The internal statistic counters for the total number of
requests processed per card and per queue used integers. So they do
wrap after a rather huge amount of crypto requests processed. This
patch introduces uint64 counters which should hold much longer but
still may wrap. The sysfs attributes request_count for card and queue
also used only %ld and now display the counter value with %llu.
This is not a security relevant fix. The int overflow which happened
is not in any way exploitable as a security breach.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
This patch moves the reset invocation of an ap device when
fresh detected from the ap bus to the probe() function of
the driver responsible for this device.
The virtualisation of ap devices makes it necessary to
remove unconditioned resets on fresh appearing apqn devices.
It may be that such a device is already enabled for guest
usage. So there may be a race condition between host ap bus
and guest ap bus doing the reset. This patch moves the
reset from the ap bus to the zcrypt drivers. So if there
is no zcrypt driver bound to an ap device - for example
the ap device is bound to the vfio device driver - the
ap device is untouched passed to the vfio device driver.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
This patch adds CEX7 exploitation support for the AP bus code,
the zcrypt device driver zoo and the vfio device driver.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Ingo Franzki <ifranzki@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
The zcrypt device driver does not handle CPRBs which address
a control domain correctly. This fix introduces a workaround:
The domain field of the request CPRB is checked if there is
a valid domain value in there. If this is true and the value
is a control only domain (a domain which is enabled in the
crypto config ADM mask but disabled in the AQM mask) the
CPRB is forwarded to the default usage domain. If there is
no default domain, the request is rejected with an ENODEV.
This fix is important for maintaining crypto adapters. For
example one LPAR can use a crypto adapter domain ('Control
and Usage') but another LPAR needs to be able to maintain
this adapter domain ('Control'). Scenarios like this did
not work properly and the patch enables this.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Working with the vfio-ap driver let to some revisit of the way
how an ap (queue) device is removed from the driver.
With the current implementation all the cleanup was done before
the driver even got notified about the removal. Now the ap
queue removal is done in 3 steps:
1) A preparation step, all ap messages within the queue
are flushed and so the driver does 'receive' them.
Also a new state AP_STATE_REMOVE assigned to the queue
makes sure there are no new messages queued in.
2) Now the driver's remove function is invoked and the
driver should do the job of cleaning up it's internal
administration lists or whatever. After 2) is done
it is guaranteed, that the driver is not invoked any
more. On the other hand the driver has to make sure
that the APQN is not accessed any more after step 2
is complete.
3) Now the ap bus code does the job of total cleanup of the
APQN. A reset with zero is triggered and the state of
the queue goes to AP_STATE_UNBOUND.
After step 3) is complete, the ap queue has no pending
messages and the APQN is cleared and so there are no
requests and replies lingering around in the firmware
queue for this APQN. Also the interrupts are disabled.
After these remove steps the ap queue device may be assigned
to another driver.
Stress testing this remove/probe procedure showed a problem with the
correct module reference counting. The actual receive of an reply in
the driver is done asynchronous with completions. So with a driver
change on an ap queue the message flush triggers completions but the
threads waiting for the completions may run at a time where the queue
already has the new driver assigned. So the module_put() at receive
time needs to be done on the driver module which queued the ap
message. This change is also part of this patch.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Ingo Franzki <ifranzki@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
When an alternate driver (vfio-ap) has bound an ap queue and this
binding is revised the ap queue device is in an intermittent
state not bound to any driver. The internal state variable
covered this with the state AP_STATE_BORKED which is also used to
reflect broken devices. When now an ap bus scan runs such a
device is destroyed and on the next scan reconstructed.
So a stress test with high frequency switching the queue driver
between the default and the vfio-ap driver hit this gap and the
queue was removed until the next ap bus scan. This fix now
introduces another state for the in-between condition for a queue
momentary not bound to a driver and so the ap bus scan function
skips this device instead of removing it.
Also some very slight but maybe helpful debug feature messages
come with this patch - in particular a message showing that a
broken card/queue device will get removed.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Ingo Franzki <ifranzki@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Until the vfio-ap driver came into live there was a well known
agreement about the way how ap devices are initialized and their
states when the driver's probe function is called.
However, the vfio device driver when receiving an ap queue device does
additional resets thereby removing the registration for interrupts for
the ap device done by the ap bus core code. So when later the vfio
driver releases the device and one of the default zcrypt drivers takes
care of the device the interrupt registration needs to get
renewed. The current code does no renew and result is that requests
send into such a queue will never see a reply processed - the
application hangs.
This patch adds a function which resets the aq queue state machine for
the ap queue device and triggers the walk through the initial states
(which are reset and registration for interrupts). This function is
now called before the driver's probe function is invoked.
When the association between driver and device is released, the
driver's remove function is called. The current implementation calls a
ap queue function ap_queue_remove(). This invokation has been moved to
the ap bus function to make the probe / remove pair for ap bus and
drivers more symmetric.
Fixes: 7e0bdbe5c2 ("s390/zcrypt: AP bus support for alternate driver(s)")
Cc: stable@vger.kernel.org # 4.19+
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewd-by: Tony Krowiak <akrowiak@linux.ibm.com>
Reviewd-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch is an extension to the zcrypt device driver to provide,
support and maintain multiple zcrypt device nodes. The individual
zcrypt device nodes can be restricted in terms of crypto cards,
domains and available ioctls. Such a device node can be used as a
base for container solutions like docker to control and restrict
the access to crypto resources.
The handling is done with a new sysfs subdir /sys/class/zcrypt.
Echoing a name (or an empty sting) into the attribute "create" creates
a new zcrypt device node. In /sys/class/zcrypt a new link will appear
which points to the sysfs device tree of this new device. The
attribute files "ioctlmask", "apmask" and "aqmask" in this directory
are used to customize this new zcrypt device node instance. Finally
the zcrypt device node can be destroyed by echoing the name into
/sys/class/zcrypt/destroy. The internal structs holding the device
info are reference counted - so a destroy will not hard remove a
device but only marks it as removable when the reference counter drops
to zero.
The mask values are bitmaps in big endian order starting with bit 0.
So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs
attributes accept 2 different formats:
* Absolute hex string starting with 0x like "0x12345678" does set
the mask starting from left to right. If the given string is shorter
than the mask it is padded with 0s on the right. If the string is
longer than the mask an error comes back (EINVAL).
* Relative format - a concatenation (done with ',') of the
terms +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]. <bitnr> may be any
valid number (hex, decimal or octal) in the range 0...255. Here are
some examples:
"+0-15,+32,-128,-0xFF"
"-0-255,+1-16,+0x128"
"+1,+2,+3,+4,-5,-7-10"
A simple usage examples:
# create new zcrypt device 'my_zcrypt':
echo "my_zcrypt" >/sys/class/zcrypt/create
# go into the device dir of this new device
echo "my_zcrypt" >create
cd my_zcrypt/
ls -l
total 0
-rw-r--r-- 1 root root 4096 Jul 20 15:23 apmask
-rw-r--r-- 1 root root 4096 Jul 20 15:23 aqmask
-r--r--r-- 1 root root 4096 Jul 20 15:23 dev
-rw-r--r-- 1 root root 4096 Jul 20 15:23 ioctlmask
lrwxrwxrwx 1 root root 0 Jul 20 15:23 subsystem -> ../../../../class/zcrypt
...
# customize this zcrypt node clone
# enable only adapter 0 and 2
echo "0xa0" >apmask
# enable only domain 6
echo "+6" >aqmask
# enable all 256 ioctls
echo "+0-255" >ioctls
# now the /dev/my_zcrypt may be used
# finally destroy it
echo "my_zcrypt" >/sys/class/zcrypt/destroy
Please note that a very similar 'filtering behavior' also applies to
the parent z90crypt device. The two mask attributes apmask and aqmask
in /sys/bus/ap act the very same for the z90crypt device node. However
the implementation here is totally different as the ap bus acts on
bind/unbind of queue devices and associated drivers but the effect is
still the same. So there are two filters active for each additional
zcrypt device node: The adapter/domain needs to be enabled on the ap
bus level and it needs to be active on the zcrypt device node level.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The current AP bus, AP devices and AP device drivers implementation
uses a clearly defined mapping for binding AP devices to AP device
drivers. So for example a CEX6C queue will always be bound to the
cex4queue device driver.
The Linux Device Driver model has no sensitivity for more than one
device driver eligible for one device type. If there exist more than
one drivers matching to the device type, simple all drivers are tried
consecutively. There is no way to determine and influence the probing
order of the drivers.
With KVM there is a need to provide additional device drivers matching
to the very same type of AP devices. With a simple implementation the
KVM drivers run in competition to the regular drivers. Whichever
'wins' a device depends on build order and implementation details
within the common Linux Device Driver Model and is not
deterministic. However, a userspace process could figure out which
device should be bound to which driver and sort out the correct
binding by manipulating attributes in the sysfs.
If for security reasons a AP device must not get bound to the 'wrong'
device driver the sorting out has to be done within the Linux kernel
by the AP bus code. This patch modifies the behavior of the AP bus
for probing drivers for devices in a way that two sets of drivers are
usable. Two new bitmasks 'apmask' and 'aqmask' are used to mark a
subset of the APQN range for 'usable by the ap bus and the default
drivers' or 'not usable by the default drivers and thus available for
alternate drivers like vfio-xxx'. So an APQN which is addressed by
this masking only the default drivers will be probed. In contrary an
APQN which is not addressed by the masks will never be probed and
bound to default drivers but onny to alternate drivers.
Eventually the two masks give a way to divide the range of APQNs into
two pools: one pool of APQNs used by the AP bus and the default
drivers and thus via zcrypt drivers available to the userspace of the
system. And another pool where no zcrypt drivers are bound to and
which can be used by alternate drivers (like vfio-xxx) for their
needs. This division is hot-plug save and makes sure a APQN assigned
to an alternate driver is at no time somehow exploitable by the wrong
party.
The two masks are located in sysfs at /sys/bus/ap/apmask and
/sys/bus/ap/aqmask. The mask syntax is exactly the same as the
already existing mask attributes in the /sys/bus/ap directory (for
example ap_usage_domain_mask and ap_control_domain_mask).
By default all APQNs belong to the ap bus and the default drivers:
cat /sys/bus/ap/apmask
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
cat /sys/bus/ap/aqmask
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
The masks can be changed at boot time with the kernel command line
like this:
... ap.apmask=0xffff ap.aqmask=0x40
This would give these two pools:
default drivers pool: adapter 0 - 15, domain 1
alternate drivers pool: adapter 0 - 15, all but domain 1
adapter 16-255, all domains
The sysfs attributes for this two masks are writeable and an
administrator is able to reconfigure the assignements on the fly by
writing new mask values into. With changing the mask(s) a revision of
the existing queue to driver bindings is done. So all APQNs which are
bound to the 'wrong' driver are reprobed via kernel function
device_reprobe() and thus the new correct driver will be assigned with
respect of the changed apmask and aqmask bits.
The mask values are bitmaps in big endian order starting with bit 0.
So adapter number 0 is the leftmost bit, mask is 0x8000... The sysfs
attributes accept 2 different formats:
- Absolute hex string starting with 0x like "0x12345678" does set
the mask starting from left to right. If the given string is shorter
than the mask it is padded with 0s on the right. If the string is
longer than the mask an error comes back (EINVAL).
- '+' or '-' followed by a numerical value. Valid examples are "+1",
"-13", "+0x41", "-0xff" and even "+0" and "-0". Only the addressed
bit in the mask is switched on ('+') or off ('-').
This patch will also be the base for an upcoming extension to the
zcrypt drivers to be able to provide additional zcrypt device nodes
with filtering based on ap and aq masks.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Code beautify by following most of the checkpatch suggestions:
- SPDX license identifier line complains by checkpatch
- missing space or newline complains by checkpatch
- octal numbers for permssions complains by checkpatch
- renaming of static sysfs functions complains by checkpatch
- fix of block comment complains by checkpatch
- fix printf like calls where function name instead of %s __func__
was used
- __packed instead of __attribute__((packed))
- init to zero for static variables removed
- use of DEVICE_ATTR_RO and DEVICE_ATTR_RW macros
No functional code changes or API changes!
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Move all the inline functions from the ap bus header
file ap_asm.h into the in-kernel api header file
arch/s390/include/asm/ap.h so that KVM can make use
of all the low level AP functions.
Signed-off-by: Harald Freudenberger <freude@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Tests showed, that the zcrypt device driver produces memory
leaks when a valid CCA or EP11 CPRB can't get delivered or has
a failure during processing within the zcrypt device driver.
This happens when a invalid domain or adapter number is used
or the lower level software or hardware layers produce any
kind of failure during processing of the request.
Only CPRBs send to CCA or EP11 cards can produce this memory
leak. The accelerator and the CPRBs processed by this type
of crypto card is not affected.
The two fields message and private within the ap_message struct
are allocated with pulling the function code for the CPRB but
only freed when processing of the CPRB succeeds. So for example
an invalid domain or adapter field causes the processing to
fail, leaving these two memory areas allocated forever.
Signed-off-by: Harald Freudenberger <freude@de.ibm.com>
Reviewed-by: Ingo Franzki <ifranzki@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
There was an artificial restriction on the card/adapter id
to only 6 bits but all the AP commands do support adapter
ids with 8 bit. This patch removes this restriction to 64
adapters and now up to 256 adapter can get addressed.
Some of the ioctl calls work on the max number of cards
possible (which was 64). These ioctls are now deprecated
but still supported. All the defines, structs and ioctl
interface declarations have been kept for compabibility.
There are now new ioctls (and defines for these) with an
additional '2' appended which provide the extended versions
with 256 cards supported.
Signed-off-by: Harald Freudenberger <freude@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The AP bus code is not available as kernel module any more.
There was some leftover code dealing with kernel module
exit which has been removed with this patch.
Signed-off-by: Harald Freudenberger <freude@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Now that the SPDX tag is in all drivers/s390/crypto/ files, that
identifies the license in a specific and legally-defined manner. So the
extra GPL text wording can be removed as it is no longer needed at all.
This is done on a quest to remove the 700+ different ways that files in
the kernel describe the GPL license text. And there's unneeded stuff
like the address (sometimes incorrect) for the FSF which is never
needed.
No copyright headers or other non-license-description text was removed.
Cc: Harald Freudenberger <freude@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
It's good to have SPDX identifiers in all files to make it easier to
audit the kernel tree for correct licenses.
Update the drivers/s390/crypto/ files with the correct SPDX license
identifier based on the license text in the file itself. The SPDX
identifier is a legally binding shorthand, which can be used instead of
the full boiler plate text.
This work is based on a script and data from Thomas Gleixner, Philippe
Ombredanne, and Kate Stewart.
Cc: Harald Freudenberger <freude@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.
Cc: Harald Freudenberger <freude@de.ibm.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
This patch introduces a new ap_qact() function which
exploits the PQAP(QACT) subfunction. QACT is a new
interface to Query the Ap Compatilibity Type based
on a given AP qid, type, mode and version.
Based on this new function the AP bus scan code is
slightly reworked to use this new interface for
querying the compatible type for each new AP queue
device detected. So new and unknown devices can
get automatically mapped to a compatible type and
handled without the need for toleration patches
for every new hardware.
The currently highest known hardware is CEX6S.
With this patch a possible successor can get
queried for a combatible type known by the device
driver without the need for an toleration patch.
Signed-off-by: Harald Freudenberger <freude@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
KVM has a need to fetch the crypto configuration information
as it is returned by the PQAP(QCI) instruction. This patch
introduces a new API ap_query_configuration() which provides
this info in a handy way for the caller.
Signed-off-by: Harald Freudenberger <freude@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Under certain specified conditions, the Test AP Queue (TAPQ)
subfunction of the Process Adjunct Processor Queue (PQAP) instruction
will be intercepted by a guest VM. The guest VM must have a means for
executing the intercepted instruction.
The vfio_ap driver will provide an interface to execute the
PQAP(TAPQ) instruction subfunction on behalf of a guest VM.
The code for executing the AP instructions currently resides in the
AP bus. This patch refactors the AP bus code to externalize access
to the PQAP(TAPQ) instruction subfunction to make it available to
the vfio_ap driver.
Signed-off-by: Tony Krowiak <akrowiak@linux.vnet.ibm.com>
Signed-off-by: Harald Freudenberger <freude@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Currently the first eligible AP adapter respectively domain will be
selected to service requests. In case of sequential workload, the
very same adapter/domain will be used.
The adapter/domain selection algorithm now considers the completed
transactions per adaper/domain and therefore ensures a homogeneous
utilization.
Signed-off-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Currently the ap infrastructure only supports one domain at a time.
This feature extends the generic cryptographic device driver to
support multiple cryptographic domains simultaneously.
There are now card and queue devices on the AP bus with independent
card and queue drivers. The new /sys layout is as follows:
/sys/bus/ap
devices
<xx>.<yyyy> -> ../../../devices/ap/card<xx>/<xx>.<yyyy>
...
card<xx> -> ../../../devices/ap/card<xx>
...
drivers
<drv>card
card<xx> -> ../../../../devices/ap/card<xx>
<drv>queue
<xx>.<yyyy> -> ../../../../devices/ap/card<xx>/<xx>.<yyyy>
...
/sys/devices/ap
card<xx>
<xx>.<yyyy>
driver -> ../../../../bus/ap/drivers/<zzz>queue
...
driver -> ../../../bus/ap/drivers/<drv>card
...
The two digit <xx> field is the card number, the four digit <yyyy>
field is the queue number and <drv> is the name of the device driver,
e.g. "cex4".
For compatability /sys/bus/ap/card<xx> for the old layout has to exist,
including the attributes that used to reside there.
With additional contributions from Harald Freudenberger and
Martin Schwidefsky.
Signed-off-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The device suspend call triggers all ap devices to fetch potentially
available response messages from the queues. Therefore the
corresponding zcrypt device, that is allocated asynchronously after
ap device probing, needs to be fully prepared. This race condition
could lead to uninitialized response buffers while trying to read
from the queues.
Introduce a new callback within the ap layer to get noticed when a
zcrypt device is fully prepared. Additional checks prevent reading
from devices that are not fully prepared.
Signed-off-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Replace the two fields 'unregistered' and 'reset' with a device
state with 5 possible values. Introduce two events for the AP devices,
device poll and device timeout. With the state machine it is easier
to deal with device initialization and suspend/resume. Device polling
is simpler as well, the arkane 'flags' passing is gone.
Reviewd-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
If a AP device is removed while messages are still pending, the requests
are cancelled by calling the message receive function with an error pointer
for the reply. The message type receive handler recognize this and create
a fake hardware error TYPE82_RSP_CODE / REP82_ERROR_MACHINE_FAILURE.
The message with the hardware error then causes a printk and a return
code of -EAGAIN.
Replace the intricate scheme with an explicit return code for this sitation
and avoid the error message.
Reviewd-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The ap_query_configuration function allocates the ap_config_info
structure, but there is no code to free the structure.
Allocate the structure in the module_init function and free it
again in module_exit.
While we are at it simplify a few functions in regard to the
ap configuration data.
Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
ap_test_queue, ap_query_facilities, __ap_query_functions all use
the same PQAP(TAPQ) command. Consolidate the three into a single
ap_test_queue function that returns the AP status and the 64-bit
result. The exception table entry for PQAP(TAPQ) can be avoided
if the T bit for the APFT facility is set only if test_facility(15)
indicated that the facility is present.
Integrate ap_query_function into ap_query queue to avoid calling
PQAP(TAPQ) twice.
Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
In case of request timeouts an AP queue reset will be triggered to
recover and reinitialize the AP queue. The previous behavior was an
immediate reset execution regardless of current/pending requests.
Due to newly changed firmware behavior the reset may be delayed, based
on the priority of pending request. The device driver's waiting time
frame was limited, hence it did not received the reset response. As a
consequence interrupts would not be enabled afterwards.
The RAPQ (queue reset) and AQIC (interrupt control) commands will be
treated fully asynchronous now. The device driver will check the reset and
interrupt states periodically, thus it can handle the reinitialization
properly.
Signed-off-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Extends the generic cryptographic device driver (zcrypt)
to support the Crypto Express 5S adapter.
Signed-off-by: Ingo Tuchscherer <ingo.tuchscherer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The zcrypt device driver will accept the new crypto adapter
in toleration mode. A new sysfs attribute 'raw_hwtype' will
expose the raw hardware type.
Signed-off-by: Ingo Tuchscherer <ingo.tuchscherer@de.ibm.com>
Signed-off-by: Harald Freudenberger <freude@linux.vnet.ibm.com>
Extends the number of ap domains within the zcrypt device driver up to 256.
AP domains in the range 00..255 will be detected.
Signed-off-by: Ingo Tuchscherer <ingo.tuchscherer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This feature extends the generic cryptographic device driver (zcrypt)
with a new capability to service EP11 requests for the Crypto Express4S
card in EP11 (Enterprise PKCS#11 mode) coprocessor mode.
Signed-off-by: Ingo Tuchscherer <ingo.tuchscherer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Detect external AP bus configuration changes and request
an AP device rescan.
Signed-off-by: Holger Dengler <hd@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add the function facility information as new ap_device and sysfs
attribute. Also make the number of requests in device
queue and in device driver queue accessible in sysfs.
Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Holger Dengler <hd@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Query AP configuration information. Improve performance of AP bus
scans by skipping AP device probing, if the AP deviec is not
configured.
Reviewed-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Holger Dengler <hd@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the file name from the comment at top of many files. In most
cases the file name was wrong anyway, so it's rather pointless.
Also unify the IBM copyright statement. We did have a lot of sightly
different statements and wanted to change them one after another
whenever a file gets touched. However that never happened. Instead
people start to take the old/"wrong" statements to use as a template
for new files.
So unify all of them in one go.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Move the receive callback from zdev_driver to ap_message structure to
get a more flexible asynchronous ap message handling.
Signed-off-by: Holger Dengler <hd@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add toleration support for ap devices with device type 10.
Signed-off-by: Holger Dengler <hd@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Implemented an asm in the ap bus and made it accessible for the card
specific parts of the zcrypt driver. Thus when a cex3a is recognized
a check can be performed to dermine whether the card supports 4096 bit
RSA keys.
Signed-off-by: Felix Beck <felix.beck@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch renames the CEX2C2 and CEX2A2 types to CEX3 device types.
Signed-off-by: Felix Beck <felix.beck@de.ibm.com>
Signed-off-by: Ralph Wuerthner <ralph.wuerthner@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Support for special command is implemented in the AP Bus in the NQAP
function __ap_send. This is extended for a further parameter special.
When set, the special bit, in GR0 will be set. Therefor the ap_message
struct is extended for a further bit. Thus calling functions of
__ap_send can use the special parameter in ap_message to give to
__ap_send. Affected is in the first place ap_queue_message, which is
called by the actual card driver. The second part of this support is
that the card driver for the CEX3C needs to set this special bit, when
an according CPRB is sent to the driver.
Signed-off-by: Felix Beck <felix.beck@de.ibm.com>
Signed-off-by: Ralph Wuerthner <ralph.wuerthner@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
AP messages need to be initialized, before they will be used. Values
will be zeroized. This will be needed later when introducing support
for the special commands.
Signed-off-by: Felix Beck <felix.beck@de.ibm.com>
Signed-off-by: Ralph Wuerthner <ralph.wuerthner@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
When the machine supports AP adapter interrupts polling will be
switched off at module initialization and the driver will work in
interrupt mode.
Signed-off-by: Felix Beck <felix.beck@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add support for new micro code load of CEX2C and CEX2A adapters,
which uses different IDs. This patch just adds the IDs to the
existing drivers.
Signed-off-by: Ralph Wuerthner <ralph.wuerthner@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Comments, which suggested to be kernel-doc but were not in the right
formatting, have been corrected. Additionally some minor cleanup in
the comments has been done.
Signed-off-by: Felix Beck <felix.beck@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Under very high load zcrypt requests may timeout while waiting on the
request queue. Modify zcrypt that timeouts are based on crypto adapter
responses. A timeout occurs only if a crypto adapter does not respond
within a given time frame to sumitted requests.
Signed-off-by: Ralph Wuerthner <rwuerthn@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
AP bus module uses bus_for_each_dev() in software interrupt context to
poll for completed requests which might cause dead locks. Solution: use
private AP device list for polling in software interrupt context.
Signed-off-by: Ralph Wuerthner <rwuerthn@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add a bus for the adjunct processor interface. Up to 64 devices can
be connect to the ap bus interface, each device with 16 domains. That
makes 1024 message queues. The interface is asynchronous, the answer
to a message sent to a queue needs to be received at some later point
in time. Unfortunately the interface does not provide interrupts when
a message reply is pending. So the ap bus needs to implement some
fancy polling, each active queue is polled once per 1/HZ second or
continuously if an idle cpus exsists and the poll thread is activ
(see poll_thread parameter).
The ap bus uses the sysfs path /sys/bus/ap and has two bus attributes,
ap_domain and config_time. The ap_domain selects one of the 16 domains
to be used for this system. This limits the maximum number of ap devices
to 64. The config_time attribute contains the number of seconds between
two ap bus scans to find new devices.
The ap bus uses the modalias entries of the form "ap:tN" to autoload
the ap driver for hardware type N. Currently known types are:
3 - PCICC, 4 - PCICA, 5 - PCIXCC, 6 - CEX2A and 7 - CEX2C.
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Ralph Wuerthner <rwuerthn@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>