Enable/disable newly documented SMEP (Supervisor Mode Execution Protection) CPU
feature in kernel. CR4.SMEP (bit 20) is 0 at power-on. If the feature is
supported by CPU (X86_FEATURE_SMEP), enable SMEP by setting CR4.SMEP. New kernel
option nosmep disables the feature even if the feature is supported by CPU.
[ hpa: moved the call to setup_smep() until after the vendor-specific
initialization; that ensures that CPUID features are unmasked. We
will still run it before we have userspace (never mind uncontrolled
userspace). ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
LKML-Reference: <1305157865-31727-1-git-send-email-fenghua.yu@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If kernel intends to use enhanced REP MOVSB/STOSB, it must ensure
IA32_MISC_ENABLE.Fast_String_Enable (bit 0) is set and CPUID.(EAX=07H, ECX=0H):
EBX[bit 9] also reports 1.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1305671358-14478-3-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
CPUID leaf 7, subleaf 0 returns the maximum subleaf in EAX, not the
number of subleaves. Since so far only subleaf 0 is defined (and only
the EBX bitfield) we do not need to qualify the test.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1305660806-17519-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@kernel.org> 2.6.36..39
Trying to enable the local APIC timer on early K8 revisions
uncovers a number of other issues with it, in conjunction with
the C1E enter path on AMD. Fixing those causes much more churn
and troubles than the benefit of using that timer brings so
don't enable it on K8 at all, falling back to the original
functionality the kernel had wrt to that.
Reported-and-bisected-by: Nick Bowler <nbowler@elliptictech.com>
Cc: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Nick Bowler <nbowler@elliptictech.com>
Cc: Joerg-Volker-Peetz <jvpeetz@web.de>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1305636919-31165-3-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This reverts commit e20a2d205c, as it crashes
certain boxes with specific AMD CPU models.
Moving the lower endpoint of the Erratum 400 check to accomodate
earlier K8 revisions (A-E) opens a can of worms which is simply
not worth to fix properly by tweaking the errata checking
framework:
* missing IntPenging MSR on revisions < CG cause #GP:
http://marc.info/?l=linux-kernel&m=130541471818831
* makes earlier revisions use the LAPIC timer instead of the C1E
idle routine which switches to HPET, thus not waking up in
deeper C-states:
http://lkml.org/lkml/2011/4/24/20
Therefore, leave the original boundary starting with K8-revF.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Steppings A1 and B0 of Celeron Covington are currently misdetected as
Pentium II (Dixon). Fix it by removing the stepping check.
[ hpa: this fixes this specific bug... the CPUID documentation
specifies that the L2 cache size can disambiguate additional CPUs;
this patch does not fix that. ]
Signed-off-by: Ondrej Zary <linux@rainbow-software.org>
Link: http://lkml.kernel.org/r/201105162138.15416.linux@rainbow-software.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We provide two slots to disable cache indices, and have a check to
prevent both slots to be used for the same index.
If the user disables the same index on different subcaches, both slots
will hold the same index, e.g.
$ echo 2047 > /sys/devices/system/cpu/cpu0/cache/index3/cache_disable_0
$ cat /sys/devices/system/cpu/cpu0/cache/index3/cache_disable_0
2047
$ echo 1050623 > /sys/devices/system/cpu/cpu0/cache/index3/cache_disable_1
$ cat /sys/devices/system/cpu/cpu0/cache/index3/cache_disable_1
2047
due to the fact that the check was looking only at index bits [11:0]
and was ignoring writes to bits outside that range. The more correct
fix is to simply check whether the index is within the bounds of
[0..l3->indices].
While at it, cleanup comments and drop now-unused local macros.
Signed-off-by: Frank Arnold <frank.arnold@amd.com>
Link: http://lkml.kernel.org/r/1305553188-21061-3-git-send-email-bp@amd64.org
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
732eacc054 converted code around the
kernel using nested max() macros to use the new max3 macro but forgot to
remove the old line in intel_cacheinfo.c. Fix it.
Cc: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: Frank Arnold <farnold@amd64.org>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1305553188-21061-2-git-send-email-bp@amd64.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This patch fixes a bug reported by a customer, who found
that many unreasonable error interrupts reported on all
non-boot CPUs (APs) during the system boot stage.
According to Chapter 10 of Intel Software Developer Manual
Volume 3A, Local APIC may signal an illegal vector error when
an LVT entry is set as an illegal vector value (0~15) under
FIXED delivery mode (bits 8-11 is 0), regardless of whether
the mask bit is set or an interrupt actually happen. These
errors are seen as error interrupts.
The initial value of thermal LVT entries on all APs always reads
0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI
sequence to them and LVT registers are reset to 0s except for
the mask bits which are set to 1s when APs receive INIT IPI.
When the BIOS takes over the thermal throttling interrupt,
the LVT thermal deliver mode should be SMI and it is required
from the kernel to keep AP's LVT thermal monitoring register
programmed as such as well.
This issue happens when BIOS does not take over thermal throttling
interrupt, AP's LVT thermal monitor register will be restored to
0x10000 which means vector 0 and fixed deliver mode, so all APs will
signal illegal vector error interrupts.
This patch check if interrupt delivery mode is not fixed mode before
restoring AP's LVT thermal monitor register.
Signed-off-by: Youquan Song <youquan.song@intel.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Yong Wang <yong.y.wang@intel.com>
Cc: hpa@linux.intel.com
Cc: joe@perches.com
Cc: jbaron@redhat.com
Cc: trenn@suse.de
Cc: kent.liu@intel.com
Cc: chaohong.guo@intel.com
Cc: <stable@kernel.org> # As far back as possible
Link: http://lkml.kernel.org/r/1303402963-17738-1-git-send-email-youquan.song@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
b may be added to a list, but is not removed before being freed
in the case of an error. This is done in the corresponding
deallocation function, so the code here has been changed to
follow that.
The sematic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression E,E1,E2;
identifier l;
@@
*list_add(&E->l,E1);
... when != E1
when != list_del(&E->l)
when != list_del_init(&E->l)
when != E = E2
*kfree(E);// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1305294731-12127-1-git-send-email-julia@diku.dk
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Both warning and warning_symbol are nowhere used.
Let's get rid of them.
Signed-off-by: Richard Weinberger <richard@nod.at>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Soeren Sandmann Pedersen <ssp@redhat.com>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: x86 <x86@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Link: http://lkml.kernel.org/r/1305205872-10321-2-git-send-email-richard@nod.at
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The Intel Nehalem offcore bits implemented in:
e994d7d23a: perf: Fix LLC-* events on Intel Nehalem/Westmere
... are wrong: they implemented _ACCESS as _HIT and counted OTHER_CORE_HIT* as
MISS even though its clearly documented as an L3 hit ...
Fix them and the Westmere definitions as well.
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1299119690-13991-3-git-send-email-ming.m.lin@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extend the Intel SandyBridge PMU driver with definitions
for generic front-end and back-end stall events.
( As commit 3011203 "perf events, x86: Add Westmere stalled-cycles-frontend/backend
events" says, these are only approximations. )
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1304666042-17577-1-git-send-email-ming.m.lin@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With dynamic debug having gained the capability to report debug messages
also during the boot process, it offers a far superior interface for
debug messages than the custom cpufreq infrastructure. As a first step,
remove the old cpufreq_debug_printk() function and replace it with a call
to the generic pr_debug() function.
How can dynamic debug be used on cpufreq? You need a kernel which has
CONFIG_DYNAMIC_DEBUG enabled.
To enabled debugging during runtime, mount debugfs and
$ echo -n 'module cpufreq +p' > /sys/kernel/debug/dynamic_debug/control
for debugging the complete "cpufreq" module. To achieve the same goal during
boot, append
ddebug_query="module cpufreq +p"
as a boot parameter to the kernel of your choice.
For more detailled instructions, please see
Documentation/dynamic-debug-howto.txt
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Dave Jones <davej@redhat.com>
UUID needs to be written out the way it is described in
Sec 18.5.124 of ACPI 4.0a Specification.
Platform firmware's use of this UUID/_OSC is optional, which is
why we didn't notice this bug earlier.
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Cc: stable@kernel.org
Merge reason: Pick up the following two fix commits.
2be19102b7: x86, NUMA: Fix empty memblk detection in numa_cleanup_meminfo()
765af22da8: x86-32, NUMA: Fix ACPI NUMA init broken by recent x86-64 change
Scheduled NUMA init 32/64bit unification changes depend on these.
Signed-off-by: Tejun Heo <tj@kernel.org>
Older AMD K8 processors (Revisions A-E) are affected by erratum
400 (APIC timer interrupts don't occur in C states greater than
C1). This, for example, means that X86_FEATURE_ARAT flag should
not be set for these parts.
This addresses regression introduced by commit
b87cf80af3 ("x86, AMD: Set ARAT
feature on AMD processors") where the system may become
unresponsive until external interrupt (such as keyboard input)
occurs. This results, for example, in time not being reported
correctly, lack of progress on the system and other lockups.
Reported-by: Joerg-Volker Peetz <jvpeetz@web.de>
Tested-by: Joerg-Volker Peetz <jvpeetz@web.de>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1304113663-6586-1-git-send-email-ostr@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extend the Intel Westmere PMU driver with definitions for generic front-end and
back-end stall events.
( These are only approximations. )
Reported-by: David Ahern <dsahern@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n008io7hjpn1dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extend the Intel and AMD event definitions with generic front-end and
back-end stall events.
( These are only approximations - suggestions are welcome for better events. )
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n001io7hjpn1dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add two generic hardware events: front-end and back-end stalled cycles.
These events measure conditions when the CPU is executing code but its
capabilities are not fully utilized. Understanding such situations and
analyzing them is an important sub-task of code optimization workflows.
Both events limit performance: most front end stalls tend to be caused
by branch misprediction or instruction fetch cachemisses, backend
stalls can be caused by various resource shortages or inefficient
instruction scheduling.
Front-end stalls are the more important ones: code cannot run fast
if the instruction stream is not being kept up.
An over-utilized back-end can cause front-end stalls and thus
has to be kept an eye on as well.
The exact composition is very program logic and instruction mix
dependent.
We use the terms 'stall', 'front-end' and 'back-end' loosely and
try to use the best available events from specific CPUs that
approximate these concepts.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n000io7hjpn1dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the UOPS_EXECUTED.*,c=1,i=1 event on Intel CPUs - it is a rather
good indicator of CPU execution stalls, more sensitive and more inclusive
than the 0xa2 resource stalls event (which does not count nearly as many
stall types).
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n1eqio7hjpn2dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It was noticed that P4 machines were generating double NMIs for
each perf event. These extra NMIs lead to 'Dazed and confused'
messages on the screen.
I tracked this down to a P4 quirk that said the overflow bit had
to be cleared before re-enabling the apic LVT mask. My first
attempt was to move the un-masking inside the perf nmi handler
from before the chipset NMI handler to after.
This broke Nehalem boxes that seem to like the unmasking before
the counters themselves are re-enabled.
In order to keep this change simple for 2.6.39, I decided to
just simply move the apic LVT un-masking to the beginning of all
the chipset NMI handlers, with the exception of Pentium4's to
fix the double NMI issue.
Later on we can move the un-masking to later in the handlers to
save a number of 'extra' NMIs on those particular chipsets.
I tested this change on a P4 machine, an AMD machine, a Nehalem
box, and a core2quad box. 'perf top' worked correctly along
with various other small 'perf record' runs. Anything high
stress breaks all the machines but that is a different problem.
Thanks to various people for testing different versions of this
patch.
Reported-and-tested-by: Shaun Ruffell <sruffell@digium.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Link: http://lkml.kernel.org/r/1303900353-10242-1-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
CC: Cyrill Gorcunov <gorcunov@gmail.com>
The new PERF_COUNT_HW_STALLED_CYCLES event tries to approximate
cycles the CPU does nothing useful, because it is stalled on a
cache-miss or some other condition.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-fue11vymwqsoo5to72jxxjyl@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Nehalem CPUs the retired branch-misses event can be completely bogus,
when there are no branch-misses occuring. When there are a lot of branch
misses then the count is pretty accurate. Still, this leaves us with an
event that over-counts a lot.
Detect this erratum and work it around by using BR_MISP_EXEC.ANY events.
These will also count speculated branches but still it's a lot more
precise in practice than the architectural event.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-yyfg0bxo9jsqxd6a0ovfny27@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently the x86 backend incorrectly assumes that any BRANCH_INSN
with sample_period==1 is a BTS request. This is not true when we do
frequency driven profiling such as 'perf record -e branches'.
Solves this error:
$ perf record -e branches ./array
Error: sys_perf_event_open() syscall returned with 95 (Operation not supported).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: Ingo Molnar <mingo@elte.hu>
Cc: "Metzger, Markus T" <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-rd2y4ct71hjawzz6fpvsy9hg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's not enough to simply disable event on overflow the
cpuc->active_mask should be cleared as well otherwise counter
may stall in "active" even in real being already disabled (which
potentially may lead to the situation that user may not use this
counter further).
Don pointed out that:
" I also noticed this patch fixed some unknown NMIs
on a P4 when I stressed the box".
Tested-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Link: http://lkml.kernel.org/r/1303398203-2918-3-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Andi Kleen pointed out that the Intel offcore support patches were merged
without user-space tool support to the functionality:
|
| The offcore_msr perf kernel code was merged into 2.6.39-rc*, but the
| user space bits were not. This made it impossible to set the extra mask
| and actually do the OFFCORE profiling
|
Andi submitted a preliminary patch for user-space support, as an
extension to perf's raw event syntax:
|
| Some raw events -- like the Intel OFFCORE events -- support additional
| parameters. These can be appended after a ':'.
|
| For example on a multi socket Intel Nehalem:
|
| perf stat -e r1b7:20ff -a sleep 1
|
| Profile the OFFCORE_RESPONSE.ANY_REQUEST with event mask REMOTE_DRAM_0
| that measures any access to DRAM on another socket.
|
But this kind of usability is absolutely unacceptable - users should not
be expected to type in magic, CPU and model specific incantations to get
access to useful hardware functionality.
The proper solution is to expose useful offcore functionality via
generalized events - that way users do not have to care which specific
CPU model they are using, they can use the conceptual event and not some
model specific quirky hexa number.
We already have such generalization in place for CPU cache events,
and it's all very extensible.
"Offcore" events measure general DRAM access patters along various
parameters. They are particularly useful in NUMA systems.
We want to support them via generalized DRAM events: either as the
fourth level of cache (after the last-level cache), or as a separate
generalization category.
That way user-space support would be very obvious, memory access
profiling could be done via self-explanatory commands like:
perf record -e dram ./myapp
perf record -e dram-remote ./myapp
... to measure DRAM accesses or more expensive cross-node NUMA DRAM
accesses.
These generalized events would work on all CPUs and architectures that
have comparable PMU features.
( Note, these are just examples: actual implementation could have more
sophistication and more parameter - as long as they center around
similarly simple usecases. )
Now we do not want to revert *all* of the current offcore bits, as they
are still somewhat useful for generic last-level-cache events, implemented
in this commit:
e994d7d23a: perf: Fix LLC-* events on Intel Nehalem/Westmere
But we definitely do not yet want to expose the unstructured raw events
to user-space, until better generalization and usability is implemented
for these hardware event features.
( Note: after generalization has been implemented raw offcore events can be
supported as well: there can always be an odd event that is marginally
useful but not useful enough to generalize. DRAM profiling is definitely
*not* such a category so generalization must be done first. )
Furthermore, PERF_TYPE_RAW access to these registers was not intended
to go upstream without proper support - it was a side-effect of the above
e994d7d23a commit, not mentioned in the changelog.
As v2.6.39 is nearing release we go for the simplest approach: disable
the PERF_TYPE_RAW offcore hack for now, before it escapes into a released
kernel and becomes an ABI.
Once proper structure is implemented for these hardware events and users
are offered usable solutions we can revisit this issue.
Reported-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1302658203-4239-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The default notifier doesn't make a lot of sense to call in the
correctable errors case. Drop it and emit the mcelog decoding
hint only in the uncorrectable errors case and when no notifier
is registered. Also, limit issuing the "mcelog --ascii" message
in the rare case when we dump unreported CEs before panicking.
While at it, remove unused old x86_mce_decode_callback from the
header.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Nagananda Chumbalkar <Nagananda.Chumbalkar@hp.com>
Cc: Russ Anderson <rja@sgi.com>
Link: http://lkml.kernel.org/r/20110420102349.GB1361@aftab
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf, x86: Fix AMD family 15h FPU event constraints
perf, x86: Fix pre-defined cache-misses event for AMD family 15h cpus
perf evsel: Fix use of inherit
perf hists browser: Fix seg fault when annotate null symbol
Correctable errors are considered something rather normal on
modern hardware these days. Even more importantly, correctable
errors mean exactly that - they've been corrected by the
hardware - and there's no need to taint the kernel since
execution hasn't been compromised so far.
Also, drop tainting in the thermal throttling code for a similar
reason: crossing a thermal threshold does not mean corruption.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Acked-by: Nagananda Chumbalkar <Nagananda.Chumbalkar@hp.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1303135222-17118-1-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Using ALTERNATIVE() when checking for X86_FEATURE_PERFCTR_CORE avoids
an extra pointer chase and data cache hit.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1302913676-14352-4-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Depending on the unit mask settings some FPU events may be scheduled
only on cpu counter #3. This patch fixes this.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@googlemail.com>
Link: http://lkml.kernel.org/r/1302913676-14352-3-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With AMD cpu family 15h a unit mask was introduced for the Data Cache
Miss event (0x041/L1-dcache-load-misses). We need to enable bit 0
(first data cache miss or streaming store to a 64 B cache line) of
this mask to proper count data cache misses.
Now we set this bit for all families and models. In case a PMU does
not implement a unit mask for event 0x041 the bit is ignored.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1302913676-14352-2-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch disables GartTlbWlk errors on AMD Fam10h CPUs if
the BIOS forgets to do is (or is just too old). Letting
these errors enabled can cause a sync-flood on the CPU
causing a reboot.
The AMD BKDG recommends disabling GART TLB Wlk Error completely.
This patch is the fix for
https://bugzilla.kernel.org/show_bug.cgi?id=33012
on my machine.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/20110415131152.GJ18463@8bytes.org
Tested-by: Alexandre Demers <alexandre.f.demers@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently the option resides under X86_EXTENDED_PLATFORM due to historical
nonstandard A20M# handling. However that is no longer the case and so Elan can
be treated as part of the standard processor choice Kconfig option.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Link: http://lkml.kernel.org/r/1302245177.31620.47.camel@localhost.localdomain
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, UV: Fix kdump reboot
x86, amd-nb: Rename CPU PCI id define for F4
sound: Add delay.h to sound/soc/codecs/sn95031.c
x86, mtrr, pat: Fix one cpu getting out of sync during resume
x86, microcode: Unregister syscore_ops after microcode unloaded
x86: Stop including <linux/delay.h> in two asm header files
The MCE subsystem needs to sample an RCU-protected index outside of
any protection for that index. If this was a pointer, we would use
rcu_access_pointer(), but there is no corresponding rcu_access_index().
This commit therefore creates an rcu_access_index() and applies it
to MCE.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Zdenek Kabelac <zkabelac@redhat.com>
On laptops with core i5/i7, there were reports that after resume
graphics workloads were performing poorly on a specific AP, while
the other cpu's were ok. This was observed on a 32bit kernel
specifically.
Debug showed that the PAT init was not happening on that AP
during resume and hence it contributing to the poor workload
performance on that cpu.
On this system, resume flow looked like this:
1. BP starts the resume sequence and we reinit BP's MTRR's/PAT
early on using mtrr_bp_restore()
2. Resume sequence brings all AP's online
3. Resume sequence now kicks off the MTRR reinit on all the AP's.
4. For some reason, between point 2 and 3, we moved from BP
to one of the AP's. My guess is that printk() during resume
sequence is contributing to this. We don't see similar
behavior with the 64bit kernel but there is no guarantee that
at this point the remaining resume sequence (after AP's bringup)
has to happen on BP.
5. set_mtrr() was assuming that we are still on BP and skipped the
MTRR/PAT init on that cpu (because of 1 above)
6. But we were on an AP and this led to not reprogramming PAT
on this cpu leading to bad performance.
Fix this by doing unconditional mtrr_if->set_all() in set_mtrr()
during MTRR/PAT init. This might be unnecessary if we are still
running on BP. But it is of no harm and will guarantee that after
resume, all the cpu's will be in sync with respect to the
MTRR/PAT registers.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1301438292-28370-1-git-send-email-eric@anholt.net>
Signed-off-by: Eric Anholt <eric@anholt.net>
Tested-by: Keith Packard <keithp@keithp.com>
Cc: stable@kernel.org [v2.6.32+]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
It is more effective to use a segment prefix instead of calculating the
address of the current cpu area amd then testing flags.
Signed-off-by: Christoph Lameter <cl@linux.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
No change on the functional level, just align the table properly.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Lin Ming <ming.m.lin@intel.com>
LKML-Reference: <4D8FA213.5050108@openvz.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'syscore' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspend-2.6:
Introduce ARCH_NO_SYSDEV_OPS config option (v2)
cpufreq: Use syscore_ops for boot CPU suspend/resume (v2)
KVM: Use syscore_ops instead of sysdev class and sysdev
PCI / Intel IOMMU: Use syscore_ops instead of sysdev class and sysdev
timekeeping: Use syscore_ops instead of sysdev class and sysdev
x86: Use syscore_ops instead of sysdev classes and sysdevs
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf, x86: Complain louder about BIOSen corrupting CPU/PMU state and continue
perf, x86: P4 PMU - Read proper MSR register to catch unflagged overflows
perf symbols: Look at .dynsym again if .symtab not found
perf build-id: Add quirk to deal with perf.data file format breakage
perf session: Pass evsel in event_ops->sample()
perf: Better fit max unprivileged mlock pages for tools needs
perf_events: Fix stale ->cgrp pointer in update_cgrp_time_from_cpuctx()
perf top: Fix uninitialized 'counter' variable
tracing: Fix set_ftrace_filter probe function display
perf, x86: Fix Intel fixed counters base initialization
Eric Dumazet reported that hardware PMU events do not work on his
system, due to the BIOS corrupting PMU state:
Performance Events: PEBS fmt0+, Core2 events, Broken BIOS detected, using software events only.
[Firmware Bug]: the BIOS has corrupted hw-PMU resources (MSR 186 is 43003c)
Linus suggested that we continue in the face of such BIOS-induced CPU
state corruption:
http://lkml.org/lkml/2011/3/24/608
Such BIOSes will have to be fixed - Linux developers rely on a working and
fully capable PMU and the BIOS interfering with the CPU's PMU state is simply
not acceptable.
So this patch changes perf to continue when it detects such BIOS
interaction, some hardware events may be unreliable due to the BIOS
writing and re-writing them - there's not much the kernel can do
about that but to detect the corruption and report it.
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The read of a proper MSR register was missed and instead of
counter the configration register was tested (it has
ARCH_P4_UNFLAGGED_BIT always cleared) leading to unknown NMI
hitting the system. As result the user may obtain "Dazed and
confused, but trying to continue" message. Fix it by reading a
proper MSR register.
When an NMI happens on a P4, the perf nmi handler checks the
configuration register to see if the overflow bit is set or not
before taking appropriate action. Unfortunately, various P4
machines had a broken overflow bit, so a backup mechanism was
implemented. This mechanism checked to see if the counter
rolled over or not.
A previous commit that implemented this backup mechanism was
broken. Instead of reading the counter register, it used the
configuration register to determine if the counter rolled over
or not. Reading that bit would give incorrect results.
This would lead to 'Dazed and confused' messages for the end
user when using the perf tool (or if the nmi watchdog is
running).
The fix is to read the counter register before determining if
the counter rolled over or not.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Lin Ming <ming.m.lin@intel.com>
LKML-Reference: <4D8BAB49.3080701@openvz.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Some subsystems in the x86 tree need to carry out suspend/resume and
shutdown operations with one CPU on-line and interrupts disabled and
they define sysdev classes and sysdevs or sysdev drivers for this
purpose. This leads to unnecessarily complicated code and excessive
memory usage, so switch them to using struct syscore_ops objects for
this purpose instead.
Generally, there are three categories of subsystems that use
sysdevs for implementing PM operations: (1) subsystems whose
suspend/resume callbacks ignore their arguments entirely (the
majority), (2) subsystems whose suspend/resume callbacks use their
struct sys_device argument, but don't really need to do that,
because they can be implemented differently in an arguably simpler
way (io_apic.c), and (3) subsystems whose suspend/resume callbacks
use their struct sys_device argument, but the value of that argument
is always the same and could be ignored (microcode_core.c). In all
of these cases the subsystems in question may be readily converted to
using struct syscore_ops objects for power management and shutdown.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
APEI ERST firmware interface and implementation has no multiple users
in mind. For example, if there is four records in storage with ID: 1,
2, 3 and 4, if two ERST readers enumerate the records via
GET_NEXT_RECORD_ID as follow,
reader 1 reader 2
1
2
3
4
-1
-1
where -1 signals there is no more record ID.
Reader 1 has no chance to check record 2 and 4, while reader 2 has no
chance to check record 1 and 3. And any other GET_NEXT_RECORD_ID will
return -1, that is, other readers will has no chance to check any
record even they are not cleared by anyone.
This makes raw GET_NEXT_RECORD_ID not suitable for used by multiple
users.
To solve the issue, an in-memory ERST record ID cache is designed and
implemented. When enumerating record ID, the ID returned by
GET_NEXT_RECORD_ID is added into cache in addition to be returned to
caller. So other readers can check the cache to get all record ID
available.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The following patch solves the problems introduced by Robert's
commit 41bf498 and reported by Arun Sharma. This commit gets rid
of the base + index notation for reading and writing PMU msrs.
The problem is that for fixed counters, the new calculation for
the base did not take into account the fixed counter indexes,
thus all fixed counters were read/written from fixed counter 0.
Although all fixed counters share the same config MSR, they each
have their own counter register.
Without:
$ task -e unhalted_core_cycles -e instructions_retired -e baclears noploop 1 noploop for 1 seconds
242202299 unhalted_core_cycles (0.00% scaling, ena=1000790892, run=1000790892)
2389685946 instructions_retired (0.00% scaling, ena=1000790892, run=1000790892)
49473 baclears (0.00% scaling, ena=1000790892, run=1000790892)
With:
$ task -e unhalted_core_cycles -e instructions_retired -e baclears noploop 1 noploop for 1 seconds
2392703238 unhalted_core_cycles (0.00% scaling, ena=1000840809, run=1000840809)
2389793744 instructions_retired (0.00% scaling, ena=1000840809, run=1000840809)
47863 baclears (0.00% scaling, ena=1000840809, run=1000840809)
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: peterz@infradead.org
Cc: ming.m.lin@intel.com
Cc: robert.richter@amd.com
Cc: asharma@fb.com
Cc: perfmon2-devel@lists.sf.net
LKML-Reference: <20110319172005.GB4978@quad>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Flush TLB if PGD entry is changed in i386 PAE mode
x86, dumpstack: Correct stack dump info when frame pointer is available
x86: Clean up csum-copy_64.S a bit
x86: Fix common misspellings
x86: Fix misspelling and align params
x86: Use PentiumPro-optimized partial_csum() on VIA C7
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
trace, filters: Initialize the match variable in process_ops() properly
trace, documentation: Fix branch profiling location in debugfs
oprofile, s390: Cleanups
oprofile, s390: Remove hwsampler_files.c and merge it into init.c
perf: Fix tear-down of inherited group events
perf: Reorder & optimize perf_event_context to remove alignment padding on 64 bit builds
perf: Handle stopped state with tracepoints
perf: Fix the software events state check
perf, powerpc: Handle events that raise an exception without overflowing
perf, x86: Use INTEL_*_CONSTRAINT() for all PEBS event constraints
perf, x86: Clean up SandyBridge PEBS events
perf lock: Fix sorting by wait_min
perf tools: Version incorrect with some versions of grep
perf evlist: New command to list the names of events present in a perf.data file
perf script: Add support for H/W and S/W events
perf script: Add support for dumping symbols
perf script: Support custom field selection for output
perf script: Move printing of 'common' data from print_event and rename
perf tracing: Remove print_graph_cpu and print_graph_proc from trace-event-parse
perf script: Change process_event prototype
...
Current stack dump code scans entire stack and check each entry
contains a pointer to kernel code. If CONFIG_FRAME_POINTER=y it
could mark whether the pointer is valid or not based on value of
the frame pointer. Invalid entries could be preceded by '?' sign.
However this was not going to happen because scan start point
was always higher than the frame pointer so that they could not
meet.
Commit 9c0729dc80 ("x86: Eliminate bp argument from the stack
tracing routines") delayed bp acquisition point, so the bp was
read in lower frame, thus all of the entries were marked
invalid.
This patch fixes this by reverting above commit while retaining
stack_frame() helper as suggested by Frederic Weisbecker.
End result looks like below:
before:
[ 3.508329] Call Trace:
[ 3.508551] [<ffffffff814f35c9>] ? panic+0x91/0x199
[ 3.508662] [<ffffffff814f3739>] ? printk+0x68/0x6a
[ 3.508770] [<ffffffff81a981b2>] ? mount_block_root+0x257/0x26e
[ 3.508876] [<ffffffff81a9821f>] ? mount_root+0x56/0x5a
[ 3.508975] [<ffffffff81a98393>] ? prepare_namespace+0x170/0x1a9
[ 3.509216] [<ffffffff81a9772b>] ? kernel_init+0x1d2/0x1e2
[ 3.509335] [<ffffffff81003894>] ? kernel_thread_helper+0x4/0x10
[ 3.509442] [<ffffffff814f6880>] ? restore_args+0x0/0x30
[ 3.509542] [<ffffffff81a97559>] ? kernel_init+0x0/0x1e2
[ 3.509641] [<ffffffff81003890>] ? kernel_thread_helper+0x0/0x10
after:
[ 3.522991] Call Trace:
[ 3.523351] [<ffffffff814f35b9>] panic+0x91/0x199
[ 3.523468] [<ffffffff814f3729>] ? printk+0x68/0x6a
[ 3.523576] [<ffffffff81a981b2>] mount_block_root+0x257/0x26e
[ 3.523681] [<ffffffff81a9821f>] mount_root+0x56/0x5a
[ 3.523780] [<ffffffff81a98393>] prepare_namespace+0x170/0x1a9
[ 3.523885] [<ffffffff81a9772b>] kernel_init+0x1d2/0x1e2
[ 3.523987] [<ffffffff81003894>] kernel_thread_helper+0x4/0x10
[ 3.524228] [<ffffffff814f6880>] ? restore_args+0x0/0x30
[ 3.524345] [<ffffffff81a97559>] ? kernel_init+0x0/0x1e2
[ 3.524445] [<ffffffff81003890>] ? kernel_thread_helper+0x0/0x10
-v5:
* fix build breakage with oprofile
-v4:
* use 0 instead of regs->bp
* separate out printk changes
-v3:
* apply comment from Frederic
* add a couple of printk fixes
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Soren Sandmann <ssp@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1300416006-3163-1-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
They were generated by 'codespell' and then manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Cc: trivial@kernel.org
LKML-Reference: <1300389856-1099-3-git-send-email-lucas.demarchi@profusion.mobi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove a couple of assigment statements that appear twice.
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
Signed-off-by: Dave Jones <davej@redhat.com>
PEBS_EVENT_CONSTRAINT() is just a duplicate of INTEL_UEVENT_CONSTRAINT().
Remove it and use INTEL_UEVENT_CONSTRAINT() instead.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299684089-22835-3-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use INTEL_EVENT_CONSTRAINT() for the events where all umasks support PEBS.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299684089-22835-2-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Support for Always Running APIC timer (ARAT) was introduced in
commit db954b5898. This feature
allows us to avoid switching timers from LAPIC to something else
(e.g. HPET) and go into timer broadcasts when entering deep
C-states.
AMD processors don't provide a CPUID bit for that feature but
they also keep APIC timers running in deep C-states (except for
cases when the processor is affected by erratum 400). Therefore
we should set ARAT feature bit on AMD CPUs.
Tested-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Acked-by: Mark Langsdorf <mark.langsdorf@amd.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@amd.com>
LKML-Reference: <1300205624-4813-1-git-send-email-ostr@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (93 commits)
x86, tlb, UV: Do small micro-optimization for native_flush_tlb_others()
x86-64, NUMA: Don't call numa_set_distanc() for all possible node combinations during emulation
x86-64, NUMA: Don't assume phys node 0 is always online in numa_emulation()
x86-64, NUMA: Clean up initmem_init()
x86-64, NUMA: Fix numa_emulation code with node0 without RAM
x86-64, NUMA: Revert NUMA affine page table allocation
x86: Work around old gas bug
x86-64, NUMA: Better explain numa_distance handling
x86-64, NUMA: Fix distance table handling
mm: Move early_node_map[] reverse scan helpers under HAVE_MEMBLOCK
x86-64, NUMA: Fix size of numa_distance array
x86: Rename e820_table_* to pgt_buf_*
bootmem: Move __alloc_memory_core_early() to nobootmem.c
bootmem: Move contig_page_data definition to bootmem.c/nobootmem.c
bootmem: Separate out CONFIG_NO_BOOTMEM code into nobootmem.c
x86-64, NUMA: Seperate out numa_alloc_distance() from numa_set_distance()
x86-64, NUMA: Add proper function comments to global functions
x86-64, NUMA: Move NUMA emulation into numa_emulation.c
x86-64, NUMA: Prepare numa_emulation() for moving NUMA emulation into a separate file
x86-64, NUMA: Do not scan two times for setup_node_bootmem()
...
Fix up conflicts in arch/x86/kernel/smpboot.c
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix and clean up generic_processor_info()
x86: Don't copy per_cpu cpuinfo for BSP two times
x86: Move llc_shared_map out of cpu_info
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, binutils, xen: Fix another wrong size directive
x86: Remove dead config option X86_CPU
x86: Really print supported CPUs if PROCESSOR_SELECT=y
x86: Fix a bogus unwind annotation in lib/semaphore_32.S
um, x86-64: Fix UML build after adding CFI annotations to lib/rwsem_64.S
x86: Remove unused bits from lib/thunk_*.S
x86: Use {push,pop}_cfi in more places
x86-64: Add CFI annotations to lib/rwsem_64.S
x86, asm: Cleanup unnecssary macros in asm-offsets.c
x86, system.h: Drop unused __SAVE/__RESTORE macros
x86: Use bitmap library functions
x86: Partly unify asm-offsets_{32,64}.c
x86: Reduce back the alignment of the per-CPU data section
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (184 commits)
perf probe: Clean up probe_point_lazy_walker() return value
tracing: Fix irqoff selftest expanding max buffer
tracing: Align 4 byte ints together in struct tracer
tracing: Export trace_set_clr_event()
tracing: Explain about unstable clock on resume with ring buffer warning
ftrace/graph: Trace function entry before updating index
ftrace: Add .ref.text as one of the safe areas to trace
tracing: Adjust conditional expression latency formatting.
tracing: Fix event alignment: skb:kfree_skb
tracing: Fix event alignment: mce:mce_record
tracing: Fix event alignment: kvm:kvm_hv_hypercall
tracing: Fix event alignment: module:module_request
tracing: Fix event alignment: ftrace:context_switch and ftrace:wakeup
tracing: Remove lock_depth from event entry
perf header: Stop using 'self'
perf session: Use evlist/evsel for managing perf.data attributes
perf top: Don't let events to eat up whole header line
perf top: Fix events overflow in top command
ring-buffer: Remove unused #include <linux/trace_irq.h>
tracing: Add an 'overwrite' trace_option.
...
Return 0 on failure. This will cause the initialization of the driver
to fail and prevent the driver from loading if the BIOS cannot handle
the PCC interface command to "get frequency". Otherwise, the driver
will load and display a very high value like "4294967274" (which is
actually -EINVAL) for frequency:
# cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq
4294967274
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
CC: stable@kernel.org
Signed-off-by: Dave Jones <davej@redhat.com>
I'm sure it was a mere oversight that the CONFIG_ prefixes are
missing.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Dave Jones <davej@redhat.com>
LKML-Reference: <4D7118D30200007800034F79@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299119690-13991-5-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Intel Nehalem and Westmere CPUs the generic perf LLC-* events count the
L2 caches, not the real L3 LLC - this was inconsistent with behavior on
other CPUs.
Fixing this requires the use of the special OFFCORE_RESPONSE
events which need a separate mask register.
This has been implemented by the previous patch, now use this infrastructure
to set correct events for the LLC-* on Nehalem and Westmere.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299119690-13991-3-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change logs against Andi's original version:
- Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra)
- Fixed a major event scheduling issue. There cannot be a ref++ on an
event that has already done ref++ once and without calling
put_constraint() in between. (Stephane Eranian)
- Use thread_cpumask for percore allocation. (Lin Ming)
- Use MSR names in the extra reg lists. (Lin Ming)
- Remove redundant "c = NULL" in intel_percore_constraints
- Fix comment of perf_event_attr::config1
Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event
that can be used to monitor any offcore accesses from a core.
This is a very useful event for various tunings, and it's
also needed to implement the generic LLC-* events correctly.
Unfortunately this event requires programming a mask in a separate
register. And worse this separate register is per core, not per
CPU thread.
This patch:
- Teaches perf_events that OFFCORE_RESPONSE needs extra parameters.
The extra parameters are passed by user space in the
perf_event_attr::config1 field.
- Adds support to the Intel perf_event core to schedule per
core resources. This adds fairly generic infrastructure that
can be also used for other per core resources.
The basic code has is patterned after the similar AMD northbridge
constraints code.
Thanks to Stephane Eranian who pointed out some problems
in the original version and suggested improvements.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch updates PEBS event constraints for Intel Atom, Nehalem, Westmere.
This patch also reorganizes the PEBS format/constraint detection code. It is
now based on processor model and not PEBS format. Two processors may use the
same PEBS format without have the same list of PEBS events.
In this second version, we simplified the initialization of the PEBS
constraints by leveraging the existing switch() statement in perf_event_intel.c.
We also renamed the constraint tables to be more consistent with regular
constraints.
In this 3rd version, we drop BR_INST_RETIRED.MISPRED from Intel Atom as it does
not seem to work. Use MISPREDICTED_BRANCH_RETIRED instead. Also add FP_ASSIST.*
o both Intel Nehalem and Westmere. I misssed those in the earlier patches.
Events were tested using libpfm4 perf_examples.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4d6e6b02.815bdf0a.637b.07a7@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds basic SandyBridge support, including hardware
cache events and PEBS events support.
It has been tested on SandyBridge CPUs with perf stat and also
with PEBS based profiling - both work fine.
The patch does not affect other models.
v2 -> v3:
- fix PEBS event 0xd0 with right umask combinations
- move snb pebs constraint assignment to intel_pmu_init
v1 -> v2:
- add more raw and PEBS events constraints
- use offcore events for LLC-* cache events
- remove the call to Nehalem workaround enable_all function
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
LKML-Reference: <1299072424.2175.24.camel@localhost>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Do the notifier registration later, so we don't have to worry
about freeing it if we fail the msr allocation.
Signed-off-by: Dave Jones <davej@redhat.com>
It appears that when powernow-k8 finds that
No compatible ACPI _PSS objects found.
and suggests
Try again with latest BIOS.
it fails the module load, but does not unregister the cpu_notifier that was
registered in powernowk8_init
This ends up leaving freed memory on the cpu notifier list for some other
poor module (e.g. md/raid5) to come along and trip over.
The following might be a partial fix, but I suspect there is probably other
clean-up that is needed.
( https://bugzilla.novell.com/show_bug.cgi?id=655215 has full dmesg traces).
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Neil Brown <neilb@suse.de>
This patch adds support for AMD family 15h core counters. There are
major changes compared to family 10h. First, there is a new perfctr
msr range for up to 6 counters. Northbridge counters are separate
now. This patch only adds support for core counters. Second, certain
events may only be scheduled on certain counters. For this we need to
extend the event scheduling and constraints.
We use cpu feature flags to calculate family 15h msr address offsets.
This way we later can implement a faster ALTERNATIVE() version for
this.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20110215135210.GB5874@erda.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of storing the base addresses we can store the counter's msr
addresses directly in config_base/event_base of struct hw_perf_event.
This avoids recalculating the address with each msr access. The
addresses are configured one time. We also need this change to later
modify the address calculation.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-5-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch allows the reservation of perfctrs with new msr addresses
introduced for AMD cpu family 15h (0xc0010200/0xc0010201, etc).
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-4-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds helper functions to calculate perfctr msr addresses.
We need this to later add support for AMD family 15h cpus. For this we
have to change the algorithms to generate the perfctr's msr addresses.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-3-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use helper function in x86_pmu_enable_all() to minimize access to
x86_pmu.eventsel in the fast path. The counter's msr address is now
calculated using struct hw_perf_event. Later we add code that
calculates the msr addresses with a table lookup which shouldn't be
done in the fast path.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-2-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Several people have reported spurious unknown NMI
messages on some P4 CPUs.
This patch fixes it by checking for an overflow (negative
counter values) directly, instead of relying on the
P4_CCCR_OVF bit.
Reported-by: George Spelvin <linux@horizon.com>
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Don Zickus <dzickus@redhat.com>
Reported-by: Dave Airlie <airlied@gmail.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <AANLkTinfuTfCck_FfaOHrDqQZZehtRzkBum4SpFoO=KJ@mail.gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit d518573de6 ("x86, amd: Normalize compute unit IDs on
multi-node processors") introduced compute unit normalization
but causes a compiler warning:
arch/x86/kernel/cpu/amd.c: In function 'amd_detect_cmp':
arch/x86/kernel/cpu/amd.c:268: warning: 'cores_per_cu' may be used uninitialized in this function
arch/x86/kernel/cpu/amd.c:268: note: 'cores_per_cu' was declared here
The compiler is right - initialize it with a proper value.
Also, fix up a comment while at it.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20110214171451.GB10076@kryptos.osrc.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
L3 Cache Partitioning allows selecting which of the 4 L3 subcaches can be used
for evictions by the L2 cache of each compute unit. By writing a 4-bit
hexadecimal mask into the the sysfs file
/sys/devices/system/cpu/cpuX/cache/index3/subcaches, the user can set the
enabled subcaches for a CPU.
The settings are directly read from and written to the hardware, so there is no
way to have contradicting settings for two CPUs belonging to the same compute
unit. Writing will always overwrite any previous setting for a compute unit.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: <Andreas.Herrmann3@amd.com>
LKML-Reference: <1297098639-431383-1-git-send-email-hans.rosenfeld@amd.com>
[ -v3: minor style fixes ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-32: Make sure the stack is set up before we use it
x86, mtrr: Avoid MTRR reprogramming on BP during boot on UP platforms
x86, nx: Don't force pages RW when setting NX bits
Markus Kohn ran into a hard hang regression on an acer aspire
1310, when acpi is enabled. git bisect showed the following
commit as the bad one that introduced the boot regression.
commit d0af9eed5a
Author: Suresh Siddha <suresh.b.siddha@intel.com>
Date: Wed Aug 19 18:05:36 2009 -0700
x86, pat/mtrr: Rendezvous all the cpus for MTRR/PAT init
Because of the UP configuration of that platform,
native_smp_prepare_cpus() bailed out (in smp_sanity_check())
before doing the set_mtrr_aps_delayed_init()
Further down the boot path, native_smp_cpus_done() will call the
delayed MTRR initialization for the AP's (mtrr_aps_init()) with
mtrr_aps_delayed_init not set. This resulted in the boot
processor reprogramming its MTRR's to the values seen during the
start of the OS boot. While this is not needed ideally, this
shouldn't have caused any side-effects. This is because the
reprogramming of MTRR's (set_mtrr_state() that gets called via
set_mtrr()) will check if the live register contents are
different from what is being asked to write and will do the actual
write only if they are different.
BP's mtrr state is read during the start of the OS boot and
typically nothing would have changed when we ask to reprogram it
on BP again because of the above scenario on an UP platform. So
on a normal UP platform no reprogramming of BP MTRR MSR's
happens and all is well.
However, on this platform, bios seems to be modifying the fixed
mtrr range registers between the start of OS boot and when we
double check the live registers for reprogramming BP MTRR
registers. And as the live registers are modified, we end up
reprogramming the MTRR's to the state seen during the start of
the OS boot.
During ACPI initialization, something in the bios (probably smi
handler?) don't like this fact and results in a hard lockup.
We didn't see this boot hang issue on this platform before the
commit d0af9eed5a, because only
the AP's (if any) will program its MTRR's to the value that BP
had at the start of the OS boot.
Fix this issue by checking mtrr_aps_delayed_init before
continuing further in the mtrr_aps_init(). Now, only AP's (if
any) will program its MTRR's to the BP values during boot.
Addresses https://bugzilla.novell.com/show_bug.cgi?id=623393
[ By the way, this behavior of the bios modifying MTRR's after the start
of the OS boot is not common and the kernel is not prepared to
handle this situation well. Irrespective of this issue, during
suspend/resume, linux kernel will try to reprogram the BP's MTRR values
to the values seen during the start of the OS boot. So suspend/resume might
be already broken on this platform for all linux kernel versions. ]
Reported-and-bisected-by: Markus Kohn <jabber@gmx.org>
Tested-by: Markus Kohn <jabber@gmx.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Thomas Renninger <trenn@novell.com>
Cc: Rafael Wysocki <rjw@novell.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: stable@kernel.org # [v2.6.32+]
LKML-Reference: <1296694975.4418.402.camel@sbsiddha-MOBL3.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
x86_32 has been managing node_to_cpumask_map explicitly from
map_cpu_to_node() and friends in a rather ugly way. With
previous changes, it's now possible to share the code with
64bit.
* When CONFIG_NUMA_EMU is disabled, numa_add/remove_cpu() are
implemented in numa.c and shared by 32 and 64bit. CONFIG_NUMA_EMU
versions still live in numa_64.c.
NUMA_EMU's dependency on 64bit is planned to be removed and the
above should go away together.
* identify_cpu() now calls numa_add_cpu() for 32bit too. This
makes the explicit mask management from map_cpu_to_node() unnecessary.
* The whole x86_32 specific map_cpu_to_node() chunk is no longer
necessary. Dropped.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-16-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Unlike 64bit, 32bit has been using its own cpu_to_node_map[] for
CPU -> NUMA node mapping. Replace it with early_percpu variable
x86_cpu_to_node_map and share the mapping code with 64bit.
* USE_PERCPU_NUMA_NODE_ID is now enabled for 32bit too.
* x86_cpu_to_node_map and numa_set/clear_node() are moved from
numa_64 to numa. For now, on 32bit, x86_cpu_to_node_map is initialized
with 0 instead of NUMA_NO_NODE. This is to avoid introducing unexpected
behavior change and will be updated once init path is unified.
* srat_detect_node() is now enabled for x86_32 too. It calls
numa_set_node() and initializes the mapping making explicit
cpu_to_node_map[] updates from map/unmap_cpu_to_node() unnecessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-15-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
The mapping between cpu/apicid and node is done via
apicid_to_node[] on 64bit and apicid_2_node[] +
apic->x86_32_numa_cpu_node() on 32bit. This difference makes it
difficult to further unify 32 and 64bit NUMA handling.
This patch unifies it by replacing both apicid_to_node[] and
apicid_2_node[] with __apicid_to_node[] array, which is accessed
by two accessors - set_apicid_to_node() and numa_cpu_node(). On
64bit, numa_cpu_node() always consults __apicid_to_node[]
directly while 32bit goes through apic->numa_cpu_node() method
to allow apic implementations to override it.
srat_detect_node() for amd cpus contains workaround for broken
NUMA configuration which assumes relationship between APIC ID,
HT node ID and NUMA topology. Leave it to access
__apicid_to_node[] directly as mapping through CPU might result
in undesirable behavior change. The comment is reformatted and
updated to note the ugliness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-14-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
init_hw_perf_events() is called via early_initcall now.
x86_pmu_event_init is x86_pmu member function.
So we can change them to static.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
LKML-Reference: <4D3A16F9.109@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch fixes some issues with raw event validation on
Pentium 4 (Netburst) based processors.
As I was testing libpfm4 Netburst support, I ran into two
problems in the p4_validate_raw_event() function:
- the shared field must be checked ONLY when HT is on
- the binding to ESCR register was missing
The second item was causing raw events to not be encoded
correctly compared to generic PMU events.
With this patch, I can now pass Netburst events to libpfm4
examples and get meaningful results:
$ task -e global_power_events🏃u noploop 1
noploop for 1 seconds
3,206,304,898 global_power_events:running
Signed-off-by: Stephane Eranian <eranian@google.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: peterz@infradead.org
Cc: paulus@samba.org
Cc: davem@davemloft.net
Cc: fweisbec@gmail.com
Cc: perfmon2-devel@lists.sf.net
Cc: eranian@gmail.com
Cc: robert.richter@amd.com
Cc: acme@redhat.com
Cc: gorcunov@gmail.com
Cc: ming.m.lin@intel.com
LKML-Reference: <4d3efb2f.1252d80a.1a80.ffffc83f@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
cpu_info is already with per_cpu, We can take llc_shared_map out
of cpu_info, and declare it as per_cpu variable directly.
So later referencing could be simple and directly instead of
diving to find cpu_info at first.
Also could make smp_store_cpu_info() much simple to avoid to do
save and restore trick.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Alok N Kataria <akataria@vmware.com>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Hans J. Koch <hjk@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <4D3A16E8.5020608@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On multi-node CPUs we don't need the socket wide compute unit ID
but the node-wide compute unit ID. Thus we need to normalize the
value. This is similar to what we do with cpu_core_id.
A compute unit is then identified by physical_package_id,
node_id, and compute_unit_id.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <1295881543-572552-2-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In therm_throt.c, commit
9e76a97efd patch doesn't export
the symbol platform_thermal_notify.
Other drivers (e.g. drivers/hwmon/coretemp.c) can not find the
symbol platform_thermal_notify when defining threshould
interrupt handler.
Please apply this patch to allow threshold interrupt handler in
coretemp.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: R Durgadoss <durgadoss.r@intel.com>
Cc: khali@linux-fr.org <khali@linux-fr.org>
Cc: lm-sensors@lm-sensors.org <lm-sensors@lm-sensors.org>
Cc: Guenter Roeck <guenter.roeck@ericsson.com>
LKML-Reference: <20110121041239.GB26954@linux-os.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Update to latest definitions in:
http://www.intel.com/Assets/PDF/appnote/241618.pdf
[ Note, this update of the doc has removed some old values which
we have listed. I think until we have clarification that they
were never used in production, they should be left there. ]
Signed-off-by: Dave Jones <davej@redhat.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
LKML-Reference: <20110120012055.GA15985@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Don found that P4 PMU reads CCCR register instead of counter
itself (in attempt to catch unflagged event) this makes P4
NMI handler to consume all NMIs it observes. So the other
NMI users such as kgdb simply have no chance to get NMI
on their hands.
Side note: at moment there is no way to run nmi-watchdog
together with perf tool. This is because both 'perf top' and
nmi-watchdog use same event. So while nmi-watchdog reserves
one event/counter for own needs there is no room for perf tool
left (there is a way to disable nmi-watchdog on boot of course).
Ming has tested this patch with the following results
| 1. watchdog disabled
|
| kgdb tests on boot OK
| perf works OK
|
| 2. watchdog enabled, without patch perf-x86-p4-nmi-4
|
| kgdb tests on boot hang
|
| 3. watchdog enabled, without patch perf-x86-p4-nmi-4 and do not run kgdb
| tests on boot
|
| "perf top" partialy works
| cpu-cycles no
| instructions yes
| cache-references no
| cache-misses no
| branch-instructions no
| branch-misses yes
| bus-cycles no
|
| 4. watchdog enabled, with patch perf-x86-p4-nmi-4 applied
|
| kgdb tests on boot OK
| perf does not work, NMI "Dazed and confused" messages show up
|
Which means we still have problems with p4 box due to 'unknown'
nmi happens but at least it should fix kgdb test cases.
Reported-by: Jason Wessel <jason.wessel@windriver.com>
Reported-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Don Zickus <dzickus@redhat.com>
Acked-by: Lin Ming <ming.m.lin@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <4D275E7E.3040903@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
With priorities in place and no one really understanding the difference between
DIE_NMI and DIE_NMI_IPI, just remove DIE_NMI_IPI and convert everyone to DIE_NMI.
This also simplifies default_do_nmi() a little bit. Instead of calling the
die_notifier in both the if and else part, just pull it out and call it before
the if-statement. This has the side benefit of avoiding a call to the ioport
to see if there is an external NMI sitting around until after the (more frequent)
internal NMIs are dealt with.
Patch-Inspired-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1294348732-15030-5-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to consolidate the NMI die_chain events, we need to setup the priorities
for the die notifiers.
I started by defining a bunch of common priorities that can be used by the
notifier blocks. Then I modified the notifier blocks to use the newly created
priorities.
Now that the priorities are straightened out, it should be easier to remove the
event DIE_NMI_IPI.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1294348732-15030-4-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-alternatives-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, suspend: Avoid unnecessary smp alternatives switch during suspend/resume
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-64, asm: Use fxsaveq/fxrestorq in more places
* 'x86-hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, hwmon: Add core threshold notification to therm_throt.c
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, paravirt: Use native_halt on a halt, not native_safe_halt
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
locking, lockdep: Convert sprintf_symbol to %pS
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
irq: Better struct irqaction layout
* 'x86-amd-nb-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, cacheinfo: Cleanup L3 cache index disable support
x86, amd-nb: Cleanup AMD northbridge caching code
x86, amd-nb: Complete the rename of AMD NB and related code
This patch adds code to therm_throt.c to notify core thermal threshold
events. These thresholds are supported by the IA32_THERM_INTERRUPT register.
The status/log for the same is monitored using the IA32_THERM_STATUS register.
The necessary #defines are in msr-index.h. A call back is added to mce.h, to
further notify the thermal stack, about the threshold events.
Signed-off-by: Durgadoss R <durgadoss.r@intel.com>
LKML-Reference: <D6D887BA8C9DFF48B5233887EF04654105C1251710@bgsmsx502.gar.corp.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Replace all uses of current_cpu_data with this_cpu operations on the
per cpu structure cpu_info. The scala accesses are replaced with the
matching this_cpu ops which results in smaller and more efficient
code.
In the long run, it might be a good idea to remove cpu_data() macro
too and use per_cpu macro directly.
tj: updated description
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Go through x86 code and replace __get_cpu_var and get_cpu_var
instances that refer to a scalar and are not used for address
determinations.
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The x86 arch has shifted its use of the nmi_watchdog from a
local implementation to the global one provide by
kernel/watchdog.c. This shift has caused a whole bunch of
compile problems under different config options. I attempt to
simplify things with the patch below.
In order to simplify things, I had to come to terms with the
meaning of two terms ARCH_HAS_NMI_WATCHDOG and
CONFIG_HARDLOCKUP_DETECTOR. Basically they mean the same thing,
the former on a local level and the latter on a global level.
With the old x86 nmi watchdog gone, there is no need to rely on
defining the ARCH_HAS_NMI_WATCHDOG variable because it doesn't
make sense any more. x86 will now use the global
implementation.
The changes below do a few things. First it changes the few
places that relied on ARCH_HAS_NMI_WATCHDOG to use
CONFIG_X86_LOCAL_APIC (the former was an alias for the latter
anyway, so nothing unusual here). Those pieces of code were
relying more on local apic functionality the nmi watchdog
functionality, so the change should make sense.
Second, I removed the x86 implementation of
touch_nmi_watchdog(). It isn't need now, instead x86 will rely
on kernel/watchdog.c's implementation.
Third, I removed the #define ARCH_HAS_NMI_WATCHDOG itself from
x86. And tweaked the include/linux/nmi.h file to tell users to
look for an externally defined touch_nmi_watchdog in the case of
ARCH_HAS_NMI_WATCHDOG _or_ CONFIG_HARDLOCKUP_DETECTOR. This
changes removes some of the ugliness in that file.
Finally, I added a Kconfig dependency for
CONFIG_HARDLOCKUP_DETECTOR that said you can't have
ARCH_HAS_NMI_WATCHDOG _and_ CONFIG_HARDLOCKUP_DETECTOR. You can
only have one nmi_watchdog.
Tested with
ARCH=i386: allnoconfig, defconfig, allyesconfig, (various broken
configs) ARCH=x86_64: allnoconfig, defconfig, allyesconfig,
(various broken configs)
Hopefully, after this patch I won't get any more compile broken
emails. :-)
v3:
changed a couple of 'linux/nmi.h' -> 'asm/nmi.h' to pick-up correct function
prototypes when CONFIG_HARDLOCKUP_DETECTOR is not set.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: fweisbec@gmail.com
LKML-Reference: <1293044403-14117-1-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Extend the perf_pmu_register() interface to allow for named and
dynamic pmu types.
Because we need to support the existing static types we cannot use
dynamic types for everything, hence provide a type argument.
If we want to enumerate the PMUs they need a name, provide one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20101117222056.259707703@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Some BIOSes use PMU resources, which can cause various bugs:
- Non-working or erratic PMU based statistics - the PMU can end up
counting the wrong thing, resulting in misleading statistics
- Profiling can stop working or it can profile the wrong thing
- A non-working or erratic NMI watchdog that cannot be relied on
- The kernel may disturb whatever thing the BIOS tries to use the
PMU for - possibly causing hardware malfunction in extreme cases.
- ... and other forms of potential misbehavior
Various forms of such misbehavior has been observed in practice - there are
BIOSes that just corrupt the PMU state, consequences be damned.
The PMU is a CPU resource that is handled by the kernel and the BIOS
stealing+corrupting it is not acceptable nor robust, so we detect it,
warn about it and further refuse to touch the PMU ourselves.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since all the hotplug stuff is serialized by the hotplug mutex,
do away with the amd_nb_lock.
Cc: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The perf hardware pmu got initialized at various points in the boot,
some before early_initcall() some after (notably arch_initcall).
The problem is that the NMI lockup detector is ran from early_initcall()
and expects the hardware pmu to be present.
Sanitize this by moving all architecture hardware pmu implementations to
initialize at early_initcall() and move the lockup detector to an explicit
initcall right after that.
Cc: paulus <paulus@samba.org>
Cc: davem <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1290707759.2145.119.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
and use it when appropriate.
Signed-off-by: Franck Bui-Huu <fbuihuu@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1290525705-6265-1-git-send-email-fbuihuu@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In a kvm virt guests, the perf counters are not emulated. Instead they
return zero on a rdmsrl. The perf nmi handler uses the fact that crossing
a zero means the counter overflowed (for those counters that do not have
specific interrupt bits). Therefore on kvm guests, perf will swallow all
NMIs thinking the counters overflowed.
This causes problems for subsystems like kgdb which needs NMIs to do its
magic. This problem was discovered by running kgdb tests.
The solution is to write garbage into a perf counter during the
initialization and hopefully reading back the same number. On kvm
guests, the value will be read back as zero and we disable perf as
a result.
Reported-by: Jason Wessel <jason.wessel@windriver.com>
Patch-inspired-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <1290462923-30734-1-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Adaptions to the changes of the AMD northbridge caching code: instead
of a bool in each l3 struct, use a flag in amd_northbridges.flags to
indicate L3 cache index disable support; use a pointer to the whole
northbridge instead of the misc device in the l3 struct; simplify the
initialisation; dynamically generate sysfs attribute array.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Support more than just the "Misc Control" part of the northbridges.
Support more flags by turning "gart_supported" into a single bit flag
that is stored in a flags member. Clean up related code by using a set
of functions (amd_nb_num(), amd_nb_has_feature() and node_to_amd_nb())
instead of accessing the NB data structures directly. Reorder the
initialization code and put the GART flush words caching in a separate
function.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Not only the naming of the files was confusing, it was even more so for
the function and variable names.
Renamed the K8 NB and NUMA stuff that is also used on other AMD
platforms. This also renames the CONFIG_K8_NUMA option to
CONFIG_AMD_NUMA and the related file k8topology_64.c to
amdtopology_64.c. No functional changes intended.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
The various stack tracing routines take a 'bp' argument in which the
caller is supposed to provide the base pointer to use, or 0 if doesn't
have one. Since bp is garbage whenever CONFIG_FRAME_POINTER is not
defined, this means all callers in principle should either always pass
0, or be conditional on CONFIG_FRAME_POINTER.
However, there are only really three use cases for stack tracing:
(a) Trace the current task, including IRQ stack if any
(b) Trace the current task, but skip IRQ stack
(c) Trace some other task
In all cases, if CONFIG_FRAME_POINTER is not defined, bp should just
be 0. If it _is_ defined, then
- in case (a) bp should be gotten directly from the CPU's register, so
the caller should pass NULL for regs,
- in case (b) the caller should should pass the IRQ registers to
dump_trace(),
- in case (c) bp should be gotten from the top of the task's stack, so
the caller should pass NULL for regs.
Hence, the bp argument is not necessary because the combination of
task and regs is sufficient to determine an appropriate value for bp.
This patch introduces a new inline function stack_frame(task, regs)
that computes the desired bp. This function is then called from the
two versions of dump_stack().
Signed-off-by: Soren Sandmann <ssp@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arjan van de Ven <arjan@infradead.org>,
Cc: Frederic Weisbecker <fweisbec@gmail.com>,
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>,
LKML-Reference: <m3oc9rop28.fsf@dhcp-100-3-82.bos.redhat.com>>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Now that the bulk of the old nmi_watchdog is gone, remove all
the stub variables and hooks associated with it.
This touches lots of files mainly because of how the io_apic
nmi_watchdog was implemented. Now that the io_apic nmi_watchdog
is forever gone, remove all its fingers.
Most of this code was not being exercised by virtue of
nmi_watchdog != NMI_IO_APIC, so there shouldn't be anything to
risky here.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: fweisbec@gmail.com
Cc: gorcunov@openvz.org
LKML-Reference: <1289578944-28564-3-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Jasper suggested we use the zeroing capability of the allocators
instead of calling memset ourselves. Add node affinity while we're at
it.
Reported-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (53 commits)
ACPI: install ACPI table handler before any dynamic tables being loaded
ACPI / PM: Blacklist another machine that needs acpi_sleep=nonvs
ACPI: Page based coalescing of I/O remappings optimization
ACPI: Convert simple locking to RCU based locking
ACPI: Pre-map 'system event' related register blocks
ACPI: Add interfaces for ioremapping/iounmapping ACPI registers
ACPI: Maintain a list of ACPI memory mapped I/O remappings
ACPI: Fix ioremap size for MMIO reads and writes
ACPI / Battery: Return -ENODEV for unknown values in get_property()
ACPI / PM: Fix reference counting of power resources
Subject: [PATCH] ACPICA: Fix Scope() op in module level code
ACPI battery: support percentage battery remaining capacity
ACPI: Make Embedded Controller command timeout delay configurable
ACPI dock: move some functions to .init.text
ACPI: thermal: remove unused limit code
ACPI: static sleep_states[] and acpi_gts_bfs_check
ACPI: remove dead code
ACPI: delete dedicated MAINTAINERS entries for ACPI EC and BATTERY drivers
ACPI: Only processor needs CPU_IDLE
ACPICA: Update version to 20101013
...
Use the new {max,min}3 macros to save some cycles and bytes on the stack.
This patch substitutes trivial nested macros with their counterpart.
Signed-off-by: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: Joe Perches <joe@perches.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Roland Dreier <rolandd@cisco.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the KM_type stuff is history, clean up the compiler warning.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch reworks and cleans up mce_amd_feature_init() by
introducing helper functions to setup and check the LVT offset.
It also fixes line endings in pr_err() calls.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1288015419-29543-4-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Shorten this variables to make later changes more readable.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1288015419-29543-3-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds a helper function for the initial setup of an
mce threshold block. The LVT offset is passed as argument. Also
making variable threshold_defaults local as it is only used in
function mce_amd_feature_init(). Function
threshold_restart_bank() is extended to setup the LVT offset,
the change is backward compatible. Thus, now there is only a
single wrmsrl() to setup the block.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1288015419-29543-2-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'softirq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
softirqs: Make wakeup_softirqd static
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, asm: Restore parentheses around one pushl_cfi argument
x86, asm: Fix ancient-GAS workaround
x86, asm: Fix CFI macro invocations to deal with shortcomings in gas
* 'x86-numa-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, numa: Assign CPUs to nodes in round-robin manner on fake NUMA
* 'x86-quirks-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: HPET force enable for CX700 / VIA Epia LT
* 'x86-setup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, setup: Use string copy operation to optimze copy in kernel compression
* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, UV: Use allocated buffer in tlb_uv.c:tunables_read()
* 'x86-vm86-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, vm86: Fix preemption bug for int1 debug and int3 breakpoint handlers.
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
This patch fixes the following warning. The function
longrun_cpu_init() is marked with __cpuinit which calls
longrun_get_policy() which is a __init function. So make
longrun_get_policy with __cpuinit.
WARNING: arch/x86/kernel/cpu/cpufreq/longrun.o(.cpuinit.text+0x4c5):
Section mismatch in reference from the function longrun_cpu_init() to
the function .init.text:longrun_get_policy()
The function __cpuinit longrun_cpu_init() references
a function __init longrun_get_policy().
If longrun_get_policy is only used by longrun_cpu_init then
annotate longrun_get_policy with a matching annotation.
Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com>
Signed-off-by: Dave Jones <davej@redhat.com>
In each case, the function has an unsigned return type, but returns a
negative constant to indicate an error condition. Each function is only
called once. For nforce2_detect_chipset, the result is only compared to 0,
and for longrun_determine_freqs, the result is stored in a variable of type
(signed) int. Thus, for both functions, unsigned can be dropped from the
return type.
A sematic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@exists@
identifier f;
constant C;
@@
unsigned f(...)
{ <+...
* return -C;
...+> }
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Dave Jones <davej@redhat.com>
For performance reasons its best to use memory node local memory for
per-cpu buffers.
This logic comes from a much larger patch proposed by Stephane.
Suggested-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.514465326@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that reserve_ds_buffers() never fails, change it to return
void and remove all code dealing with the error return.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.462621937@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently PEBS/BTS buffers are allocated when we instantiate the first
event, when this fails everything fails.
This is a problem because esp. BTS tries to allocate a rather large
buffer (64K), which can easily fail.
This patch changes the logic such that when either buffer allocation
fails, we simply don't allow events that would use these facilities,
but continue functioning for all other events.
This logic comes from a much larger patch proposed by Stephane.
Suggested-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.354429461@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In case we don't have PEBS, the LBR fixup doesn't make sense.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.354429461@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mostly a cleanup.. it reduces code indentation and makes the code flow
of reserve_ds_buffers() clearer.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.253453452@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
So that we may grow additional call-sites..
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.196793164@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (96 commits)
apic, x86: Use BIOS settings for IBS and MCE threshold interrupt LVT offsets
apic, x86: Check if EILVT APIC registers are available (AMD only)
x86: ioapic: Call free_irte only if interrupt remapping enabled
arm: Use ARCH_IRQ_INIT_FLAGS
genirq, ARM: Fix boot on ARM platforms
genirq: Fix CONFIG_GENIRQ_NO_DEPRECATED=y build
x86: Switch sparse_irq allocations to GFP_KERNEL
genirq: Switch sparse_irq allocator to GFP_KERNEL
genirq: Make sparse_lock a mutex
x86: lguest: Use new irq allocator
genirq: Remove the now unused sparse irq leftovers
genirq: Sanitize dynamic irq handling
genirq: Remove arch_init_chip_data()
x86: xen: Sanitise sparse_irq handling
x86: Use sane enumeration
x86: uv: Clean up the direct access to irq_desc
x86: Make io_apic.c local functions static
genirq: Remove irq_2_iommu
x86: Speed up the irq_remapped check in hot pathes
intr_remap: Simplify the code further
...
Fix up trivial conflicts in arch/x86/Kconfig
* 'x86-mtrr-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mtrr: Support mtrr lookup for range spanning across MTRR range
x86, mtrr: Refactor MTRR type overlap check code
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Remove pr_<level> uses of KERN_<level>
therm_throt.c: Trivial printk message fix for a unsuitable abbreviation of 'thermal'
x86: Use {push,pop}{l,q}_cfi in more places
i386: Add unwind directives to syscall ptregs stubs
x86-64: Use symbolics instead of raw numbers in entry_64.S
x86-64: Adjust frame type at paranoid_exit:
x86-64: Fix unwind annotations in syscall stubs
* 'x86-amd-nb-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, amd_nb: Enable GART support for AMD family 0x15 CPUs
x86, amd: Use compute unit information to determine thread siblings
x86, amd: Extract compute unit information for AMD CPUs
x86, amd: Add support for CPUID topology extension of AMD CPUs
x86, nmi: Support NMI watchdog on newer AMD CPU families
x86, mtrr: Assume SYS_CFG[Tom2ForceMemTypeWB] exists on all future AMD CPUs
x86, k8: Rename k8.[ch] to amd_nb.[ch] and CONFIG_K8_NB to CONFIG_AMD_NB
x86, k8-gart: Decouple handling of garts and northbridges
x86, cacheinfo: Fix dependency of AMD L3 CID
x86, kvm: add new AMD SVM feature bits
x86, cpu: Fix allowed CPUID bits for KVM guests
x86, cpu: Update AMD CPUID feature bits
x86, cpu: Fix renamed, not-yet-shipping AMD CPUID feature bit
x86, AMD: Remove needless CPU family check (for L3 cache info)
x86, tsc: Remove CPU frequency calibration on AMD
We want the BIOS to setup the EILVT APIC registers. The offsets
were hardcoded and BIOS settings were overwritten by the OS.
Now, the subsystems for MCE threshold and IBS determine the LVT
offset from the registers the BIOS has setup. If the BIOS setup
is buggy on a family 10h system, a workaround enables IBS. If
the OS determines an invalid register setup, a "[Firmware Bug]:
" error message is reported.
We need this change also for upcomming cpu families.
Signed-off-by: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1286360874-1471-3-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
PERF_COUNT_HW_CACHE_DTLB:READ:MISS had a bogus umask value of 0 which
counts nothing. Needed to be 0x7 (to count all possibilities).
PERF_COUNT_HW_CACHE_ITLB:READ:MISS had a bogus umask value of 0 which
counts nothing. Needed to be 0x3 (to count all possibilities).
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: <stable@kernel.org> # as far back as it applies
LKML-Reference: <4cb85478.41e9d80a.44e2.3f00@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
commit d9c2d5ac6a "x86, numa: Use near(er)
online node instead of roundrobin for NUMA" changed NUMA initialization on
Intel to choose the nearest online node or first node. Fake NUMA would be
better of with round-robin initialization, instead of the all CPUS on
first node. Change the choice of first node, back to round-robin.
For testing NUMA kernel behaviour without cpusets and NUMA aware
applications, it would be better to have cpus in different nodes, rather
than all in a single node. With cpusets migration of tasks scenarios
cannot not be tested.
I guess having it round-robin shouldn't affect the use cases for all cpus
on the first node.
The code comments in arch/x86/mm/numa_64.c:759 indicate that this used to
be the case, which was changed by commit d9c2d5ac6. It changed from
roundrobin to nearer or first node. And I couldn't find any reason for
this change in its changelog.
Signed-off-by: Nikanth Karthikesan <knikanth@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This fixes possible cases of not collecting valid error info in
the MCE error thresholding groups on F10h hardware.
The current code contains a subtle problem of checking only the
Valid bit of MSR0000_0413 (which is MC4_MISC0 - DRAM
thresholding group) in its first iteration and breaking out if
the bit is cleared.
But (!), this MSR contains an offset value, BlkPtr[31:24], which
points to the remaining MSRs in this thresholding group which
might contain valid information too. But if we bail out only
after we checked the valid bit in the first MSR and not the
block pointer too, we miss that other information.
The thing is, MC4_MISC0[BlkPtr] is not predicated on
MCi_STATUS[MiscV] or MC4_MISC0[Valid] and should be checked
prior to iterating over the MCI_MISCj thresholding group,
irrespective of the MC4_MISC0[Valid] setting.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When the feature PTS is not supported by CPU, the sysfile
package_power_limit_count for package should not be
generated.
This patch is used for fixing missing { and }.
The patch is not complete as there are other error handling
problems in this function - but that can wait until the
merge window.
Signed-off-by: Jin Dongming <jin.dongming@np.css.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@initel.com>
Acked-by: Jean Delvare <khali@linux-fr.org>
Cc: Brown Len <len.brown@intel.com>
Cc: Guenter Roeck <guenter.roeck@ericsson.com>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: lm-sensors@lm-sensors.org <lm-sensors@lm-sensors.org>
LKML-Reference: <4C7625D1.4060201@np.css.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf trace scripting: Fix extern struct definitions
perf ui hist browser: Fix segfault on 'a' for annotate
perf tools: Fix build breakage
perf, x86: Handle in flight NMIs on P4 platform
oprofile, ARM: Release resources on failure
oprofile: Add Support for Intel CPU Family 6 / Model 29
Just dead code I believe.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: andi@firstfloor.org
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts:
tools/perf/util/ui/browsers/hists.c
Merge reason: fix the conflict and merge in changes for dependent patch.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
ba0593bf55 cleared the aforementioned
cpuid bit only on 32-bit due to various problems with Virtual PC. This
somehow got lost during the 32- + 64-bit merge so restore the feature
bit on 64-bit. For that, set it explicitly for non-constant arguments of
cpu_has(). Update comment for future reference.
Signed-off-by: Borislav Petkov <bp@alien8.de>
LKML-Reference: <20101004073127.GA20305@liondog.tnic>
Cc: Ryan O'Neill <ryan@innosecc.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Get compute unit information from CPUID Fn8000_001E_EBX.
(See AMD CPUID Specification - publication # 25481, revision 2.34,
September 2010.)
Note that each core on a compute unit still has a core_id of its own.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123857.GE20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Node information (ID, number of internal nodes) is provided via
CPUID Fn8000_001e_ECX.
See AMD CPUID Specification (Publication # 25481, Revision 2.34,
September 2010).
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123628.GD20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
CPU families 0x12, 0x14 and 0x15 support this functionality.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123357.GC20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Instead of adapting the CPU family check in amd_special_default_mtrr()
for each new CPU family assume that all new AMD CPUs support the
necessary bits in SYS_CFG MSR.
Tom2Enabled is architectural (defined in APM Vol.2).
Tom2ForceMemTypeWB is defined in all BKDGs starting with K8 NPT.
In pre K8-NPT BKDG this bit is reserved (read as zero).
W/o this adaption Linux would unnecessarily complain about bad MTRR
settings on every new AMD CPU family, e.g.
[ 0.000000] WARNING: BIOS bug: CPU MTRRs don't cover all of memory, losing 4863MB of RAM.
Cc: stable@kernel.org # .32.x, .35.x
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123235.GB20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If acpi_evaluate_object() function call doesn't fail, we must kfree()
output.buffer before returning from pcc_cpufreq_do_osc().
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Dave Jones <davej@redhat.com>
acpi_perf_data is a percpu pointer but was missing __percpu markup.
Add it.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Dave Jones <davej@redhat.com>