pNFS writes don't return attributes, however that doesn't mean that we
should ignore the fact that they may be extending the file. This patch
ensures that if a write is seen to extend the file, then we always set
an attribute barrier, and update the cached file size.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Otherwise, nfs4_select_rw_stateid() will always return the zero stateid
instead of the correct open stateid.
Fixes: f95549cf24 ("NFSv4: More CLOSE/OPEN races")
Cc: stable@vger.kernel.org # 4.0+
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
This reverts commit a2673b6e04.
Kinglong Mee reports a memory leak with that patch, and Jan Kara confirms:
"Thanks for report! You are right that my patch introduces a race
between fsnotify kthread and fsnotify_destroy_group() which can result
in leaking inotify event on group destruction.
I haven't yet decided whether the right fix is not to queue events for
dying notification group (as that is pointless anyway) or whether we
should just fix the original problem differently... Whenever I look
at fsnotify code mark handling I get lost in the maze of locks, lists,
and subtle differences between how different notification systems
handle notification marks :( I'll think about it over night"
and after thinking about it, Jan says:
"OK, I have looked into the code some more and I found another
relatively simple way of fixing the original oops. It will be IMHO
better than trying to fixup this issue which has more potential for
breakage. I'll ask Linus to revert the fsnotify fix he already merged
and send a new fix"
Reported-by: Kinglong Mee <kinglongmee@gmail.com>
Requested-by: Jan Kara <jack@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull UDF fix from Jan Kara:
"A fix for UDF corruption when certain disk-format feature is enabled"
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
udf: Don't corrupt unalloc spacetable when writing it
If nfsd4_layout_setlease fails, nfsd will not put ls->ls_file.
Fix commit c5c707f96f "nfsd: implement pNFS layout recalls".
Signed-off-by: Kinglong Mee <kinglongmee@gmail.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Pull x86 fixes from Ingo Molnar:
"Two families of fixes:
- Fix an FPU context related boot crash on newer x86 hardware with
larger context sizes than what most people test. To fix this
without ugly kludges or extensive reverts we had to touch core task
allocator, to allow x86 to determine the task size dynamically, at
boot time.
I've tested it on a number of x86 platforms, and I cross-built it
to a handful of architectures:
(warns) (warns)
testing x86-64: -git: pass ( 0), -tip: pass ( 0)
testing x86-32: -git: pass ( 0), -tip: pass ( 0)
testing arm: -git: pass ( 1359), -tip: pass ( 1359)
testing cris: -git: pass ( 1031), -tip: pass ( 1031)
testing m32r: -git: pass ( 1135), -tip: pass ( 1135)
testing m68k: -git: pass ( 1471), -tip: pass ( 1471)
testing mips: -git: pass ( 1162), -tip: pass ( 1162)
testing mn10300: -git: pass ( 1058), -tip: pass ( 1058)
testing parisc: -git: pass ( 1846), -tip: pass ( 1846)
testing sparc: -git: pass ( 1185), -tip: pass ( 1185)
... so I hope the cross-arch impact 'none', as intended.
(by Dave Hansen)
- Fix various NMI handling related bugs unearthed by the big asm code
rewrite and generally make the NMI code more robust and more
maintainable while at it. These changes are a bit late in the
cycle, I hope they are still acceptable.
(by Andy Lutomirski)"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu, sched: Introduce CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT and use it on x86
x86/fpu, sched: Dynamically allocate 'struct fpu'
x86/entry/64, x86/nmi/64: Add CONFIG_DEBUG_ENTRY NMI testing code
x86/nmi/64: Make the "NMI executing" variable more consistent
x86/nmi/64: Minor asm simplification
x86/nmi/64: Use DF to avoid userspace RSP confusing nested NMI detection
x86/nmi/64: Reorder nested NMI checks
x86/nmi/64: Improve nested NMI comments
x86/nmi/64: Switch stacks on userspace NMI entry
x86/nmi/64: Remove asm code that saves CR2
x86/nmi: Enable nested do_nmi() handling for 64-bit kernels
Merge fixes from Andrew Morton:
"25 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (25 commits)
lib/decompress: set the compressor name to NULL on error
mm/cma_debug: correct size input to bitmap function
mm/cma_debug: fix debugging alloc/free interface
mm/page_owner: set correct gfp_mask on page_owner
mm/page_owner: fix possible access violation
fsnotify: fix oops in fsnotify_clear_marks_by_group_flags()
/proc/$PID/cmdline: fixup empty ARGV case
dma-debug: skip debug_dma_assert_idle() when disabled
hexdump: fix for non-aligned buffers
checkpatch: fix long line messages about patch context
mm: clean up per architecture MM hook header files
MAINTAINERS: uclinux-h8-devel is moderated for non-subscribers
mailmap: update Sudeep Holla's email id
Update Viresh Kumar's email address
mm, meminit: suppress unused memory variable warning
configfs: fix kernel infoleak through user-controlled format string
include, lib: add __printf attributes to several function prototypes
s390/hugetlb: add hugepages_supported define
mm: hugetlb: allow hugepages_supported to be architecture specific
revert "s390/mm: make hugepages_supported a boot time decision"
...
Pull btrfs fixes from Chris Mason:
"These are all from Filipe, and cover a few problems we've had reported
on the list recently (along with ones he found on his own)"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix file corruption after cloning inline extents
Btrfs: fix order by which delayed references are run
Btrfs: fix list transaction->pending_ordered corruption
Btrfs: fix memory leak in the extent_same ioctl
Btrfs: fix shrinking truncate when the no_holes feature is enabled
Don't burden architectures without dynamic task_struct sizing
with the overhead of dynamic sizing.
Also optimize the x86 code a bit by caching task_struct_size.
Acked-and-Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-3-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The FPU rewrite removed the dynamic allocations of 'struct fpu'.
But, this potentially wastes massive amounts of memory (2k per
task on systems that do not have AVX-512 for instance).
Instead of having a separate slab, this patch just appends the
space that we need to the 'task_struct' which we dynamically
allocate already. This saves from doing an extra slab
allocation at fork().
The only real downside here is that we have to stick everything
and the end of the task_struct. But, I think the
BUILD_BUG_ON()s I stuck in there should keep that from being too
fragile.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-2-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
fsnotify_clear_marks_by_group_flags() can race with
fsnotify_destroy_marks() so when fsnotify_destroy_mark_locked() drops
mark_mutex, a mark from the list iterated by
fsnotify_clear_marks_by_group_flags() can be freed and we dereference free
memory in the loop there.
Fix the problem by keeping mark_mutex held in
fsnotify_destroy_mark_locked(). The reason why we drop that mutex is that
we need to call a ->freeing_mark() callback which may acquire mark_mutex
again. To avoid this and similar lock inversion issues, we move the call
to ->freeing_mark() callback to the kthread destroying the mark.
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: Ashish Sangwan <a.sangwan@samsung.com>
Suggested-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/*/cmdline code checks if it should look at ENVP area by checking
last byte of ARGV area:
rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
if (rv <= 0)
goto out_free_page;
If ARGV is somehow made empty (by doing execve(..., NULL, ...) or
manually setting ->arg_start and ->arg_end to equal values), the decision
will be based on byte which doesn't even belong to ARGV/ENVP.
So, quickly check if ARGV area is empty and report 0 to match previous
behaviour.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some modules call config_item_init_type_name() and config_group_init_type_name()
with parameter "name" directly controlled by userspace. These two
functions call config_item_set_name() with this name used as a format
string, which can be used to leak information such as content of the
stack to userspace.
For example, make_netconsole_target() in netconsole module calls
config_item_init_type_name() with the name of a newly-created directory.
This means that the following commands give some unexpected output, with
configfs mounted in /sys/kernel/config/ and on a system with a
configured eth0 ethernet interface:
# modprobe netconsole
# mkdir /sys/kernel/config/netconsole/target_%lx
# echo eth0 > /sys/kernel/config/netconsole/target_%lx/dev_name
# echo 1 > /sys/kernel/config/netconsole/target_%lx/enabled
# echo eth0 > /sys/kernel/config/netconsole/target_%lx/dev_name
# dmesg |tail -n1
[ 142.697668] netconsole: target (target_ffffffffc0ae8080) is
enabled, disable to update parameters
The directory name is correct but %lx has been interpreted in the
internal item name, displayed here in the error message used by
store_dev_name() in drivers/net/netconsole.c.
To fix this, update every caller of config_item_set_name to use "%s"
when operating on untrusted input.
This issue was found using -Wformat-security gcc flag, once a __printf
attribute has been added to config_item_set_name().
Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Felipe Balbi <balbi@ti.com>
Acked-by: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The purpose of the option was documented in
Documentation/filesystems/proc.txt but the help text was missing.
Add small help text that also points to the documentation.
Signed-off-by: Iago López Galeiras <iago@endocode.com>
Reviewed-by: Jean Delvare <jdelvare@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJVp7R1AAoJEDaohF61QIxkFssQAIIkNbQPOzjrFs5LKhusMBIh
44UWfs2iHevRfakXitUGp/YvKfjQ0JhMC0UN8zwYYTDB3Xm87fxYIVumN44OofG7
pha+tHKj/+d3QK7PQlWdJsfD0/qfH84dreyrMwHCrYGRQxpIWbISm1UhOYQlJeu5
DZDZ5MBizFBXjaFSLHFfoW7gN9fIbEMHXvIUT2PWzsaJpuaB+TZ76VdlNaZpuDFH
Ow5gOY3sNqvVMEMWnYYBMTA+tcCw6yqTdmTH3GQqynumESfXw6vdKIyQI9yjPtou
nxF0AKU8f4X3RklirZXCwmHYRn0BTVfNOqTCewYmrNFVNqWz+IKeQ/7sqv2kSy3S
xBeMbye+f//cGTSEAn/xCZy8VxxhCEgfQJ5HS+lGuuGUCn+xfF/T/n3eM2tLsRYH
YGY+Vfk5qw/i5uI6nq2v+j3JRKNYxu9iauZlZ02yr5FuOanvZbydFXOXpQnLZSzh
k4HyUJo8E26DseLzF+d5iYpwH9wN6WtQblbet1NyhEvNywnDo57yBT02izeGHi9B
ih+qlY3JHiYNZ2/xRcgEaIXNqOm5GO4OR1MD8S2w1sot9cBGb6M8sYyy2IXlr8v+
XLjE+qxsDg/mIWL1vj6nFLzVOOz5O6W4WJ/C4ZDz0VQgoWZrRiYpZs6uovYmYzmN
WQL/7C7Ni/lBaQduXrWn
=ILFR
-----END PGP SIGNATURE-----
Merge tag 'jfs-4.2' of git://github.com/kleikamp/linux-shaggy
Pull jfs fixes from David Kleikamp:
"A couple trivial fixes and an error path fix"
* tag 'jfs-4.2' of git://github.com/kleikamp/linux-shaggy:
jfs: clean up jfs_rename and fix out of order unlock
jfs: fix indentation on if statement
jfs: removed a prohibited space after opening parenthesis
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVo5PmAAoJEAAOaEEZVoIVQkAP/iU8i/atra0YVACMckwLH0rV
OlMs66V1Ur/+3PNwnBAPAITIQTIokRcCUe+ChwlM5I0/N6sHb8b+qKqsc1cesSn4
rBIBXigjMTeBS4MZXYhCeo9oMPPRtTpKdZMGlh499wQcc39BkmRtYPeONQCaYovW
uDq4Mydbt3m92wJK3s2VNsAeNgGKsS7VNZkjQKFxsKSreFKz7NhDBab18lvqAC/9
1z4bqdM4I82uaDdecHiZu8EgTKzDN8wqxYwXJ6RmAtHDXn9r2aXOIwH9+nMGxXQF
DDBgiFb49moK1owJ9UUO3n6GR5HPmmlhshS426uJiODTbI5KlX+68kYQsTpcuRch
CjNBPtUxeDvqK+FRb1jCftA43tcRtqhLYrQ3lr+V4/UqWNZzH0xkrCozg1aP7yg2
XBhw+OWqLm7GyH51IdpRDKQi1hgX9QVp9s6XLhXf7R/o2Lsbyfehe31pJcgcjMbc
2QJiurbSK9+a89bwAn2xozMDOcIXyYAQyS2IBUMuNtCVo6vtsqmtYU+UEKJzoKph
BlwlMqIQyuT0P+jPjy4lxHmskz6I8ToykRS39RVtflS8JPrSAcJ3VVJHnabQcwA7
L1qrDbvaQ+nhLLoX7+zi0yqbLbdD5L+6WXJDaFQsK4XtF0c+hxxvoKCPg3vWOqt3
vAHDSy5Q8s94lsOvzcXC
=aj6S
-----END PGP SIGNATURE-----
Merge tag 'locks-v4.2-1' of git://git.samba.org/jlayton/linux
Pull file locking updates from Jeff Layton:
"I had thought that I was going to get away without a pull request this
cycle. There was a NFSv4 file locking problem that cropped up that I
tried to fix in the NFSv4 code alone, but that fix has turned out to
be problematic. These patches fix this in the correct way.
Note that this touches some NFSv4 code as well. Ordinarily I'd wait
for Trond to ACK this, but he's on holiday right now and the bug is
rather nasty. So I suggest we merge this and if he raises issues with
it we can sort it out when he gets back"
Acked-by: Bruce Fields <bfields@fieldses.org>
Acked-by: Dan Williams <dan.j.williams@intel.com>
[ +1 to this series fixing a 100% reproducible slab corruption +
general protection fault in my nfs-root test environment. - Dan ]
Acked-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
* tag 'locks-v4.2-1' of git://git.samba.org/jlayton/linux:
locks: inline posix_lock_file_wait and flock_lock_file_wait
nfs4: have do_vfs_lock take an inode pointer
locks: new helpers - flock_lock_inode_wait and posix_lock_inode_wait
locks: have flock_lock_file take an inode pointer instead of a filp
Revert "nfs: take extra reference to fl->fl_file when running a LOCKU operation"
The end of jfs_rename(), which is also used by the error paths,
included a call to IWRITE_UNLOCK(new_ip) after labels out1, out2
and out3. If we come in through these labels, IWRITE_LOCK() has not
been called yet.
In moving that call to the correct spot, I also moved some
exceptional truncate code earlier as well, since the early error
paths don't need to deal with it, and I renamed out4: to out_tx: so
a future patch by Jan Kara doesn't need to deal with renumbering or
confusing out-of-order labels.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Using the clone ioctl (or extent_same ioctl, which calls the same extent
cloning function as well) we end up allowing copy an inline extent from
the source file into a non-zero offset of the destination file. This is
something not expected and that the btrfs code is not prepared to deal
with - all inline extents must be at a file offset equals to 0.
For example, the following excerpt of a test case for fstests triggers
a crash/BUG_ON() on a write operation after an inline extent is cloned
into a non-zero offset:
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
# Create our test files. File foo has the same 2K of data at offset 4K
# as file bar has at its offset 0.
$XFS_IO_PROG -f -s -c "pwrite -S 0xaa 0 4K" \
-c "pwrite -S 0xbb 4k 2K" \
-c "pwrite -S 0xcc 8K 4K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# File bar consists of a single inline extent (2K size).
$XFS_IO_PROG -f -s -c "pwrite -S 0xbb 0 2K" \
$SCRATCH_MNT/bar | _filter_xfs_io
# Now call the clone ioctl to clone the extent of file bar into file
# foo at its offset 4K. This made file foo have an inline extent at
# offset 4K, something which the btrfs code can not deal with in future
# IO operations because all inline extents are supposed to start at an
# offset of 0, resulting in all sorts of chaos.
# So here we validate that clone ioctl returns an EOPNOTSUPP, which is
# what it returns for other cases dealing with inlined extents.
$CLONER_PROG -s 0 -d $((4 * 1024)) -l $((2 * 1024)) \
$SCRATCH_MNT/bar $SCRATCH_MNT/foo
# Because of the inline extent at offset 4K, the following write made
# the kernel crash with a BUG_ON().
$XFS_IO_PROG -c "pwrite -S 0xdd 6K 2K" $SCRATCH_MNT/foo | _filter_xfs_io
status=0
exit
The stack trace of the BUG_ON() triggered by the last write is:
[152154.035903] ------------[ cut here ]------------
[152154.036424] kernel BUG at mm/page-writeback.c:2286!
[152154.036424] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[152154.036424] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc acpi_cpu$
[152154.036424] CPU: 2 PID: 17873 Comm: xfs_io Tainted: G W 4.1.0-rc6-btrfs-next-11+ #2
[152154.036424] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[152154.036424] task: ffff880429f70990 ti: ffff880429efc000 task.ti: ffff880429efc000
[152154.036424] RIP: 0010:[<ffffffff8111a9d5>] [<ffffffff8111a9d5>] clear_page_dirty_for_io+0x1e/0x90
[152154.036424] RSP: 0018:ffff880429effc68 EFLAGS: 00010246
[152154.036424] RAX: 0200000000000806 RBX: ffffea0006a6d8f0 RCX: 0000000000000001
[152154.036424] RDX: 0000000000000000 RSI: ffffffff81155d1b RDI: ffffea0006a6d8f0
[152154.036424] RBP: ffff880429effc78 R08: ffff8801ce389fe0 R09: 0000000000000001
[152154.036424] R10: 0000000000002000 R11: ffffffffffffffff R12: ffff8800200dce68
[152154.036424] R13: 0000000000000000 R14: ffff8800200dcc88 R15: ffff8803d5736d80
[152154.036424] FS: 00007fbf119f6700(0000) GS:ffff88043d280000(0000) knlGS:0000000000000000
[152154.036424] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[152154.036424] CR2: 0000000001bdc000 CR3: 00000003aa555000 CR4: 00000000000006e0
[152154.036424] Stack:
[152154.036424] ffff8803d5736d80 0000000000000001 ffff880429effcd8 ffffffffa04e97c1
[152154.036424] ffff880429effd68 ffff880429effd60 0000000000000001 ffff8800200dc9c8
[152154.036424] 0000000000000001 ffff8800200dcc88 0000000000000000 0000000000001000
[152154.036424] Call Trace:
[152154.036424] [<ffffffffa04e97c1>] lock_and_cleanup_extent_if_need+0x147/0x18d [btrfs]
[152154.036424] [<ffffffffa04ea82c>] __btrfs_buffered_write+0x245/0x4c8 [btrfs]
[152154.036424] [<ffffffffa04ed14b>] ? btrfs_file_write_iter+0x150/0x3e0 [btrfs]
[152154.036424] [<ffffffffa04ed15a>] ? btrfs_file_write_iter+0x15f/0x3e0 [btrfs]
[152154.036424] [<ffffffffa04ed2c7>] btrfs_file_write_iter+0x2cc/0x3e0 [btrfs]
[152154.036424] [<ffffffff81165a4a>] __vfs_write+0x7c/0xa5
[152154.036424] [<ffffffff81165f89>] vfs_write+0xa0/0xe4
[152154.036424] [<ffffffff81166855>] SyS_pwrite64+0x64/0x82
[152154.036424] [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
[152154.036424] Code: 48 89 c7 e8 0f ff ff ff 5b 41 5c 5d c3 0f 1f 44 00 00 55 48 89 e5 41 54 53 48 89 fb e8 ae ef 00 00 49 89 c4 48 8b 03 a8 01 75 02 <0f> 0b 4d 85 e4 74 59 49 8b 3c 2$
[152154.036424] RIP [<ffffffff8111a9d5>] clear_page_dirty_for_io+0x1e/0x90
[152154.036424] RSP <ffff880429effc68>
[152154.242621] ---[ end trace e3d3376b23a57041 ]---
Fix this by returning the error EOPNOTSUPP if an attempt to copy an
inline extent into a non-zero offset happens, just like what is done for
other scenarios that would require copying/splitting inline extents,
which were introduced by the following commits:
00fdf13a2e ("Btrfs: fix a crash of clone with inline extents's split")
3f9e3df8da ("btrfs: replace error code from btrfs_drop_extents")
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
They just call file_inode and then the corresponding *_inode_file_wait
function. Just make them static inlines instead.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Now that we have file locking helpers that can deal with an inode
instead of a filp, we can change the NFSv4 locking code to use that
instead.
This should fix the case where we have a filp that is closed while flock
or OFD locks are set on it, and the task is signaled so that it doesn't
wait for the LOCKU reply to come in before the filp is freed. At that
point we can end up with a use-after-free with the current code, which
relies on dereferencing the fl_file in the lock request.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: "J. Bruce Fields" <bfields@fieldses.org>
Tested-by: "J. Bruce Fields" <bfields@fieldses.org>
Allow callers to pass in an inode instead of a filp.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: "J. Bruce Fields" <bfields@fieldses.org>
Tested-by: "J. Bruce Fields" <bfields@fieldses.org>
...and rename it to better describe how it works.
In order to fix a use-after-free in NFS, we need to be able to remove
locks from an inode after the filp associated with them may have already
been freed. flock_lock_file already only dereferences the filp to get to
the inode, so just change it so the callers do that.
All of the callers already pass in a lock request that has the fl_file
set properly, so we don't need to pass it in individually. With that
change it now only dereferences the filp to get to the inode, so just
push that out to the callers.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: "J. Bruce Fields" <bfields@fieldses.org>
Tested-by: "J. Bruce Fields" <bfields@fieldses.org>
This reverts commit db2efec0ca.
William reported that he was seeing instability with this patch, which
is likely due to the fact that it can cause the kernel to take a new
reference to a filp after the last reference has already been put.
Revert this patch for now, as we'll need to fix this in another way.
Cc: stable@vger.kernel.org
Reported-by: William Dauchy <william@gandi.net>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: "J. Bruce Fields" <bfields@fieldses.org>
Tested-by: "J. Bruce Fields" <bfields@fieldses.org>
Pull VFS fixes from Al Viro:
"Fixes for this cycle regression in overlayfs and a couple of
long-standing (== all the way back to 2.6.12, at least) bugs"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
freeing unlinked file indefinitely delayed
fix a braino in ovl_d_select_inode()
9p: don't leave a half-initialized inode sitting around
Normally opening a file, unlinking it and then closing will have
the inode freed upon close() (provided that it's not otherwise busy and
has no remaining links, of course). However, there's one case where that
does *not* happen. Namely, if you open it by fhandle with cold dcache,
then unlink() and close().
In normal case you get d_delete() in unlink(2) notice that dentry
is busy and unhash it; on the final dput() it will be forcibly evicted from
dcache, triggering iput() and inode removal. In this case, though, we end
up with *two* dentries - disconnected (created by open-by-fhandle) and
regular one (used by unlink()). The latter will have its reference to inode
dropped just fine, but the former will not - it's considered hashed (it
is on the ->s_anon list), so it will stay around until the memory pressure
will finally do it in. As the result, we have the final iput() delayed
indefinitely. It's trivial to reproduce -
void flush_dcache(void)
{
system("mount -o remount,rw /");
}
static char buf[20 * 1024 * 1024];
main()
{
int fd;
union {
struct file_handle f;
char buf[MAX_HANDLE_SZ];
} x;
int m;
x.f.handle_bytes = sizeof(x);
chdir("/root");
mkdir("foo", 0700);
fd = open("foo/bar", O_CREAT | O_RDWR, 0600);
close(fd);
name_to_handle_at(AT_FDCWD, "foo/bar", &x.f, &m, 0);
flush_dcache();
fd = open_by_handle_at(AT_FDCWD, &x.f, O_RDWR);
unlink("foo/bar");
write(fd, buf, sizeof(buf));
system("df ."); /* 20Mb eaten */
close(fd);
system("df ."); /* should've freed those 20Mb */
flush_dcache();
system("df ."); /* should be the same as #2 */
}
will spit out something like
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 322023 303843 1131 100% /
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 322023 303843 1131 100% /
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 322023 283282 21692 93% /
- inode gets freed only when dentry is finally evicted (here we trigger
than by remount; normally it would've happened in response to memory
pressure hell knows when).
Cc: stable@vger.kernel.org # v2.6.38+; earlier ones need s/kill_it/unhash_it/
Acked-by: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
when opening a directory we want the overlayfs inode, not one from
the topmost layer.
Reported-By: Andrey Jr. Melnikov <temnota.am@gmail.com>
Tested-By: Andrey Jr. Melnikov <temnota.am@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When we have an extent that got N references removed and N new references
added in the same transaction, we must run the insertion of the references
first because otherwise the last removed reference will remove the extent
item from the extent tree, resulting in a failure for the insertions.
This is a regression introduced in the 4.2-rc1 release and this fix just
brings back the behaviour of selecting reference additions before any
reference removals.
The following test case for fstests reproduces the issue:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_dm_flakey
_require_cloner
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create prealloc extent covering range [160K, 620K[
$XFS_IO_PROG -f -c "falloc 160K 460K" $SCRATCH_MNT/foo
# Now write to the last 80K of the prealloc extent plus 40K to the unallocated
# space that immediately follows it. This creates a new extent of 40K that spans
# the range [620K, 660K[.
$XFS_IO_PROG -c "pwrite -S 0xaa 540K 120K" $SCRATCH_MNT/foo | _filter_xfs_io
# At this point, there are now 2 back references to the prealloc extent in our
# extent tree. Both are for our file offset 160K and one relates to a file
# extent item with a data offset of 0 and a length of 380K, while the other
# relates to a file extent item with a data offset of 380K and a length of 80K.
# Make sure everything done so far is durably persisted (all back references are
# in the extent tree, etc).
sync
# Now clone all extents of our file that cover the offset 160K up to its eof
# (660K at this point) into itself at offset 2M. This leaves a hole in the file
# covering the range [660K, 2M[. The prealloc extent will now be referenced by
# the file twice, once for offset 160K and once for offset 2M. The 40K extent
# that follows the prealloc extent will also be referenced twice by our file,
# once for offset 620K and once for offset 2M + 460K.
$CLONER_PROG -s $((160 * 1024)) -d $((2 * 1024 * 1024)) -l 0 $SCRATCH_MNT/foo \
$SCRATCH_MNT/foo
# Now create one new extent in our file with a size of 100Kb. It will span the
# range [3M, 3M + 100K[. It also will cause creation of a hole spanning the
# range [2M + 460K, 3M[. Our new file size is 3M + 100K.
$XFS_IO_PROG -c "pwrite -S 0xbb 3M 100K" $SCRATCH_MNT/foo | _filter_xfs_io
# At this point, there are now (in memory) 4 back references to the prealloc
# extent.
#
# Two of them are for file offset 160K, related to file extent items
# matching the file offsets 160K and 540K respectively, with data offsets of
# 0 and 380K respectively, and with lengths of 380K and 80K respectively.
#
# The other two references are for file offset 2M, related to file extent items
# matching the file offsets 2M and 2M + 380K respectively, with data offsets of
# 0 and 380K respectively, and with lengths of 389K and 80K respectively.
#
# The 40K extent has 2 back references, one for file offset 620K and the other
# for file offset 2M + 460K.
#
# The 100K extent has a single back reference and it relates to file offset 3M.
# Now clone our 100K extent into offset 600K. That offset covers the last 20K
# of the prealloc extent, the whole 40K extent and 40K of the hole starting at
# offset 660K.
$CLONER_PROG -s $((3 * 1024 * 1024)) -d $((600 * 1024)) -l $((100 * 1024)) \
$SCRATCH_MNT/foo $SCRATCH_MNT/foo
# At this point there's only one reference to the 40K extent, at file offset
# 2M + 460K, we have 4 references for the prealloc extent (2 for file offset
# 160K and 2 for file offset 2M) and 2 references for the 100K extent (1 for
# file offset 3M and a new one for file offset 600K).
# Now fsync our file to make all its new data and metadata updates are durably
# persisted and present if a power failure/crash happens after a successful
# fsync and before the next transaction commit.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
echo "File digest before power failure:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
# Silently drop all writes and ummount to simulate a crash/power failure.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again, mount to trigger log replay and validate file contents.
# During log replay, the btrfs delayed references implementation used to run the
# deletion of back references before the addition of new back references, which
# made the addition fail as it didn't find the key in the extent tree that it
# was looking for. The failure triggered by this test was related to the 40K
# extent, which got 1 reference dropped and 1 reference added during the fsync
# log replay - when running the delayed references at transaction commit time,
# btrfs was applying the deletion before the insertion, resulting in a failure
# of the insertion that ended up turning the fs into read-only mode.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
echo "File digest after log replay:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
_unmount_flakey
status=0
exit
This issue turned the filesystem into read-only mode (current transaction
aborted) and produced the following traces:
[ 8247.578385] ------------[ cut here ]------------
[ 8247.579947] WARNING: CPU: 0 PID: 11341 at fs/btrfs/extent-tree.c:1547 lookup_inline_extent_backref+0x17d/0x45d [btrfs]()
(...)
[ 8247.601697] Call Trace:
[ 8247.602222] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[ 8247.604320] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[ 8247.605488] [<ffffffffa0506c8d>] ? lookup_inline_extent_backref+0x17d/0x45d [btrfs]
[ 8247.608226] [<ffffffffa0506c8d>] lookup_inline_extent_backref+0x17d/0x45d [btrfs]
[ 8247.617061] [<ffffffffa0507957>] insert_inline_extent_backref+0x41/0xb2 [btrfs]
[ 8247.621856] [<ffffffffa0507c4f>] __btrfs_inc_extent_ref+0x8c/0x20a [btrfs]
[ 8247.624366] [<ffffffffa050ee60>] __btrfs_run_delayed_refs+0xb0c/0xd49 [btrfs]
[ 8247.626176] [<ffffffffa0510dcd>] btrfs_run_delayed_refs+0x6d/0x1d4 [btrfs]
[ 8247.627435] [<ffffffff81155c9b>] ? __cache_free+0x4a7/0x4b6
[ 8247.628531] [<ffffffffa0520482>] btrfs_commit_transaction+0x4c/0xa20 [btrfs]
(...)
[ 8247.648430] ---[ end trace 2461e55f92c2ac2d ]---
[ 8247.727263] WARNING: CPU: 3 PID: 11341 at fs/btrfs/extent-tree.c:2771 btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]()
[ 8247.728954] BTRFS: Transaction aborted (error -5)
(...)
[ 8247.760866] Call Trace:
[ 8247.761534] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[ 8247.764271] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[ 8247.767582] [<ffffffffa0510e04>] ? btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]
[ 8247.769373] [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
[ 8247.770836] [<ffffffffa0510e04>] btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]
[ 8247.772532] [<ffffffff81155c9b>] ? __cache_free+0x4a7/0x4b6
[ 8247.773664] [<ffffffffa0520482>] btrfs_commit_transaction+0x4c/0xa20 [btrfs]
[ 8247.775047] [<ffffffff81087310>] ? trace_hardirqs_on+0xd/0xf
[ 8247.776176] [<ffffffff81155dd5>] ? kmem_cache_free+0x12b/0x189
[ 8247.777427] [<ffffffffa055a920>] btrfs_recover_log_trees+0x2da/0x33d [btrfs]
[ 8247.778575] [<ffffffffa055898e>] ? replay_one_extent+0x4fc/0x4fc [btrfs]
[ 8247.779838] [<ffffffffa051e265>] open_ctree+0x1cc0/0x201a [btrfs]
[ 8247.781020] [<ffffffff81120f48>] ? register_shrinker+0x56/0x81
[ 8247.782285] [<ffffffffa04fb12c>] btrfs_mount+0x5f0/0x734 [btrfs]
(...)
[ 8247.793394] ---[ end trace 2461e55f92c2ac2e ]---
[ 8247.794276] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2771: errno=-5 IO failure
[ 8247.797335] BTRFS: error (device dm-0) in btrfs_replay_log:2375: errno=-5 IO failure (Failed to recover log tree)
Fixes: c6fc245499 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Acked-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
When we call btrfs_commit_transaction(), we splice the list "ordered"
of our transaction handle into the transaction's "pending_ordered"
list, but we don't re-initialize the "ordered" list of our transaction
handle, this means it still points to the same elements it used to
before the splice. Then we check if the current transaction's state is
>= TRANS_STATE_COMMIT_START and if it is we end up calling
btrfs_end_transaction() which simply splices again the "ordered" list
of our handle into the transaction's "pending_ordered" list, leaving
multiple pointers to the same ordered extents which results in list
corruption when we are iterating, removing and freeing ordered extents
at btrfs_wait_pending_ordered(), resulting in access to dangling
pointers / use-after-free issues.
Similarly, btrfs_end_transaction() can end up in some cases calling
btrfs_commit_transaction(), and both did a list splice of the transaction
handle's "ordered" list into the transaction's "pending_ordered" without
re-initializing the handle's "ordered" list, resulting in exactly the
same problem.
This produces the following warning on a kernel with linked list
debugging enabled:
[109749.265416] ------------[ cut here ]------------
[109749.266410] WARNING: CPU: 7 PID: 324 at lib/list_debug.c:59 __list_del_entry+0x5a/0x98()
[109749.267969] list_del corruption. prev->next should be ffff8800ba087e20, but was fffffff8c1f7c35d
(...)
[109749.287505] Call Trace:
[109749.288135] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[109749.298080] [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2
[109749.331605] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[109749.334849] [<ffffffff81260642>] ? __list_del_entry+0x5a/0x98
[109749.337093] [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
[109749.337847] [<ffffffff81260642>] __list_del_entry+0x5a/0x98
[109749.338678] [<ffffffffa053e8bf>] btrfs_wait_pending_ordered+0x46/0xdb [btrfs]
[109749.340145] [<ffffffffa058a65f>] ? __btrfs_run_delayed_items+0x149/0x163 [btrfs]
[109749.348313] [<ffffffffa054077d>] btrfs_commit_transaction+0x36b/0xa10 [btrfs]
[109749.349745] [<ffffffff81087310>] ? trace_hardirqs_on+0xd/0xf
[109749.350819] [<ffffffffa055370d>] btrfs_sync_file+0x36f/0x3fc [btrfs]
[109749.351976] [<ffffffff8118ec98>] vfs_fsync_range+0x8f/0x9e
[109749.360341] [<ffffffff8118ecc3>] vfs_fsync+0x1c/0x1e
[109749.368828] [<ffffffff8118ee1d>] do_fsync+0x34/0x4e
[109749.369790] [<ffffffff8118f045>] SyS_fsync+0x10/0x14
[109749.370925] [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
[109749.382274] ---[ end trace 48e0d07f7c03d95a ]---
On a non-debug kernel this leads to invalid memory accesses, causing a
crash. Fix this by using list_splice_init() instead of list_splice() in
btrfs_commit_transaction() and btrfs_end_transaction().
Cc: stable@vger.kernel.org
Fixes: 50d9aa99bd ("Btrfs: make sure logged extents complete in the current transaction V3"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
We were allocating memory with memdup_user() but we were never releasing
that memory. This affected pretty much every call to the ioctl, whether
it deduplicated extents or not.
This issue was reported on IRC by Julian Taylor and on the mailing list
by Marcel Ritter, credit goes to them for finding the issue.
Reported-by: Julian Taylor <jtaylor.debian@googlemail.com>
Reported-by: Marcel Ritter <ritter.marcel@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
If the no_holes feature is enabled, we attempt to shrink a file to a size
that ends up in the middle of a hole and we don't have any file extent
items in the fs/subvol tree that go beyond the new file size (or any
ordered extents that will insert such file extent items), we end up not
updating the inode's disk_i_size, we only update the inode's i_size.
This means that after unmounting and mounting the filesystem, or after
the inode is evicted and reloaded, its i_size ends up being incorrect
(an inode's i_size is set to the disk_i_size field when an inode is
loaded). This happens when btrfs_truncate_inode_items() doesn't find
any file extent items to drop - in this case it never makes a call to
btrfs_ordered_update_i_size() in order to update the inode's disk_i_size.
Example reproducer:
$ mkfs.btrfs -O no-holes -f /dev/sdd
$ mount /dev/sdd /mnt
# Create our test file with some data and durably persist it.
$ xfs_io -f -c "pwrite -S 0xaa 0 128K" /mnt/foo
$ sync
# Append some data to the file, increasing its size, and leave a hole
# between the old size and the start offset if the following write. So
# our file gets a hole in the range [128Kb, 256Kb[.
$ xfs_io -c "truncate 160K" /mnt/foo
# We expect to see our file with a size of 160Kb, with the first 128Kb
# of data all having the value 0xaa and the remaining 32Kb of data all
# having the value 0x00.
$ od -t x1 /mnt/foo
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0500000
# Now cleanly unmount and mount again the filesystem.
$ umount /mnt
$ mount /dev/sdd /mnt
# We expect to get the same result as before, a file with a size of
# 160Kb, with the first 128Kb of data all having the value 0xaa and the
# remaining 32Kb of data all having the value 0x00.
$ od -t x1 /mnt/foo
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0400000
In the example above the file size/data do not match what they were before
the remount.
Fix this by always calling btrfs_ordered_update_i_size() with a size
matching the size the file was truncated to if btrfs_truncate_inode_items()
is not called for a log tree and no file extent items were dropped. This
ensures the same behaviour as when the no_holes feature is not enabled.
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull btrfs fixes from Chris Mason:
"This is an assortment of fixes. Most of the commits are from Filipe
(fsync, the inode allocation cache and a few others). Mark kicked in
a series fixing corners in the extent sharing ioctls, and everyone
else fixed up on assorted other problems"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix wrong check for btrfs_force_chunk_alloc()
Btrfs: fix warning of bytes_may_use
Btrfs: fix hang when failing to submit bio of directIO
Btrfs: fix a comment in inode.c:evict_inode_truncate_pages()
Btrfs: fix memory corruption on failure to submit bio for direct IO
btrfs: don't update mtime/ctime on deduped inodes
btrfs: allow dedupe of same inode
btrfs: fix deadlock with extent-same and readpage
btrfs: pass unaligned length to btrfs_cmp_data()
Btrfs: fix fsync after truncate when no_holes feature is enabled
Btrfs: fix fsync xattr loss in the fast fsync path
Btrfs: fix fsync data loss after append write
Btrfs: fix crash on close_ctree() if cleaner starts new transaction
Btrfs: fix race between caching kthread and returning inode to inode cache
Btrfs: use kmem_cache_free when freeing entry in inode cache
Btrfs: fix race between balance and unused block group deletion
btrfs: add error handling for scrub_workers_get()
btrfs: cleanup noused initialization of dev in btrfs_end_bio()
btrfs: qgroup: allow user to clear the limitation on qgroup
It is OK for layout segments to remain hashed even if no-one holds any
references to them, provided that the segments are still valid.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If a process reopens the file before we can send off the CLOSE/DELEGRETURN,
then pnfs_roc_drain() may end up waiting for a new set of layout segments
that are marked as return-on-close, but haven't yet been returned.
Fix this by only waiting for those layout segments that were invalidated in
pnfs_roc().
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If one or more of the layout segments reports an error during I/O, then
we may have to send a layoutreturn to report the error back to the NFS
metadata server.
This patch ensures that the return-on-close code can detect the
outstanding layoutreturn, and not preempt it.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
There is a possibility of nothing being allocated to the new_opts in
case of memory pressure, therefore return ENOMEM for such case.
Signed-off-by: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Signed-off-by: Mikulas Patocka <mikulas@twibright.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds support for fstrim to the HPFS filesystem.
Signed-off-by: Mikulas Patocka <mikulas@twibright.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The FITRIM ioctl has the same arguments on 32-bit and 64-bit
architectures, so we can add it to the list of compatible ioctls and
drop it from compat_ioctl method of various filesystems.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ted Ts'o <tytso@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For a UDF filesystem configured with an Unallocated Space Table,
a filesystem operation that triggers an update to the table results
in on-disk corruption that prevents remounting:
udf_read_tagged: tag version 0x0000 != 0x0002 || 0x0003, block 274
For example:
1. Create a filesystem
$ mkudffs --media-type=hd --blocksize=512 --lvid=BUGTEST \
--vid=BUGTEST --fsid=BUGTEST --space=unalloctable \
/dev/mmcblk0
2. Mount it
# mount /dev/mmcblk0 /mnt
3. Create a file
$ echo "No corruption, please" > /mnt/new.file
4. Umount
# umount /mnt
5. Attempt remount
# mount /dev/mmcblk0 /mnt
This appears to be a longstanding bug caused by zero-initialization of
the Unallocated Space Entry block buffer and only partial repopulation
of required fields before writing to disk.
Commit 0adfb339fd64 ("udf: Fix unalloc space handling in udf_update_inode")
addressed one such field, but several others are required.
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.com>
Just pass NULL as locked_page in case of first block in the indirect
chain. Old calling conventions aside, a reason for having 'phys'
was that ufs_inode_getfrag() used to be able to do _two_ allocations
- indirect block and extending/reallocating a tail. We needed
locked_page for the latter (it's a data), but we also needed to
figure out that indirect block is metadata. So we used to pass
non-NULL locked_page in all cases *and* used NULL phys as
indication of being asked to allocate an indirect.
With tail unpacking taken into a separate function we don't need
those convolutions anymore.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The value passed to ufs_inode_getblock() as the 3rd argument
had lower bits ignored; the upper bits were shifted down
and used and they actually make sense - those are _lower_ bits
of index in indirect block (i.e. they form the index within
a fragment within an indirect block).
Pass those as argument. Upper bits of index (i.e. the number
of fragment within indirect block) will join them shortly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
These calling conventions are rudiments of pre-2.3 times; they
really need to be sanitized. This is the first step; next
will be _always_ returning a block number, instead of this
"return a pointer to buffer_head, except when we get to the
actual data" crap.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and massage ufs_frag_map() to take those instead of fragment number.
As it is, we duplicate the damn thing on the write side, open-coded and
bloody hard to follow.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We are holding ->truncate_mutex, so nobody else can alter our
block pointers. Rechecks/retries were needed back when we
only held BKL there, and had to cope with write_begin/writepage
and writepage/truncate races. Can't happen anymore...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There's a case when an indirect block gets dirtied for no good
reason - when there's a hole starting in the middle of area
covered by it and spanning past its end, and truncate() is done
precisely to the beginning of the hole.
The block is obviously not modified at all - all removals happen
beyond it. However, existing code ends up dirtying it just in
case. It's trivial to fix and while it's not a real bug by any
stretch of imagination, it makes the damn thing harder to follow.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Note that it's already made unreachable from the inode, so we don't have
to worry about ufs_frag_map() walking into something already freed.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Have caller fetch the block number *and* remove it from wherever
it was. Pass the block number instead.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We always have 0 < depth2 <= depth in there, so
if (--depth) {
if (--depth2)
A
B
} else {
C // not using depth2
}
D // not using depth2
is equivalent to
if (--depth2)
A with s/depth/depth - 1/
if (--depth)
B
else
C
D
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For calls in __ufs_truncate_blocks() it's just a matter of not
incrementing offsets[0] and not making that call - immediately
following loop will be executed one extra time and we'll be just
fine. For recursive call in ufs_trunc_branch() itself, just
assing NULL to offsets if we would be about to make such call.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of manually checking that the array contains only zeroes,
find the position of the last non-zero (in __ufs_truncate(), where
we can conveniently do that) and use that to tell if there's
any non-zero in the array tail passed to ufs_trunc_...indirect().
The goal of all that clumsiness is to get fold these functions
together.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
rather than bitslicing the offset just formed as sum of shifted indices,
pass the array of those indices itself. NULL is used as equivalent
of "all zeroes" (== free the entire branch).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
IOW, the distance of cutoff from the begining of the branch
(in blocks).
That (and the fact that block just prior to cutoff is guaranteed to
be present) allows to tell whether to free triple indirect block
just by looking at the offset.
While we are at it, using u64 for index in the block is wrong -
those should be unsigned int.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Use ufs_block_to_path() to find the cutoff path in the block pointers' tree.
For now just use the information about the depth (to bypass the fully
preserved subtrees); subsequent commits will use the information about actual
path.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
type makes no sense - those are indices in block number arrays, not
block numbers. And no, UFS is not likely to grow indirect blocks with
4Gpointers in them...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It is closely tied to block pointers handling there, can benefit
from existing helpers, etc. - no point keeping them apart.
Trimmed the trailing whitespaces in inode.c at the same time.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently - on lock_ufs(), eventually - on per-inode mutex.
lock_ufs() used to be mere BKL, which is much weaker, so it needed
those rechecks. BKL doesn't provide any exclusion once we lose CPU;
its blind replacement, OTOH, _does_. Making that per-filesystem was
an atrocity, but at least we can simplify life here. And yes, we
certainly need to make that sucker per-inode - these days inode.c and
truncate.c uses are needed only to protect the block pointers.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There were 3 remaining users; in two of them we took ->s_lock immediately
after lock_ufs() and held it until just before unlock_ufs(); the third
one (statfs) could not be called from itself or from other two (remount
and sync_fs). Just use ->s_lock in statfs and don't bother with lock_ufs
at all.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* stores to block pointers are under per-inode seqlock (meta_lock) and
mutex (truncate_mutex)
* fetches of block pointers are either under truncate_mutex, or wrapped
into seqretry loop on meta_lock
* all changes of ->i_size are under truncate_mutex and i_mutex
* all changes of ->i_lastfrag are under truncate_mutex
It's similar to what ext2 is doing; the main difference is that unlike
ext2 we can't rely upon the atomicity of stores into block pointers -
on UFS2 they are 64bit. So we can't cut the corner when switching
a pointer from NULL to non-NULL as we could in ext2_splice_branch()
and need to use meta_lock on all modifications.
We use seqlock where ext2 uses rwlock; ext2 could probably also benefit
from such change...
Another non-trivial difference is that with UFS we *cannot* have reader
grab truncate_mutex in case of race - it has to keep retrying. That
might be possible to change, but not until we lift tail unpacking
several levels up in call chain.
After that commit we do *NOT* hold fs-wide serialization on accesses
to block pointers anymore. Moreover, lock_ufs() can become a normal
mutex now - it's only used on statfs, remount and sync_fs and none
of those uses are recursive. As the matter of fact, *now* it can be
collapsed with ->s_lock, and be eventually replaced with saner
per-cylinder-group spinlocks, but that's a separate story.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
right now it doesn't matter (lock_ufs() serializes everything),
but when we switch to per-inode locking, it will be needed.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Broken in "[PATCH] ufs: truncate should allocate block for last byte";
all way back in 2006. ufs_setattr() hadn't been the only user of
vmtruncate() and eliminating ->truncate() method required corrections
in a bunch of places. Eventually those places had migrated into
->write_begin() failure exit and ->write_end() after short copy...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
a) move it inside ufs_truncate()
b) ufs_free_inode() doesn't need it - it's serialized on ->s_lock
c) ufs_write_inode() doesn't need it either (and can be called without
it anyway).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* address corner cases for indirect blocks->extent migration
* fix reserved block accounting invalidate_page when
page_size != block_size (i.e., ppc or 1k block size file systems)
* fix deadlocks when a memcg is under heavy memory pressure
* fix fencepost error in lazytime optimization
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJVmW27AAoJEPL5WVaVDYGjmEkIAJsGHVIKur1Kp//FhejSB/wI
B0d+UuQt5kdAE3lNxC7lHO1NqIhvnS7eBho+52LG8V4JDRrzTbE1GdbsBhAIk6FW
CcsQvsHAI99QJMdqOCachu/+nhCwIINGkxmbumhNaZoJPn6wmGQzCA3Cn5qmnGnK
Ctbk6li1HuMXyzbbvxCLfaD/xCUs1NCdufEnRU44i0U4OfaYNpiAhddeGIQ8WMEQ
G14l2JvhIfye6fG8lnCzfacFvnT9zvvSGfRO3ZQjC4Az1EogIUbhCPLvq0ebDbPp
i4eRfrSRdXmMojqmW/knET8skXQVZVnD7LWuvkue+n47UbTH2c0roTbp4l76W+U=
=x8Cc
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 bugfixes from Ted Ts'o:
"Bug fixes (all for stable kernels) for ext4:
- address corner cases for indirect blocks->extent migration
- fix reserved block accounting invalidate_page when
page_size != block_size (i.e., ppc or 1k block size file systems)
- fix deadlocks when a memcg is under heavy memory pressure
- fix fencepost error in lazytime optimization"
* tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: replace open coded nofail allocation in ext4_free_blocks()
ext4: correctly migrate a file with a hole at the beginning
ext4: be more strict when migrating to non-extent based file
ext4: fix reservation release on invalidatepage for delalloc fs
ext4: avoid deadlocks in the writeback path by using sb_getblk_gfp
bufferhead: Add _gfp version for sb_getblk()
ext4: fix fencepost error in lazytime optimization
Ensure that the calls to renew_lease() in open_done() etc. only apply
to session-less versions of NFSv4.x (i.e. NFSv4.0).
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Instead of just kicking off lease recovery, we should look into the
sequence flag errors and handle them.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
RFC5661 states:
The server has encountered an unrecoverable fault with the
backchannel (e.g., it has lost track of the sequence ID for a slot
in the backchannel). The client MUST stop sending more requests
on the session's fore channel, wait for all outstanding requests
to complete on the fore and back channel, and then destroy the
session.
Ensure we do so...
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Try to handle this for now by invalidating all outstanding layouts for this
server and then testing all the open+lock+delegation stateids.
At some later stage, we may want to optimise by separating out the testing of
delegation stateids only, and adding testing of layout stateids.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If the server tells us that only some state has been revoked, then we
need to run the full TEST_STATEID dog and pony show in order to discover
which locks and delegations are still OK. Currently we blow away all
state, which means that we lose all locks!
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
ext4_free_blocks is looping around the allocation request and mimics
__GFP_NOFAIL behavior without any allocation fallback strategy. Let's
remove the open coded loop and replace it with __GFP_NOFAIL. Without the
flag the allocator has no way to find out never-fail requirement and
cannot help in any way.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...