of pulling")
Link: http://lkml.kernel.org/r/3828565.oKfGk7yNIT@wuerfel
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fix from Thomas Gleixner:
"A single fix to prevent math underflow in the numa balancing code"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Fix math underflow in task_tick_numa()
The NUMA balancing code implements delays in scanning by
advancing curr->node_stamp beyond curr->se.sum_exec_runtime.
With unsigned math, that creates an underflow, which results
in task_numa_work being queued all the time, even when we
don't want to.
Avoiding the math underflow makes it possible to reduce CPU
overhead in the NUMA balancing code.
Reported-and-tested-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/1446756983-28173-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
handling.
PPC: Mostly bug fixes.
ARM: No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite for
IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86: quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new component (in
virt/lib/) that connects VFIO and KVM together. The same infrastructure
will be used for ARM interrupt forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic interrupt
controller will have to wait for 4.5. These will let KVM expose Hyper-V
devices.
- nested virtualization now supports VPID (same as PCID but for vCPUs)
which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for clflushopt,
clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel + IOAPIC/PIC/PIT in
userspace, which reduces the attack surface of the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten to not
require help from the hypervisor.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJWO2IQAAoJEL/70l94x66D/K0H/3AovAgYmJQToZlimsktMk6a
f2xhdIqfU5lIQQh5uNBCfL3o9o8H9Py1ym7aEw3fmztPHHJYc91oTatt2UEKhmEw
VtZHp/dFHt3hwaIdXmjRPEXiYctraKCyrhaUYdWmUYkoKi7lW5OL5h+S7frG2U6u
p/hFKnHRZfXHr6NSgIqvYkKqtnc+C0FWY696IZMzgCksOO8jB1xrxoSN3tANW3oJ
PDV+4og0fN/Fr1capJUFEc/fejREHneANvlKrLaa8ht0qJQutoczNADUiSFLcMPG
iHljXeDsv5eyjMtUuIL8+MPzcrIt/y4rY41ZPiKggxULrXc6H+JJL/e/zThZpXc=
=iv2z
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"First batch of KVM changes for 4.4.
s390:
A bunch of fixes and optimizations for interrupt and time handling.
PPC:
Mostly bug fixes.
ARM:
No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite
for IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86:
Quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new
component (in virt/lib/) that connects VFIO and KVM together.
The same infrastructure will be used for ARM interrupt
forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic
interrupt controller will have to wait for 4.5. These will let
KVM expose Hyper-V devices.
- nested virtualization now supports VPID (same as PCID but for
vCPUs) which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for
clflushopt, clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel +
IOAPIC/PIC/PIT in userspace, which reduces the attack surface of
the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten
to not require help from the hypervisor"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (123 commits)
KVM: VMX: Fix commit which broke PML
KVM: x86: obey KVM_X86_QUIRK_CD_NW_CLEARED in kvm_set_cr0()
KVM: x86: allow RSM from 64-bit mode
KVM: VMX: fix SMEP and SMAP without EPT
KVM: x86: move kvm_set_irq_inatomic to legacy device assignment
KVM: device assignment: remove pointless #ifdefs
KVM: x86: merge kvm_arch_set_irq with kvm_set_msi_inatomic
KVM: x86: zero apic_arb_prio on reset
drivers/hv: share Hyper-V SynIC constants with userspace
KVM: x86: handle SMBASE as physical address in RSM
KVM: x86: add read_phys to x86_emulate_ops
KVM: x86: removing unused variable
KVM: don't pointlessly leave KVM_COMPAT=y in non-KVM configs
KVM: arm/arm64: Merge vgic_set_lr() and vgic_sync_lr_elrsr()
KVM: arm/arm64: Clean up vgic_retire_lr() and surroundings
KVM: arm/arm64: Optimize away redundant LR tracking
KVM: s390: use simple switch statement as multiplexer
KVM: s390: drop useless newline in debugging data
KVM: s390: SCA must not cross page boundaries
KVM: arm: Do not indent the arguments of DECLARE_BITMAP
...
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle were:
- sched/fair load tracking fixes and cleanups (Byungchul Park)
- Make load tracking frequency scale invariant (Dietmar Eggemann)
- sched/deadline updates (Juri Lelli)
- stop machine fixes, cleanups and enhancements for bugs triggered by
CPU hotplug stress testing (Oleg Nesterov)
- scheduler preemption code rework: remove PREEMPT_ACTIVE and related
cleanups (Peter Zijlstra)
- Rework the sched_info::run_delay code to fix races (Peter Zijlstra)
- Optimize per entity utilization tracking (Peter Zijlstra)
- ... misc other fixes, cleanups and smaller updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
sched: Don't scan all-offline ->cpus_allowed twice if !CONFIG_CPUSETS
sched: Move cpu_active() tests from stop_two_cpus() into migrate_swap_stop()
sched: Start stopper early
stop_machine: Kill cpu_stop_threads->setup() and cpu_stop_unpark()
stop_machine: Kill smp_hotplug_thread->pre_unpark, introduce stop_machine_unpark()
stop_machine: Change cpu_stop_queue_two_works() to rely on stopper->enabled
stop_machine: Introduce __cpu_stop_queue_work() and cpu_stop_queue_two_works()
stop_machine: Ensure that a queued callback will be called before cpu_stop_park()
sched/x86: Fix typo in __switch_to() comments
sched/core: Remove a parameter in the migrate_task_rq() function
sched/core: Drop unlikely behind BUG_ON()
sched/core: Fix task and run queue sched_info::run_delay inconsistencies
sched/numa: Fix task_tick_fair() from disabling numa_balancing
sched/core: Add preempt_count invariant check
sched/core: More notrace annotations
sched/core: Kill PREEMPT_ACTIVE
sched/core, sched/x86: Kill thread_info::saved_preempt_count
sched/core: Simplify preempt_count tests
sched/core: Robustify preemption leak checks
sched/core: Stop setting PREEMPT_ACTIVE
...
If CONFIG_CPUSETS=n then "case cpuset" changes the state and runs
the already failed for_each_cpu() loop again for no reason.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20151010185315.GA24100@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpu_active() tests are not fundamentally part of stop_two_cpus(),
move then into the scheduler where they belong.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ensure the stopper thread is active 'early', because the load balancer
pretty much assumes that its available. And when 'online && active' the
load-balancer is fully available.
Not only the numa balancing stop_two_cpus() caller relies on it, but
also the self migration stuff does, and at CPU_ONLINE time the cpu
really is 'free' to run anything.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: heiko.carstens@de.ibm.com
Link: http://lkml.kernel.org/r/20151009160054.GA10176@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
9d51426242 ("sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target")
broke select_task_rq_dl() and find_lock_later_rq(), because it introduced
a comparison between the local task's deadline and dl.earliest_dl.curr of
the remote queue.
However, if the remote runqueue does not contain any SCHED_DEADLINE
task its earliest_dl.curr is 0 (always smaller than the deadline of
the local task) and the remote runqueue is not selected for pushing.
As a result, if an application creates multiple SCHED_DEADLINE
threads, they will never be pushed to runqueues that do not already
contain SCHED_DEADLINE tasks.
This patch fixes the issue by checking if dl.dl_nr_running == 0.
Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@linux.intel.com>
Fixes: 9d51426242 ("sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target")
Link: http://lkml.kernel.org/r/1444982781-15608-1-git-send-email-luca.abeni@unitn.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts:
8cb9764fc8 ("nohz: Set isolcpus when nohz_full is set")
We assumed that full-nohz users always want scheduler isolation on full
dynticks CPUs, therefore we included full-nohz CPUs on cpu_isolated_map.
This means that tasks run by default on CPUs outside the nohz_full range
unless their affinity is explicity overwritten.
This suits pure isolation workloads but when the machine is needed to
run common workloads, the available sets of CPUs to run common tasks
becomes reduced.
We reach an extreme case when CONFIG_NO_HZ_FULL_ALL is enabled as it
leaves only CPU 0 for non-isolation tasks, which makes people think that
their supercomputer regressed to 90's UP - which is true in a sense.
Some full-nohz users appear to be interested in running normal workloads
either before or after an isolation workload. Full-nohz isn't optimized
toward normal workloads but it's still better than UP performance.
We are reaching a limitation in kernel presets here. Lets revert this
cpu_isolated_map inclusion and let userspace do its own scheduler
isolation using cpusets or explicit affinity settings.
Reported-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1444663283-30068-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When cfs_rq has cfs_rq->removed_load_avg set (when a task migrates from
this cfs_rq), we need to update its contribution to the group's load_avg.
This should not increase tg's update too much, because in most cases, the
cfs_rq has already decayed its load_avg.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1444699103-20272-2-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
led to an overly small weight for interactive group entities. The bad case
can be easily reproduced when a number of CPU hogs compete for the CPUs
at the same time (thanks to Mike). This is largly because the task group's
load average tracking cross CPUs lags behind the real changes.
To fix this we accelerate the group share distribution process by using
the load.weight of the cfs_rq. This may increase the entire group's
share, but we have to do so to protect the (fragile) interactive
tasks, especially from CPU hogs.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1444699103-20272-1-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU updates from Paul E. McKenney:
- Miscellaneous fixes. (Paul E. McKenney, Boqun Feng, Oleg Nesterov, Patrick Marlier)
- Improvements to expedited grace periods. (Paul E. McKenney)
- Performance improvements to and locktorture tests for percpu-rwsem.
(Oleg Nesterov, Paul E. McKenney)
- Torture-test changes. (Paul E. McKenney, Davidlohr Bueso)
- Documentation updates. (Paul E. McKenney)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_exit() is called when a task exits and disassociates the
exiting task from its cgroups and half-attach it to the root cgroup.
This is unnecessary and undesirable.
No controller actually needs an exiting task to be disassociated with
non-root cgroups. Both cpu and perf_event controllers update the
association to the root cgroup from their exit callbacks just to keep
consistent with the cgroup core behavior.
Also, this disassociation makes it difficult to track resources held
by zombies or determine where the zombies came from. Currently, pids
controller is completely broken as it uncharges on exit and zombies
always escape the resource restriction. With cgroup association being
reset on exit, fixing it is pretty painful.
There's no reason to reset cgroup membership on exit. The zombie can
be removed from its css_set so that it doesn't show up on
"cgroup.procs" and thus can't be migrated or interfere with cgroup
removal. It can still pin and point to the css_set so that its cgroup
membership is maintained. This patch makes cgroup core keep zombies
associated with their cgroups at the time of exit.
* Previous patches decoupled populated_cnt tracking from css_set
lifetime, so a dying task can be simply unlinked from its css_set
while pinning and pointing to the css_set. This keeps css_set
association from task side alive while hiding it from "cgroup.procs"
and populated_cnt tracking. The css_set reference is dropped when
the task_struct is freed.
* ->exit() callback no longer needs the css arguments as the
associated css never changes once PF_EXITING is set. Removed.
* cpu and perf_events controllers no longer need ->exit() callbacks.
There's no reason to explicitly switch away on exit. The final
schedule out is enough. The callbacks are removed.
* On traditional hierarchies, nothing changes. "/proc/PID/cgroup"
still reports "/" for all zombies. On the default hierarchy,
"/proc/PID/cgroup" keeps reporting the cgroup that the task belonged
to at the time of exit. If the cgroup gets removed before the task
is reaped, " (deleted)" is appended.
v2: Build brekage due to missing dummy cgroup_free() when
!CONFIG_CGROUP fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
When using idle=poll, the preemptoff tracer is always showing
the idle task as the culprit for long latencies. That happens
because critical timings are not stopped before idle loop. This
patch stops critical timings before entering the idle loop,
starting it again after the idle loop.
This problem does not affect the irqsoff tracer because
interruptions are enabled before entering the idle loop.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/10fc3705874aef11dbe152a068b591a7be1899b4.1444314899.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The new locktorture rtmutex_lock tests exercise priority boosting, which
means that they need to set some tasks to real-time priority. To do this,
they use sched_setscheduler_nocheck(). However, this is not exported to
modules, which results in the following error when building locktorture
as a module:
ERROR: "sched_setscheduler_nocheck" [kernel/locking/locktorture.ko] undefined!
This commit therefore adds an EXPORT_SYMBOL_GPL() to allow this function
to be invoked from locktorture when built as a module.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The parameter "int next_cpu" in the following function is unused:
migrate_task_rq(struct task_struct *p, int next_cpu)
Remove it.
Signed-off-by: xiaofeng.yan <yanxiaofeng@inspur.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1442991360-31945-1-git-send-email-yanxiaofeng@inspur.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
(1) For !CONFIG_BUG cases, the bug call is a no-op, so we couldn't care
less and the change is ok.
(2) PPC and MIPS, which HAVE_ARCH_BUG_ON, do not rely on branch predictions
as it seems to be pointless [1] and thus callers should not be trying to
push an optimization in the first place.
(3) For CONFIG_BUG and !HAVE_ARCH_BUG_ON cases, BUG_ON() contains an
unlikely compiler flag already.
Hence, we can drop unlikely behind BUG_ON().
[1] http://lkml.iu.edu/hypermail/linux/kernel/1101.3/02289.html
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/6fa7125979f98bbeac26e268271769b6ca935c8d.1444051018.git.geliangtang@163.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike Meyer reported the following bug:
> During evaluation of some performance data, it was discovered thread
> and run queue run_delay accounting data was inconsistent with the other
> accounting data that was collected. Further investigation found under
> certain circumstances execution time was leaking into the task and
> run queue accounting of run_delay.
>
> Consider the following sequence:
>
> a. thread is running.
> b. thread moves beween cgroups, changes scheduling class or priority.
> c. thread sleeps OR
> d. thread involuntarily gives up cpu.
>
> a. implies:
>
> thread->sched_info.last_queued = 0
>
> a. and b. results in the following:
>
> 1. dequeue_task(rq, thread)
>
> sched_info_dequeued(rq, thread)
> delta = 0
>
> sched_info_reset_dequeued(thread)
> thread->sched_info.last_queued = 0
>
> thread->sched_info.run_delay += delta
>
> 2. enqueue_task(rq, thread)
>
> sched_info_queued(rq, thread)
>
> /* thread is still on cpu at this point. */
> thread->sched_info.last_queued = task_rq(thread)->clock;
>
> c. results in:
>
> dequeue_task(rq, thread)
>
> sched_info_dequeued(rq, thread)
>
> /* delta is execution time not run_delay. */
> delta = task_rq(thread)->clock - thread->sched_info.last_queued
>
> sched_info_reset_dequeued(thread)
> thread->sched_info.last_queued = 0
>
> thread->sched_info.run_delay += delta
>
> Since thread was running between enqueue_task(rq, thread) and
> dequeue_task(rq, thread), the delta above is really execution
> time and not run_delay.
>
> d. results in:
>
> __sched_info_switch(thread, next_thread)
>
> sched_info_depart(rq, thread)
>
> sched_info_queued(rq, thread)
>
> /* last_queued not updated due to being non-zero */
> return
>
> Since thread was running between enqueue_task(rq, thread) and
> __sched_info_switch(thread, next_thread), the execution time
> between enqueue_task(rq, thread) and
> __sched_info_switch(thread, next_thread) now will become
> associated with run_delay due to when last_queued was last updated.
>
This alternative patch solves the problem by not calling
sched_info_{de,}queued() in {de,en}queue_task(). Therefore the
sched_info state is preserved and things work as expected.
By inlining the {de,en}queue_task() functions the new condition
becomes (mostly) a compile-time constant and we'll not emit any new
branch instructions.
It even shrinks the code (due to inlining {en,de}queue_task()):
$ size defconfig-build/kernel/sched/core.o defconfig-build/kernel/sched/core.o.orig
text data bss dec hex filename
64019 23378 2344 89741 15e8d defconfig-build/kernel/sched/core.o
64149 23378 2344 89871 15f0f defconfig-build/kernel/sched/core.o.orig
Reported-by: Mike Meyer <Mike.Meyer@Teradata.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150930154413.GO3604@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If static branch 'sched_numa_balancing' is enabled, it should kickstart
NUMA balancing through task_tick_numa(). However the following commit:
2a595721a1 ("sched/numa: Convert sched_numa_balancing to a static_branch")
erroneously disables this.
Fix this anomaly by enabling task_tick_numa() when the static branch
'sched_numa_balancing' is enabled.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1443752305-27413-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
preempt_schedule_common() is marked notrace, but it does not use
_notrace() preempt_count functions and __schedule() is also not marked
notrace, which means that its perfectly possible to end up in the
tracer from preempt_schedule_common().
Steve says:
| Yep, there's some history to this. This was originally the issue that
| caused function tracing to go into infinite recursion. But now we have
| preempt_schedule_notrace(), which is used by the function tracer, and
| that function must not be traced till preemption is disabled.
|
| Now if function tracing is running and we take an interrupt when
| NEED_RESCHED is set, it calls
|
| preempt_schedule_common() (not traced)
|
| But then that calls preempt_disable() (traced)
|
| function tracer calls preempt_disable_notrace() followed by
| preempt_enable_notrace() which will see NEED_RESCHED set, and it will
| call preempt_schedule_notrace(), which stops the recursion, but
| still calls __schedule() here, and that means when we return, we call
| the __schedule() from preempt_schedule_common().
|
| That said, I prefer this patch. Preemption is disabled before calling
| __schedule(), and we get rid of a one round recursion with the
| scheduler.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we stopped setting PREEMPT_ACTIVE, there is no need to mask it
out of preempt_count() tests.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we warn about a preempt_count leak; reset the preempt_count to
the known good value such that the problem does not ripple forward.
This is most important on x86 which has a per cpu preempt_count that is
not saved/restored (after this series). So if you schedule with an
invalid (!2*PREEMPT_DISABLE_OFFSET) preempt_count the next task is
messed up too.
Enforcing this invariant limits the borkage to just the one task.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nothing tests for PREEMPT_ACTIVE anymore, stop setting it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__trace_sched_switch_state() is the last remaining PREEMPT_ACTIVE
user, move trace_sched_switch() from prepare_task_switch() to
__schedule() and propagate the @preempt argument.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is only a single PREEMPT_ACTIVE use in the regular __schedule()
path and that is to circumvent the task->state check. Since the code
setting PREEMPT_ACTIVE is the immediate caller of __schedule() we can
replace this with a function argument.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Assuming units of PREEMPT_DISABLE_OFFSET for preempt_count() numbers.
Now that TASK_DEAD no longer results in preempt_count() == 3 during
scheduling, we will always call context_switch() with preempt_count()
== 2.
However, we don't always end up with preempt_count() == 2 in
finish_task_switch() because new tasks get created with
preempt_count() == 1.
Create FORK_PREEMPT_COUNT and set it to 2 and use that in the right
places. Note that we cannot use INIT_PREEMPT_COUNT as that serves
another purpose (boot).
After this, preempt_count() is invariant across the context switch,
with exception of PREEMPT_ACTIVE.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
TASK_DEAD is special in that the final schedule call from do_exit()
must be done with preemption disabled.
This means we end up scheduling with a preempt_count() higher than
usual (3 instead of the 'expected' 2).
Since future patches will want to rely on an invariant
preempt_count() value during schedule, fix this up.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the problem this patch is trying to address is as follows:
CPU0 CPU1
context_switch(A, B)
ttwu(A)
LOCK A->pi_lock
A->on_cpu == 0
finish_task_switch(A)
prev_state = A->state <-.
WMB |
A->on_cpu = 0; |
UNLOCK rq0->lock |
| context_switch(C, A)
`-- A->state = TASK_DEAD
prev_state == TASK_DEAD
put_task_struct(A)
context_switch(A, C)
finish_task_switch(A)
A->state == TASK_DEAD
put_task_struct(A)
The argument being that the WMB will allow the load of A->state on CPU0
to cross over and observe CPU1's store of A->state, which will then
result in a double-drop and use-after-free.
Now the comment states (and this was true once upon a long time ago)
that we need to observe A->state while holding rq->lock because that
will order us against the wakeup; however the wakeup will not in fact
acquire (that) rq->lock; it takes A->pi_lock these days.
We can obviously fix this by upgrading the WMB to an MB, but that is
expensive, so we'd rather avoid that.
The alternative this patch takes is: smp_store_release(&A->on_cpu, 0),
which avoids the MB on some archs, but not important ones like ARM.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@vger.kernel.org> # v3.1+
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: manfred@colorfullife.com
Cc: will.deacon@arm.com
Fixes: e4a52bcb9a ("sched: Remove rq->lock from the first half of ttwu()")
Link: http://lkml.kernel.org/r/20150929124509.GG3816@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
HV_X64_MSR_VP_RUNTIME msr used by guest to get
"the time the virtual processor consumes running guest code,
and the time the associated logical processor spends running
hypervisor code on behalf of that guest."
Calculation of this time is performed by task_cputime_adjusted()
for vcpu task.
Necessary to support loading of winhv.sys in guest, which in turn is
required to support Windows VMBus.
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Gleb Natapov <gleb@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull scheduler fix from Thomas Gleixner:
"A single bug fix for the scheduler to prevent dequeueing of the idle
task when setting the cpus allowed mask"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix crash trying to dequeue/enqueue the idle thread
The 'sched_domain_topology' variable is only used within kernel/sched/core.c.
Make it static.
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1442918939-9907-1-git-send-email-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The return value of (do_)balance_runtime() is not consumed by anybody.
Make them return void.
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1441188096-23021-5-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move dl_time_before() static definition in include/linux/sched/deadline.h
so that it can be used by different parties without being re-defined.
Reported-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1441188096-23021-3-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 51360155ec and adapts
fs/userfaultfd.c to use the old version of that function.
It didn't look robust to call __wake_up_common with "nr == 1" when we
absolutely require wakeall semantics, but we've full control of what we
insert in the two waitqueue heads of the blocked userfaults. No
exclusive waitqueue risks to be inserted into those two waitqueue heads
so we can as well stick to "nr == 1" of the old code and we can rely
purely on the fact no waitqueue inserted in one of the two waitqueue
heads we must enforce as wakeall, has wait->flags WQ_FLAG_EXCLUSIVE set.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Thierry Reding <treding@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJV+/ucAAoJEL/70l94x66DV8YH/1KDym/1GJ+/Br/YkHZnM53l
3Q0PwSLu9cNcIL9lUuDLwGTaVj+y8ud1Hjr/uzvKwivktmUYVZhkdtnZmnanvGOM
qKB9K3nFXCPx8uqy8Dn7fOwEKcg9FmDOTTkWy13HDnXO+V4crSVVt+rPw+6FUMld
NV5tYdw9Lu7y3XrveDebPWaPtyDL7OAagzmeK47eMffxG7X9Hf1H2aT7HueRi7x/
SkLIe3gmiOWmHVJDPE9TOmFYIj19gywDFysKes1gdVJLVUIXiELMT7SrvAYnToVB
zISIEj7Zx4SINPxpf2dUn8REm7NsmJY+PffLIl/Nv+ozGggFQGFH0SMZ08p0bxw=
=tfmn
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Mostly stable material, a lot of ARM fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
sched: access local runqueue directly in single_task_running
arm/arm64: KVM: Remove 'config KVM_ARM_MAX_VCPUS'
arm64: KVM: Remove all traces of the ThumbEE registers
arm: KVM: Disable virtual timer even if the guest is not using it
arm64: KVM: Disable virtual timer even if the guest is not using it
arm/arm64: KVM: vgic: Check for !irqchip_in_kernel() when mapping resources
KVM: s390: Replace incorrect atomic_or with atomic_andnot
arm: KVM: Fix incorrect device to IPA mapping
arm64: KVM: Fix user access for debug registers
KVM: vmx: fix VPID is 0000H in non-root operation
KVM: add halt_attempted_poll to VCPU stats
kvm: fix zero length mmio searching
kvm: fix double free for fast mmio eventfd
kvm: factor out core eventfd assign/deassign logic
kvm: don't try to register to KVM_FAST_MMIO_BUS for non mmio eventfd
KVM: make the declaration of functions within 80 characters
KVM: arm64: add workaround for Cortex-A57 erratum #852523
KVM: fix polling for guest halt continued even if disable it
arm/arm64: KVM: Fix PSCI affinity info return value for non valid cores
arm64: KVM: set {v,}TCR_EL2 RES1 bits
...
Commit 2ee507c472 ("sched: Add function single_task_running to let a task
check if it is the only task running on a cpu") referenced the current
runqueue with the smp_processor_id. When CONFIG_DEBUG_PREEMPT is enabled,
that is only allowed if preemption is disabled or the currrent task is
bound to the local cpu (e.g. kernel worker).
With commit f781951299 ("kvm: add halt_poll_ns module parameter") KVM
calls single_task_running. If CONFIG_DEBUG_PREEMPT is enabled that
generates a lot of kernel messages.
To avoid adding preemption in that cases, as it would limit the usefulness,
we change single_task_running to access directly the cpu local runqueue.
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Fixes: 2ee507c472
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The group_classify() function does not use the "env" parameter, so remove it.
Also unify code to always use group_classify() to calculate group's
load type.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1442314605-14838-1-git-send-email-leo.yan@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Macro LOAD_AVG_MAX is defined far away from the precompuated tables
for decay calculation in code; So explicitly comments for this.
Also fix one typo: s/LOAD_MAX_AVG/LOAD_AVG_MAX.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1442314657-14949-1-git-send-email-leo.yan@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently task_numa_work() scans up to numa_balancing_scan_size_mb worth
of memory per invocation, but only counts memory areas that have at
least one PTE that is still present and not marked for numa hint faulting.
It will skip over arbitarily large amounts of memory that are either
unused, full of swap ptes, or full of PTEs that were already marked
for NUMA hint faults but have not been faulted on yet.
This can cause excessive amounts of CPU use, due to there being
essentially no upper limit on the scan rate of very large processes
that are not yet in a phase where they are actively accessing old
memory pages (eg. they are still initializing their data).
Avoid that problem by placing an upper limit on the amount of virtual
memory that task_numa_work() scans in each invocation. This can be a
higher limit than "pages", to ensure the task still skips over unused
areas fairly quickly.
While we are here, also fix the "nr_pte_updates" logic, so it only
counts page ranges with ptes in them.
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150911090027.4a7987bd@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Most of the policy-tests are done via the <class>_policy() helpers with
the notable exception of idle. A new wrapper for valid_policy() has also
been added to improve readability in set_load_weight().
This commit does not change the logical behavior of the scheduler core.
Signed-off-by: Henrik Austad <henrik@austad.us>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1441810841-4756-1-git-send-email-henrik@austad.us
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sasha reports that his virtual machine tries to schedule the idle
thread since commit 6c37067e27 ("sched: Change the
sched_class::set_cpus_allowed() calling context").
Hit trace shows this happening from idle_thread_get()->init_idle(),
which is the _second_ init_idle() invocation on that task_struct, the
first being done through idle_init()->fork_idle(). (this code is
insane...)
Because we call init_idle() twice in a row, its ->sched_class ==
&idle_sched_class and ->on_rq = TASK_ON_RQ_QUEUED. This means
do_set_cpus_allowed() think we're queued and will call dequeue_task(),
which is implemented with BUG() for the idle class, seeing how
dequeueing the idle task is a daft thing.
Aside of the whole insanity of calling init_idle() _twice_, change the
code to call set_cpus_allowed_common() instead as this is 'obviously'
before the idle task gets ran etc..
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6c37067e27 ("sched: Change the sched_class::set_cpus_allowed() calling context")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"A migrate_tasks() locking fix, and a late-coming nohz change plus a
nohz debug check"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: 'Annotate' migrate_tasks()
nohz: Assert existing housekeepers when nohz full enabled
nohz: Affine unpinned timers to housekeepers
Currently the load_{sum,avg} and util_{sum,avg} tracking is asymmetric
in that load tracking gets a 2^10 unit from the weight, but util gets
no such factor.
This results in more lost bits for util scaling and asymmetric scaling
rules.
Fix this by removing shifts, such that we gain the 2^10 factor from
scaling. There is no risk of overflowing the u32 as the max value is
now LOAD_AVG_MAX << 10, which is still well below UINT_MAX.
This further entangles the assumption that both LOAD and CAPACITY
shifts are the same (and 10) so put in an assertion for that.
This fixes the math for the LOAD_RESOLUTION != 0 case.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Do not call the scaling functions in case time goes backwards or the
last update of the sched_avg structure has happened less than 1024ns
ago.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel.lezcano@linaro.org <daniel.lezcano@linaro.org>
Cc: mturquette@baylibre.com <mturquette@baylibre.com>
Cc: pang.xunlei@zte.com.cn <pang.xunlei@zte.com.cn>
Cc: rjw@rjwysocki.net <rjw@rjwysocki.net>
Cc: sgurrappadi@nvidia.com <sgurrappadi@nvidia.com>
Cc: vincent.guittot@linaro.org <vincent.guittot@linaro.org>
Cc: yuyang.du@intel.com <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/55EDA2E9.8040900@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prior to this patch; the line:
scaled_delta_w = (delta_w * 1024) >> 10;
which is the result of the default arch_scale_freq_capacity()
function, turns into:
1b03: 49 89 d1 mov %rdx,%r9
1b06: 49 c1 e1 0a shl $0xa,%r9
1b0a: 49 c1 e9 0a shr $0xa,%r9
Which is silly; when made unsigned int, GCC recognises this as
pointless ops and fails to emit them (confirmed on 4.9.3 and 5.1.1).
Furthermore, afaict unsigned is actually the correct type for these
fields anyway, as we've explicitly ruled out negative delta's earlier
in this function.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename scale() to cap_scale() to better reflect its purpose, it is
after all not a general purpose scale function, it has
SCHED_CAPACITY_SHIFT hardcoded in it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Utilization is currently scaled by capacity_orig, but since we now have
frequency and cpu invariant cfs_rq.avg.util_avg, frequency and cpu scaling
now happens as part of the utilization tracking itself.
So cfs_rq.avg.util_avg should no longer be scaled in cpu_util().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steve Muckle <steve.muckle@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel.lezcano@linaro.org <daniel.lezcano@linaro.org>
Cc: mturquette@baylibre.com <mturquette@baylibre.com>
Cc: pang.xunlei@zte.com.cn <pang.xunlei@zte.com.cn>
Cc: rjw@rjwysocki.net <rjw@rjwysocki.net>
Cc: sgurrappadi@nvidia.com <sgurrappadi@nvidia.com>
Cc: vincent.guittot@linaro.org <vincent.guittot@linaro.org>
Cc: yuyang.du@intel.com <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/55EDAF43.30500@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the advent of the per-entity load tracking rewrite to streamline the
naming of utilization related data and functions by using
{prefix_}util{_suffix} consistently. Moreover call both signals
({se,cfs}.avg.util_avg) utilization.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <Dietmar.Eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel.lezcano@linaro.org
Cc: mturquette@baylibre.com
Cc: pang.xunlei@zte.com.cn
Cc: rjw@rjwysocki.net
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1439569394-11974-5-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Besides the existing frequency scale-invariance correction factor, apply
CPU scale-invariance correction factor to utilization tracking to
compensate for any differences in compute capacity. This could be due to
micro-architectural differences (i.e. instructions per seconds) between
cpus in HMP systems (e.g. big.LITTLE), and/or differences in the current
maximum frequency supported by individual cpus in SMP systems. In the
existing implementation utilization isn't comparable between cpus as it
is relative to the capacity of each individual CPU.
Each segment of the sched_avg.util_sum geometric series is now scaled
by the CPU performance factor too so the sched_avg.util_avg of each
sched entity will be invariant from the particular CPU of the HMP/SMP
system on which the sched entity is scheduled.
With this patch, the utilization of a CPU stays relative to the max CPU
performance of the fastest CPU in the system.
In contrast to utilization (sched_avg.util_sum), load
(sched_avg.load_sum) should not be scaled by compute capacity. The
utilization metric is based on running time which only makes sense when
cpus are _not_ fully utilized (utilization cannot go beyond 100% even if
more tasks are added), where load is runnable time which isn't limited
by the capacity of the CPU and therefore is a better metric for
overloaded scenarios. If we run two nice-0 busy loops on two cpus with
different compute capacity their load should be similar since their
compute demands are the same. We have to assume that the compute demand
of any task running on a fully utilized CPU (no spare cycles = 100%
utilization) is high and the same no matter of the compute capacity of
its current CPU, hence we shouldn't scale load by CPU capacity.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/55CE7409.1000700@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bring arch_scale_cpu_capacity() in line with the recent change of its
arch_scale_freq_capacity() sibling in commit dfbca41f34 ("sched:
Optimize freq invariant accounting") from weak function to #define to
allow inlining of the function.
While at it, remove the ARCH_CAPACITY sched_feature as well. With the
change to #define there isn't a straightforward way to allow runtime
switch between an arch implementation and the default implementation of
arch_scale_cpu_capacity() using sched_feature. The default was to use
the arch-specific implementation, but only the arm architecture provides
one and that is essentially equivalent to the default implementation.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <Dietmar.Eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel.lezcano@linaro.org
Cc: mturquette@baylibre.com
Cc: pang.xunlei@zte.com.cn
Cc: rjw@rjwysocki.net
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1439569394-11974-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Apply frequency scaling correction factor to per-entity load tracking to
make it frequency invariant. Currently, load appears bigger when the CPU
is running slower which affects load-balancing decisions.
Each segment of the sched_avg.load_sum geometric series is now scaled by
the current frequency so that the sched_avg.load_avg of each sched entity
will be invariant from frequency scaling.
Moreover, cfs_rq.runnable_load_sum is scaled by the current frequency as
well.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <Dietmar.Eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel.lezcano@linaro.org
Cc: mturquette@baylibre.com
Cc: pang.xunlei@zte.com.cn
Cc: rjw@rjwysocki.net
Cc: sgurrappadi@nvidia.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1439569394-11974-2-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Variable sched_numa_balancing is available for both CONFIG_SCHED_DEBUG
and !CONFIG_SCHED_DEBUG. All code paths now check for
sched_numa_balancing. Hence remove sched_feat(NUMA).
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-4-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 2a1ed24 ("sched/numa: Prefer NUMA hotness over cache hotness")
sets sched feature NUMA to true. However this can enable NUMA hinting
faults on a UMA system.
This commit ensures that NUMA hinting faults occur only on a NUMA system
by setting/resetting sched_numa_balancing.
This commit:
- Makes sched_numa_balancing common to CONFIG_SCHED_DEBUG and
!CONFIG_SCHED_DEBUG. Earlier it was only in !CONFIG_SCHED_DEBUG.
- Checks for sched_numa_balancing instead of sched_feat(NUMA).
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
d4573c3e1c ("sched: Improve load balancing in the presence of idle CPUs")
the ILB CPU starts with the idle load balancing of other idle CPUs and
finishes with itself in order to speed up the spread of tasks in all
idle CPUs.
The this_rq->next_balance is still used in nohz_idle_balance() as an
intermediate step to gather the shortest next balance before updating
nohz.next_balance. But the former has not been updated yet and is likely to
be set with the current jiffies. As a result, the nohz.next_balance will be
set with current jiffies instead of the real next balance date. This
generates spurious kicks of nohz ilde balance.
nohz_idle_balance() must set the nohz.next_balance without taking into
account this_rq->next_balance which is not updated yet. Then, this_rq will
update nohz.next_update with its next_balance once updated and if necessary.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Jason Low <jason.low2@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: preeti@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1438595750-20455-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_exit() is not called from copy_process() after commit:
e8604cb436 ("cgroup: fix spurious lockdep warning in cgroup_exit()")
from do_exit(). So this check is useless and the comment is obsolete.
Signed-off-by: Kirill Tkhai <ktkhai@odin.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/55E444C8.3020402@odin.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The previous patches made the second argument go unused, remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By observing that switched_from_fair() detaches from a runqueue, and
switched_to_fair() attaches to a runqueue, we can see that
task_move_group_fair() is one followed by the other with flipping the
runqueue in between.
Therefore extract all the common bits and implement all three
functions in terms of them.
This should fix a few corner cases wrt. vruntime normalization; where,
when we take a task off of a runqueue we convert to an approximation
of lag by subtracting min_vruntime, and when placing a task on the a
runqueue to the reverse.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[peterz: Changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-6-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In case there are problems with the aging on attach, provide a debug
knob to turn it off.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Where switched_from_fair() will remove the entity's load from the
runqueue, switched_to_fair() does not currently add it back. This
means that when a task leaves the fair class for a short duration; say
because of PI; we loose its load contribution.
This can ripple forward and disturb the load tracking because other
operations (enqueue, dequeue) assume its factored in. Only once the
runqueue empties will the load tracking recover.
When we add it back in, age the per entity average to match up with
the runqueue age. This has the obvious problem that if the task leaves
the fair class for a significant time, the load will age to 0.
Employ the normal migration rule for inter-runqueue moves in
task_move_group_fair(). Again, there is the obvious problem of the
task migrating while not in the fair class.
The alternative solution would be to to omit the chunk in
attach_entity_load_avg(), which would effectively reset the timestamp
and use whatever avg there was.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Rewrote the changelog and comments. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-5-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we attach the entity load to the new runqueue, we should also
detatch the entity load from the old runqueue, otherwise load can
accumulate.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Rewrote the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-4-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we conditionally add the entity load to the rq when moving
the task between cgroups.
This doesn't make sense as we always 'migrate' the task between
cgroups, so we should always migrate the load too.
[ The history here is that we used to only migrate the blocked load
which was only meaningfull when !queued. ]
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Rewrote the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-3-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we open-code the addition/subtraction of the per entity load
to/from the runqueue, factor this out into helper functions.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Rewrote the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kernel testing triggered this warning:
| WARNING: CPU: 0 PID: 13 at kernel/sched/core.c:1156 do_set_cpus_allowed+0x7e/0x80()
| Modules linked in:
| CPU: 0 PID: 13 Comm: migration/0 Not tainted 4.2.0-rc1-00049-g25834c7 #2
| Call Trace:
| dump_stack+0x4b/0x75
| warn_slowpath_common+0x8b/0xc0
| warn_slowpath_null+0x22/0x30
| do_set_cpus_allowed+0x7e/0x80
| cpuset_cpus_allowed_fallback+0x7c/0x170
| select_fallback_rq+0x221/0x280
| migration_call+0xe3/0x250
| notifier_call_chain+0x53/0x70
| __raw_notifier_call_chain+0x1e/0x30
| cpu_notify+0x28/0x50
| take_cpu_down+0x22/0x40
| multi_cpu_stop+0xd5/0x140
| cpu_stopper_thread+0xbc/0x170
| smpboot_thread_fn+0x174/0x2f0
| kthread+0xc4/0xe0
| ret_from_kernel_thread+0x21/0x30
As Peterz pointed out:
| So the normal rules for changing task_struct::cpus_allowed are holding
| both pi_lock and rq->lock, such that holding either stabilizes the mask.
|
| This is so that wakeup can happen without rq->lock and load-balance
| without pi_lock.
|
| From this we already get the relaxation that we can omit acquiring
| rq->lock if the task is not on the rq, because in that case
| load-balancing will not apply to it.
|
| ** these are the rules currently tested in do_set_cpus_allowed() **
|
| Now, since __set_cpus_allowed_ptr() uses task_rq_lock() which
| unconditionally acquires both locks, we could get away with holding just
| rq->lock when on_rq for modification because that'd still exclude
| __set_cpus_allowed_ptr(), it would also work against
| __kthread_bind_mask() because that assumes !on_rq.
|
| That said, this is all somewhat fragile.
|
| Now, I don't think dropping rq->lock is quite as disastrous as it
| usually is because !cpu_active at this point, which means load-balance
| will not interfere, but that too is somewhat fragile.
|
| So we end up with a choice of two fragile..
This patch fixes it by following the rules for changing
task_struct::cpus_allowed with both pi_lock and rq->lock held.
Reported-by: kernel test robot <ying.huang@intel.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[ Modified changelog and patch. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/BLU436-SMTP1660820490DE202E3934ED3806E0@phx.gbl
Signed-off-by: Ingo Molnar <mingo@kernel.org>
userfaultfd needs to wake all waitqueues (pass 0 as nr parameter), instead
of the current hardcoded 1 (that would wake just the first waitqueue in
the head list).
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull locking and atomic updates from Ingo Molnar:
"Main changes in this cycle are:
- Extend atomic primitives with coherent logic op primitives
(atomic_{or,and,xor}()) and deprecate the old partial APIs
(atomic_{set,clear}_mask())
The old ops were incoherent with incompatible signatures across
architectures and with incomplete support. Now every architecture
supports the primitives consistently (by Peter Zijlstra)
- Generic support for 'relaxed atomics':
- _acquire/release/relaxed() flavours of xchg(), cmpxchg() and {add,sub}_return()
- atomic_read_acquire()
- atomic_set_release()
This came out of porting qwrlock code to arm64 (by Will Deacon)
- Clean up the fragile static_key APIs that were causing repeat bugs,
by introducing a new one:
DEFINE_STATIC_KEY_TRUE(name);
DEFINE_STATIC_KEY_FALSE(name);
which define a key of different types with an initial true/false
value.
Then allow:
static_branch_likely()
static_branch_unlikely()
to take a key of either type and emit the right instruction for the
case. To be able to know the 'type' of the static key we encode it
in the jump entry (by Peter Zijlstra)
- Static key self-tests (by Jason Baron)
- qrwlock optimizations (by Waiman Long)
- small futex enhancements (by Davidlohr Bueso)
- ... and misc other changes"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits)
jump_label/x86: Work around asm build bug on older/backported GCCs
locking, ARM, atomics: Define our SMP atomics in terms of _relaxed() operations
locking, include/llist: Use linux/atomic.h instead of asm/cmpxchg.h
locking/qrwlock: Make use of _{acquire|release|relaxed}() atomics
locking/qrwlock: Implement queue_write_unlock() using smp_store_release()
locking/lockref: Remove homebrew cmpxchg64_relaxed() macro definition
locking, asm-generic: Add _{relaxed|acquire|release}() variants for 'atomic_long_t'
locking, asm-generic: Rework atomic-long.h to avoid bulk code duplication
locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations
locking, compiler.h: Cast away attributes in the WRITE_ONCE() magic
locking/static_keys: Make verify_keys() static
jump label, locking/static_keys: Update docs
locking/static_keys: Provide a selftest
jump_label: Provide a self-test
s390/uaccess, locking/static_keys: employ static_branch_likely()
x86, tsc, locking/static_keys: Employ static_branch_likely()
locking/static_keys: Add selftest
locking/static_keys: Add a new static_key interface
locking/static_keys: Rework update logic
locking/static_keys: Add static_key_{en,dis}able() helpers
...
Pull cgroup updates from Tejun Heo:
- a new PIDs controller is added. It turns out that PIDs are actually
an independent resource from kmem due to the limited PID space.
- more core preparations for the v2 interface. Once cpu side interface
is settled, it should be ready for lifting the devel mask.
for-4.3-unified-base was temporarily branched so that other trees
(block) can pull cgroup core changes that blkcg changes depend on.
- a non-critical idr_preload usage bug fix.
* 'for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: pids: fix invalid get/put usage
cgroup: introduce cgroup_subsys->legacy_name
cgroup: don't print subsystems for the default hierarchy
cgroup: make cftype->private a unsigned long
cgroup: export cgrp_dfl_root
cgroup: define controller file conventions
cgroup: fix idr_preload usage
cgroup: add documentation for the PIDs controller
cgroup: implement the PIDs subsystem
cgroup: allow a cgroup subsystem to reject a fork
The problem addressed in this patch is about affining unpinned
timers. Adaptive or Full Dynticks CPUs are currently disturbed
by unnecessary jitter due to firing of such timers on them.
This patch will affine timers to online CPUs which are not full
dynticks in NOHZ_FULL configured systems. It should not
introduce overhead in nohz full off case due to static keys.
Signed-off-by: Vatika Harlalka <vatikaharlalka@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1441119060-2230-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull NOHZ updates from Ingo Molnar:
"The main changes, mostly written by Frederic Weisbecker, include:
- Fix some jiffies based cputime assumptions. (No real harm because
the concerned code isn't used by full dynticks.)
- Simplify jiffies <-> usecs conversions. Remove dead code.
- Remove early hacks on nohz full code that avoided messing up idle
nohz internals. Now nohz integrates well full and idle and such
hack have become needless.
- Restart nohz full tick from irq exit. (A simplification and a
preparation for future optimization on scheduler kick to nohz
full)
- Code cleanups.
- Tile driver isolation enhancement on top of nohz. (Chris Metcalf)"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
nohz: Remove useless argument on tick_nohz_task_switch()
nohz: Move tick_nohz_restart_sched_tick() above its users
nohz: Restart nohz full tick from irq exit
nohz: Remove idle task special case
nohz: Prevent tilegx network driver interrupts
alpha: Fix jiffies based cputime assumption
apm32: Fix cputime == jiffies assumption
jiffies: Remove HZ > USEC_PER_SEC special case
Pull scheduler fix from Ingo Molnar:
"This is a leftover scheduler fix from the v4.2 cycle"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix cpu_active_mask/cpu_online_mask race
Pull scheduler updates from Ingo Molnar:
"The biggest change in this cycle is the rewrite of the main SMP load
balancing metric: the CPU load/utilization. The main goal was to make
the metric more precise and more representative - see the changelog of
this commit for the gory details:
9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
It is done in a way that significantly reduces complexity of the code:
5 files changed, 249 insertions(+), 494 deletions(-)
and the performance testing results are encouraging. Nevertheless we
need to keep an eye on potential regressions, since this potentially
affects every SMP workload in existence.
This work comes from Yuyang Du.
Other changes:
- SCHED_DL updates. (Andrea Parri)
- Simplify architecture callbacks by removing finish_arch_switch().
(Peter Zijlstra et al)
- cputime accounting: guarantee stime + utime == rtime. (Peter
Zijlstra)
- optimize idle CPU wakeups some more - inspired by Facebook server
loads. (Mike Galbraith)
- stop_machine fixes and updates. (Oleg Nesterov)
- Introduce the 'trace_sched_waking' tracepoint. (Peter Zijlstra)
- sched/numa tweaks. (Srikar Dronamraju)
- misc fixes and small cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
sched/deadline: Fix comment in enqueue_task_dl()
sched/deadline: Fix comment in push_dl_tasks()
sched: Change the sched_class::set_cpus_allowed() calling context
sched: Make sched_class::set_cpus_allowed() unconditional
sched: Fix a race between __kthread_bind() and sched_setaffinity()
sched: Ensure a task has a non-normalized vruntime when returning back to CFS
sched/numa: Fix NUMA_DIRECT topology identification
tile: Reorganize _switch_to()
sched, sparc32: Update scheduler comments in copy_thread()
sched: Remove finish_arch_switch()
sched, tile: Remove finish_arch_switch
sched, sh: Fold finish_arch_switch() into switch_to()
sched, score: Remove finish_arch_switch()
sched, avr32: Remove finish_arch_switch()
sched, MIPS: Get rid of finish_arch_switch()
sched, arm: Remove finish_arch_switch()
sched/fair: Clean up load average references
sched/fair: Provide runnable_load_avg back to cfs_rq
sched/fair: Remove task and group entity load when they are dead
sched/fair: Init cfs_rq's sched_entity load average
...
There is a race condition in SMP bootup code, which may result
in
WARNING: CPU: 0 PID: 1 at kernel/workqueue.c:4418
workqueue_cpu_up_callback()
or
kernel BUG at kernel/smpboot.c:135!
It can be triggered with a bit of luck in Linux guests running
on busy hosts.
CPU0 CPUn
==== ====
_cpu_up()
__cpu_up()
start_secondary()
set_cpu_online()
cpumask_set_cpu(cpu,
to_cpumask(cpu_online_bits));
cpu_notify(CPU_ONLINE)
<do stuff, see below>
cpumask_set_cpu(cpu,
to_cpumask(cpu_active_bits));
During the various CPU_ONLINE callbacks CPUn is online but not
active. Several things can go wrong at that point, depending on
the scheduling of tasks on CPU0.
Variant 1:
cpu_notify(CPU_ONLINE)
workqueue_cpu_up_callback()
rebind_workers()
set_cpus_allowed_ptr()
This call fails because it requires an active CPU; rebind_workers()
ends with a warning:
WARNING: CPU: 0 PID: 1 at kernel/workqueue.c:4418
workqueue_cpu_up_callback()
Variant 2:
cpu_notify(CPU_ONLINE)
smpboot_thread_call()
smpboot_unpark_threads()
..
__kthread_unpark()
__kthread_bind()
wake_up_state()
..
select_task_rq()
select_fallback_rq()
The ->wake_cpu of the unparked thread is not allowed, making a call
to select_fallback_rq() necessary. Then, select_fallback_rq() cannot
find an allowed, active CPU and promptly resets the allowed CPUs, so
that the task in question ends up on CPU0.
When those unparked tasks are eventually executed, they run
immediately into a BUG:
kernel BUG at kernel/smpboot.c:135!
Just changing the order in which the online/active bits are set
(and adding some memory barriers), would solve the two issues
above. However, it would change the order of operations back to
the one before commit 6acbfb9697 ("sched: Fix hotplug vs.
set_cpus_allowed_ptr()"), thus, reintroducing that particular
problem.
Going further back into history, we have at least the following
commits touching this topic:
- commit 2baab4e904 ("sched: Fix select_fallback_rq() vs cpu_active/cpu_online")
- commit 5fbd036b55 ("sched: Cleanup cpu_active madness")
Together, these give us the following non-working solutions:
- secondary CPU sets active before online, because active is assumed to
be a subset of online;
- secondary CPU sets online before active, because the primary CPU
assumes that an online CPU is also active;
- secondary CPU sets online and waits for primary CPU to set active,
because it might deadlock.
Commit 875ebe940d ("powerpc/smp: Wait until secondaries are
active & online") introduces an arch-specific solution to this
arch-independent problem.
Now, go for a more general solution without explicit waiting and
simply set active twice: once on the secondary CPU after online
was set and once on the primary CPU after online was seen.
set_cpus_allowed_ptr()")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@vger.kernel.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Wilson <msw@amazon.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6acbfb9697 ("sched: Fix hotplug vs. set_cpus_allowed_ptr()")
Link: http://lkml.kernel.org/r/1439408156-18840-1-git-send-email-jschoenh@amazon.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU changes from Paul E. McKenney:
- The combination of tree geometry-initialization simplifications
and OS-jitter-reduction changes to expedited grace periods.
These two are stacked due to the large number of conflicts
that would otherwise result.
[ With one addition, a temporary commit to silence a lockdep false
positive. Additional changes to the expedited grace-period
primitives (queued for 4.4) remove the cause of this false
positive, and therefore include a revert of this temporary commit. ]
- Documentation updates.
- Torture-test updates.
- Miscellaneous fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "dl_boosted" flag is set by comparing *absolute* deadlines
(c.f., rt_mutex_setprio()).
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1438782979-9057-2-git-send-email-parri.andrea@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comment is "misleading"; fix it by adapting a comment from
push_rt_tasks().
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1438782979-9057-1-git-send-email-parri.andrea@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the calling context of sched_class::set_cpus_allowed() such
that we can assume the task is inactive.
This allows us to easily make changes that affect accounting done by
enqueue/dequeue. This does in fact completely remove
set_cpus_allowed_rt() and greatly reduces set_cpus_allowed_dl().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.667516139@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Give every class a set_cpus_allowed() method, this enables some small
optimization in the RT,DL implementation by avoiding a double
cpumask_weight() call.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.614517487@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because sched_setscheduler() checks p->flags & PF_NO_SETAFFINITY
without locks, a caller might observe an old value and race with the
set_cpus_allowed_ptr() call from __kthread_bind() and effectively undo
it:
__kthread_bind()
do_set_cpus_allowed()
<SYSCALL>
sched_setaffinity()
if (p->flags & PF_NO_SETAFFINITIY)
set_cpus_allowed_ptr()
p->flags |= PF_NO_SETAFFINITY
Fix the bug by putting everything under the regular scheduler locks.
This also closes a hole in the serialization of task_struct::{nr_,}cpus_allowed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.545640346@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current code ensures that a task has a normalized vruntime when switching away
from the fair class, but it does not ensure the task has a non-normalized
vruntime when switching back to the fair class.
This is an example breaking this consistency:
1. a task is in fair class and !queued
2. changes its class to RT class (still !queued)
3. changes its class to fair class again (still !queued)
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439197375-27927-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Systems which have all nodes at a distance of at most 1 hop should be
identified as 'NUMA_DIRECT'.
However, the scheduler incorrectly identifies it as 'NUMA_BACKPLANE'.
This is because 'n' is assigned to sched_max_numa_distance but the
code (mis)interprets it to mean 'number of hops'.
Rik had actually used sched_domains_numa_levels for detecting a
'NUMA_DIRECT' topology:
http://marc.info/?l=linux-kernel&m=141279712429834&w=2
But that was changed when he removed the hops table in the
subsequent version:
http://marc.info/?l=linux-kernel&m=141353106106771&w=2
Fixing the issue here.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439256048-3748-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cfs_rq's load_avg is composed of runnable_load_avg and blocked_load_avg.
Before this series, sometimes the runnable_load_avg is used, and sometimes
the load_avg is used. Completely replacing all uses of runnable_load_avg
with load_avg may be too big a leap, i.e., the blocked_load_avg is concerned
to result in overrated load. Therefore, we get runnable_load_avg back.
The new cfs_rq's runnable_load_avg is improved to be updated with all of the
runnable sched_eneities at the same time, so the one sched_entity updated and
the others stale problem is solved.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-7-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The idea of runnable load average (let runnable time contribute to weight)
was proposed by Paul Turner and Ben Segall, and it is still followed by
this rewrite. This rewrite aims to solve the following issues:
1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is
updated at the granularity of an entity at a time, which results in the
cfs_rq's load average is stale or partially updated: at any time, only
one entity is up to date, all other entities are effectively lagging
behind. This is undesirable.
To illustrate, if we have n runnable entities in the cfs_rq, as time
elapses, they certainly become outdated:
t0: cfs_rq { e1_old, e2_old, ..., en_old }
and when we update:
t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old }
t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old }
...
We solve this by combining all runnable entities' load averages together
in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based
on the fact that if we regard the update as a function, then:
w * update(e) = update(w * e) and
update(e1) + update(e2) = update(e1 + e2), then
w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2)
therefore, by this rewrite, we have an entirely updated cfs_rq at the
time we update it:
t1: update cfs_rq { e1_new, e2_new, ..., en_new }
t2: update cfs_rq { e1_new, e2_new, ..., en_new }
...
2. cfs_rq's load average is different between top rq->cfs_rq and other
task_group's per CPU cfs_rqs in whether or not blocked_load_average
contributes to the load.
The basic idea behind runnable load average (the same for utilization)
is that the blocked state is taken into account as opposed to only
accounting for the currently runnable state. Therefore, the average
should include both the runnable/running and blocked load averages.
This rewrite does that.
In addition, we also combine runnable/running and blocked averages
of all entities into the cfs_rq's average, and update it together at
once. This is based on the fact that:
update(runnable) + update(blocked) = update(runnable + blocked)
This significantly reduces the code as we don't need to separately
maintain/update runnable/running load and blocked load.
3. How task_group entities' share is calculated is complex and imprecise.
We reduce the complexity in this rewrite to allow a very simple rule:
the task_group's load_avg is aggregated from its per CPU cfs_rqs's
load_avgs. Then group entity's weight is simply proportional to its
own cfs_rq's load_avg / task_group's load_avg. To illustrate,
if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then,
task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then
cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share
To sum up, this rewrite in principle is equivalent to the current one, but
fixes the issues described above. Turns out, it significantly reduces the
code complexity and hence increases clarity and efficiency. In addition,
the new averages are more smooth/continuous (no spurious spikes and valleys)
and updated more consistently and quickly to reflect the load dynamics.
As a result, we have less load tracking overhead, better performance,
and especially better power efficiency due to more balanced load.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Josef Bacik reported that Facebook sees better performance with their
1:N load (1 dispatch/node, N workers/node) when carrying an old patch
to try very hard to wake to an idle CPU. While looking at wake_wide(),
I noticed that it doesn't pay attention to the wakeup of a many partner
waker, returning 1 only when waking one of its many partners.
Correct that, letting explicit domain flags override the heuristic.
While at it, adjust task_struct bits, we don't need a 64-bit counter.
Tested-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
[ Tidy things up. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team<Kernel-team@fb.com>
Cc: morten.rasmussen@arm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1436888390.7983.49.camel@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>