ACPICA commit 8b9c69d0984067051ffbe8526f871448ead6a26b
Link: https://github.com/acpica/acpica/commit/8b9c69d0
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Kaneda <erik.kaneda@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit d1716a829d19be23277d9157c575a03b9abb7457
For unloading an ACPI table, it is necessary to provide the index of
the table. The method intended for dynamically loading or hotplug
addition of tables, acpi_load_table(), should provide this information
via an optional pointer to the loaded table index.
This patch fixes the table unload function of acpi_configfs.
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Fixes: d06c47e3dd ("ACPI: configfs: Resolve objects on host-directed table loads")
Link: https://github.com/acpica/acpica/commit/d1716a82
Signed-off-by: Nikolaus Voss <nikolaus.voss@loewensteinmedical.de>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit c69369cd9cf0134e1aac516e97d612947daa8dc2
Unload a table via the table_index.
Link: https://github.com/acpica/acpica/commit/c69369cd
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit c7ef9f3526765bed8930825dda1eed1a274b9668
Use the common internal "initialize objects" interface
Affects:
Load()
load_table()
acpi_load_table
Link: https://github.com/acpica/acpica/commit/c7ef9f35
Tested-by: Rong Chen <rong.a.chen@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Revert commit c522ad0637 ("ACPICA: Update table load object
initialization") as it causes systems to hang on attempts to load
OEM ACPI tables.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit c7ef9f3526765bed8930825dda1eed1a274b9668
Use the common internal "initialize objects" interface
Affects:
Load()
load_table()
acpi_load_table
Link: https://github.com/acpica/acpica/commit/c7ef9f35
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If an ACPI SSDT overlay is loaded after built-in tables
have been loaded e.g. via configfs or efivar_ssdt_load()
it is necessary to rewalk the namespace to resolve
references. Without this, relative and absolute paths
like ^PCI0.SBUS or \_SB.PCI0.SBUS are not resolved
correctly.
Make configfs loads use the same method as efivar_ssdt_load().
Signed-off-by: Nikolaus Voss <nikolaus.voss@loewensteinmedical.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 92ec0935f27e217dff0b176fca02c2ec3d782bb5
ACPI_COMPARE_NAME changed to ACPI_COMPARE_NAMESEG
This clarifies (1) this is a compare on 4-byte namesegs, not
a generic compare. Improves understanding of the code.
Link: https://github.com/acpica/acpica/commit/92ec0935
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 47f5607c204719d9239a12b889df725225098c8f
Module-level code refers to executable ASL code that runs during
table load. This is typically used in ASL to declare named objects
based on a condition evaluated during table load like so:
definition_block(...)
{
opreation_region (OPR1, system_memory, ...)
Field (OPR1)
{
FLD1, 8 /* Assume that FLD1's value is 0x1 */
}
/* The if statement below is referred to as module-level code */
If (FLD1)
{
/* Declare DEV1 conditionally */
Device (DEV1) {...}
}
Device (DEV2)
{
...
}
}
In legacy module-level code, the execution of the If statement
was deferred after other modules were loaded. The order of
code execution for the table above is the following:
1.) Load OPR1 to the ACPI Namespace
2.) Load FLD1 to the ACPI Namespace (not intended for drivers)
3.) Load DEV2 to the ACPI Namespace
4.) Execute If (FLD1) and load DEV1 if the condition is true
This legacy approach can be problematic for tables that look like the
following:
definition_block(...)
{
opreation_region (OPR1, system_memory, ...)
Field (OPR1)
{
FLD1, 8 /* Assume that FLD1's value is 0x1 */
}
/* The if statement below is referred to as module-level code */
If (FLD1)
{
/* Declare DEV1 conditionally */
Device (DEV1) {...}
}
Scope (DEV1)
{
/* Add objects DEV1's scope */
Name (OBJ1, 0x1234)
}
}
When loading this in the legacy approach, Scope DEV1 gets evaluated
before the If statement. The following is the order of execution:
1.) Load OPR1 to the ACPI Namespace
2.) Load FLD1 to the ACPI Namespace (not intended for drivers)
3.) Add OBJ1 under DEV1's scope -- ERROR. DEV1 does not exist
4.) Execute If (FLD1) and load DEV1 if the condition is true
The legacy approach can never succeed for tables like this due to the
deferral of the module-level code. Due to this limitation, a new
module-level code was developed. This new approach exeutes if
statements in the order that they appear in the definition block.
With this approach, the order of execution for the above defintion
block is as follows:
1.) Load OPR1 to the ACPI Namespace
2.) Load FLD1 to the ACPI Namespace (not intended for drivers)
3.) Execute If (FLD1) and load DEV1 because the condition is true
4.) Add OBJ1 under DEV1's scope.
Since DEV1 is loaded in the namespace in step 3, step 4 executes
successfully.
This change removes support for the legacy module-level code
execution. From this point onward, the new module-level code
execution will be the official approach.
Link: https://github.com/acpica/acpica/commit/47f5607c
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 62f4f98e941d86e41969bf2ab5a93b8dc94dc49e
The update includes userspace tool signons.
Link: https://github.com/acpica/acpica/commit/62f4f98e
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
acpi_gbl_group_module_level_code and acpi_gbl_execute_tables_as_methods were
used to enable different table load behavior. The different table
load behaviors are as follows:
A.) acpi_gbl_group_module_level_code enabled the legacy approach where
ASL if statements are executed after the namespace object has
been loaded.
B.) acpi_gbl_execute_tables_as_methods is currently used to enable the
table load to be a method invocation. This meaning that ASL If
statements are executed in-line rather than deferred until after
the ACPI namespace has been populated. This is the correct
behavior and option A will be removed in the future.
We do not support a table load behavior where these variables are
assigned the same value. In otherwords, we only support option A or B
and do not need acpi_gbl_group_module_level_code to enable A. From now on,
acpi_gbl_execute_tables_as_methods == 0 enables option A and
acpi_gbl_execute_tables_as_methods == 1 enables option B.
Note: option A is expected to be removed in the future and option B
will become the only supported table load behavior.
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This prepares the code for eventual removal of the original
style of deferred execution of the MLC.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Was acpi_gbl_parse_table_as_term_list, changed to:
acpi_gbl_execute_tables_as_methods.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
including tool signons.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Erik Schmauss <erik.schmauss@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit d3c944f2cdc8c7e847b7942b1864f285189f7bce
Windows seems to allow arbitrary table signatures for Load/load_table
opcodes:
ACPI BIOS Error (bug): Table has invalid signature [PRAD] (0x44415250)
So this patch removes dynamic load signature checks. However we need to
find a way to avoid table loading against tables like MADT. This is not
covered by this commit.
This Windows behavior has been validated on link #1. An end user bug
report can also be found on link #2.
This patch also includes simple cleanup for static load signature check
code. Reported by Ye Xiaolong, Fixed by Lv Zheng.
Link: https://github.com/acpica/acpica/commit/d3c944f2
Link: https://github.com/acpica/acpica/pull/121 [#1]
Link: https://bugzilla.kernel.org/show_bug.cgi?id=118601 [#2]
Reported-by: Ye Xiaolong <xiaolong.ye@intel.com>
Reported-by: Olga Uhina <olga.uhina@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 16577e5265923f4999b4d2c0addb2343b18135e1
Affects all files.
Link: https://github.com/acpica/acpica/commit/16577e52
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 80e24663b212daac0c32767fdbd8a46892292f1f
This patch introduces acpi_tb_unload_table() to eliminate redundant code from
acpi_ex_unload_table() and acpi_unload_parent_table().
No functional change. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/80e24663
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 7fdac0289faa1c28b91413c8e394e87372aa69e6
acpi_tb_install_and_load_table() can invoke acpi_tb_load_table() to eliminate
redundant code.
No functional change. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/7fdac028
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 1d435008fd9ea34768df8862de9cb6fff69650f6
Only emit an extra newline for acpiexec.
Link: https://github.com/acpica/acpica/commit/1d435008
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit f564d57c6501b97a2871f0b4c048e79910f71783
This patch tunes MTX_TABLES into a leaf lock by always ensuring it is
released before holding other locks.
This patch also collects all table loading related functions into
acpi_tb_load_table() (invoked by load_table opcode) and
acpi_tb_install_and_load_table() (invoked by Load opcode and acpi_load_table()) so
that we can have lock tuning code collected at the boundary of these 2
functions. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/f564d57c
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Tested-by: Dutch Guy <lucht_piloot@gmx.net>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 0e24fb67cde08d7df7671d7d7b183490dc79707e
The MLC (Module Level Code) is an ACPICA terminology describing the AML
code out of any control method, its support is an indication of the
interpreter behavior during the table loading.
The original implementation of MLC in ACPICA had several issues:
1. Out of any control method, besides of the object creating opcodes, only
the code blocks wrapped by "If/Else/While" opcodes were supported.
2. The supported MLC code blocks were executed after loading the table
rather than being executed right in place.
============================================================
The demo of this order issue is as follows:
Name (OBJ1, 1)
If (CND1 == 1)
{
Name (OBJ2, 2)
}
Name (OBJ3, 3)
The original MLC support created OBJ2 after OBJ3's creation.
============================================================
Other than these limitations, MLC support in ACPICA looks correct. And
supporting this should be easy/natural for ACPICA, but enabling of this was
blocked by some ACPICA internal and OSPM specific initialization order
issues we've fixed recently. The wrong support started from the following
false bug fixing commit:
Commit: 7f0c826a43
Subject: ACPICA: Add support for module-level executable AML code
Commit: 9a884ab64a
Subject: ACPICA: Add additional module-level code support
...
We can confirm Windows interpreter behavior via reverse engineering means.
It can be proven that not only If/Else/While wrapped code blocks, all
opcodes can be executed at the module level, including operation region
accesses. And it can be proven that the MLC should be executed right in
place, not in such a deferred way executed after loading the table.
And the above facts indeed reflect the spec words around ACPI definition
block tables (DSDT/SSDT/...), the entire table and the Scope object is
defined by the AML specification in BNF style as:
AMLCode := def_block_header term_list
def_scope := scope_op pkg_length name_string term_list
The bodies of the scope opening terms (AMLCode/Scope) are all term_list,
thus the table loading should be no difference than the control method
evaluations as the body of the Method is also defined by the AML
specification as term_list:
def_method := method_op pkg_length name_string method_flags term_list
The only difference is: after evaluating control method, created named
objects may be freed due to no reference, while named objects created by
the table loading should only be freed after unloading the table.
So this patch follows the spec and the de-facto standard behavior, enables
the new grammar (term_list) for the table loading.
By doing so, beyond the fixes to the above issues, we can see additional
differences comparing to the old grammar based table loading:
1. Originally, beyond the scope opening terms (AMLCode/Scope),
If/Else/While wrapped code blocks under the scope creating terms
(Device/power_resource/Processor/thermal_zone) are also supported as
deferred MLC, which violates the spec defined grammar where object_list
is enforced. With MLC support improved as non-deferred, the interpreter
parses such scope creating terms as term_list rather object_list like the
scope opening terms.
After probing the Windows behavior and proving that it also parses these
terms as term_list, we submitted an ECR (Engineering Change Request) to
the ASWG (ACPI Specification Working Group) to clarify this. The ECR is
titled as "ASL Grammar Clarification for Executable AML Opcodes" and has
been accepted by the ASWG. The new grammar will appear in ACPI
specification 6.2.
2. Originally, Buffer/Package/operation_region/create_XXXField/bank_field
arguments are evaluated in a deferred way after loading the table. With
MLC support improved, they are also parsed right in place during the
table loading.
This is also Windows compliant and the only difference is the removal
of the debugging messages implemented before acpi_ds_execute_arguments(),
see Link # [1] for the details. A previous commit should have ensured
that acpi_check_address_range() won't regress.
Note that enabling this feature may cause regressions due to long term
Linux ACPI support on top of the wrong grammar. So this patch also prepares
a global option to be used to roll back to the old grammar during the
period between a regression is reported and the regression is
root-cause-fixed. Lv Zheng.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=112911 # [1]
Link: https://bugzilla.kernel.org/show_bug.cgi?id=117671 # [1]
Link: https://bugzilla.kernel.org/show_bug.cgi?id=153541 # [1]
Link: https://github.com/acpica/acpica/issues/122
Link: https://bugs.acpica.org/show_bug.cgi?id=963
Link: https://github.com/acpica/acpica/commit/0e24fb67
Reported-and-tested-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Reported-by: Ehsan <dashesy@gmail.com>
Reported-and-tested-by: Dutch Guy <lucht_piloot@gmx.net>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit c160cae765412f5736cf88a9ebcc6138aa761a48
Linux uses asmlinkage and sparse macros to mark function symbols. This
leads to the divergences between the Linux and the ACPICA.
This patch ports such declarators back to ACPICA. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/c160cae7
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 9a6ecc9ec9ee067cad51eec539230bf494421d76
Since AE_ALREADY_EXISTS has already been converted to AE_OK in
acpi_ev_install_region_handlers(), this patch simplies a return value
check. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/9a6ecc9e
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is reported that the following commit triggers regressions:
Linux commit: efaed9be99
ACPICA commit: 31178590dde82368fdb0f6b0e466b6c0add96c57
Subject: ACPICA: Events: Enhance acpi_ev_execute_reg_method() to
ensure no _REG evaluations can happen during OS early boot
stages
This is because that the ECDT support is not corrected in Linux, and Linux
requires to execute _REG for ECDT (though this sounds so wrong), we need to
ensure acpi_gbl_namespace_initialized is set before ECDT probing in order
for _REG to be executed. Since we have to move
"acpi_gbl_namespace_initialized = TRUE" to the initialization step
happening before ECDT probing, acpi_load_tables() is the best candidate for
now. Thus this patch fixes the regression by doing so.
But if the ECDT support is fixed, Linux will not execute _REG for ECDT, and
ECDT probing will happen before acpi_load_tables(). At that time, we still
want to ensure acpi_gbl_namespace_initialized is set after executing
acpi_ns_initialize_objects() (under the condition of
acpi_gbl_group_module_level_code = FALSE), this patch also moves
acpi_ns_initialize_objects() to acpi_load_tables() accordingly.
Since acpi_ns_initialize_objects() doesn't seem to be skippable, this
patch also removes ACPI_NO_OBJECT_INIT for the one invoked in
acpi_load_tables(). And since the default region handlers should always be
installed before loading the tables, this patch also removes useless
acpi_gbl_group_module_level_code check accordingly. Reported by Chris
Bainbridge, Fixed by Lv Zheng.
Fixes: efaed9be99 (ACPICA: Events: Enhance acpi_ev_execute_reg_method() to ensure no _REG evaluations can happen during OS early boot stages)
Reported-and-tested-by: Chris Bainbridge <chris.bainbridge@gmail.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 016b2a0917cca9cf0d40c38a1541017d9cf569dd
It is proven that the default regions should be accessible during the
table loading in order to execute module level AML code.
This patch moves default region handler installation code earlier in
order to make this happen.
Note that by putting the code here, we actually allow OSPMs to override
default region handlers between acpi_initialize_subsystem() and
acpi_load_tables(), without the need to introduce region handler override
mechanism in acpi_install_address_space_handler(). OSPMs are also couraged
to check acpi_install_address_space_handler() return value to determine if
acpi_remove_address_space_handler() should be invoked before installing new
address space handler. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/016b2a09
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 181f56605a771e0b91e24b0648d2565ca70bea20
This is used as a purely infomation message, without module name
and line number information. Therefore, these arguments are
not needed and they are unnecessary overhead.
Arguments are removed.
ACPICA BZ 872.
Link: https://github.com/acpica/acpica/commit/181f5660
Link: https://bugs.acpica.org/show_bug.cgi?id=872
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
All tool/utility signons.
Dual-license module header.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 5be7dc4d0d69b2953d156f5bc4d3e8a65a390837
Matches the support in iASL and acpi_exec.
Link: https://github.com/acpica/acpica/commit/5be7dc4d
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit dfa394471f6c01b2ee9433dbc143ec70cb9bca72
Mostly indentation inconsistencies across the code. Split
some long lines, etc.
Link: https://github.com/acpica/acpica/commit/dfa39447
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 93862bd7a227543bc617d822ef5c4f8a5d68b519
Add output of table OEM ID along with signature to support lots
of SSDTs.
Cleanup use of table pointers.
Link: https://github.com/acpica/acpica/commit/93862bd7
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit ca3bd4c5cdc39a9009280032adbbc20f34e94c47
Fix a couple of issues with >40 ACPI tables.
Return exit error for acpinames to enable use with BIOS builds.
The new exported function is used by acpinames. For Linux kernel, this
change is a no-op.
Link: https://github.com/acpica/acpica/commit/ca3bd4c5
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit c0b38b4c3982c2336ee92a2a14716107248bd941
The fixed table indexes leave holes in the global table list:
1. One hole can be seen when there is only 1 FACS provided by the BIOS.
2. Tow holes can be seen when it is a reduced hardware platform.
The holes do not break OSPMs but have broken ACPI debugger "tables"
command.
Also the "fixed table indexes" mechanism may make the descriptors of the
standard tables installed earlier than DSDT to be overwritten by the
descriptors of the fixed tables. For example, FACP disappears from the
global table list after DSDT is installed.
This patch fixes all above issues by removing the "fixed table indexes"
mechanism which is too complicated to be maintained in a regression safe
manner. After removal, the table loader will determine the indexes of the
fixed tables. Lv Zheng.
Link: https://github.com/acpica/acpica/commit/c0b38b4c
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 4ccf8a1cc499ec8f00345f662a5887483980e1dd
Small cleanup of messages.
Link: https://github.com/acpica/acpica/commit/4ccf8a1c
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit ed7769e832de6c7ba90615480d916c85fd100422
If a table load fails, delete all namespace objects created by the
table, otherwise these objects will be uninitialized, causing
problems later. This appears to be a very rare problem.
Also handle the unitialized node problem to prevent possible
faults. ACPICA BZ 1185.
Link: https://github.com/acpica/acpica/commit/ed7769e8
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 3b1026e0bdd3c32eb6d5d313f3ba0b1fee7597b4
ACPICA commit 00f0dc83f5cfca53b27a3213ae0d7719b88c2d6b
ACPICA commit 47d22a738d0e19fd241ffe4e3e9d4e198e4afc69
Across all of ACPICA. Replace C library macros such as ACPI_STRLEN with the
standard names such as strlen. The original purpose for these macros is
long since obsolete.
Also cast various invocations as necessary. Bob Moore, Jung-uk Kim, Lv Zheng.
Link: https://github.com/acpica/acpica/commit/3b1026e0
Link: https://github.com/acpica/acpica/commit/00f0dc83
Link: https://github.com/acpica/acpica/commit/47d22a73
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Jung-uk Kim <jkim@FreeBSD.org>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 27415c82fcecf467446f66d1007a0691cc5f3709
This patch adds OSDT (Override System Definition Table) support.
When OSDT is loaded, conflict namespace objects will be overridden
by the AML interpreter. Bob Moore, Lv Zheng.
Link: https://github.com/acpica/acpica/commit/27415c82
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit f7b86f35416e3d1f71c3d816ff5075ddd33ed486
The following commit is reported to have broken s2ram on some platforms:
Commit: 0249ed2444
ACPICA: Add option to favor 32-bit FADT addresses.
The platform reports 2 FACS tables (which is not allowed by ACPI
specification) and the new 32-bit address favor rule forces OSPMs to use
the FACS table reported via FADT's X_FIRMWARE_CTRL field.
The root cause of the reported bug might be one of the followings:
1. BIOS may favor the 64-bit firmware waking vector address when the
version of the FACS is greater than 0 and Linux currently only supports
resuming from the real mode, so the 64-bit firmware waking vector has
never been set and might be invalid to BIOS while the commit enables
higher version FACS.
2. BIOS may favor the FACS reported via the "FIRMWARE_CTRL" field in the
FADT while the commit doesn't set the firmware waking vector address of
the FACS reported by "FIRMWARE_CTRL", it only sets the firware waking
vector address of the FACS reported by "X_FIRMWARE_CTRL".
This patch excludes the cases that can trigger the bugs caused by the root
cause 2.
There is no handshaking mechanism can be used by OSPM to tell BIOS which
FACS is currently used. Thus the FACS reported by "FIRMWARE_CTRL" may still
be used by BIOS and the 0 value of the 32-bit firmware waking vector might
trigger such failure.
This patch tries to favor 32bit FACS address in another way where both the
FACS reported by "FIRMWARE_CTRL" and the FACS reported by "X_FIRMWARE_CTRL"
are loaded so that further commit can set firmware waking vector in the
both tables to ensure we can exclude the cases that trigger the bugs caused
by the root cause 2. The exclusion is split into 2 commits as this commit
is also useful for dumping more ACPI tables, it won't get reverted when
such exclusion is no longer necessary. Lv Zheng.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=74021
Link: https://github.com/acpica/acpica/commit/f7b86f35
Cc: 3.14.1+ <stable@vger.kernel.org> # 3.14.1+
Reported-and-tested-by: Oswald Buddenhagen <ossi@kde.org>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPICA commit 8990e73ab2aa15d6a0068b860ab54feff25bee36
Link: https://github.com/acpica/acpica/commit/8990e73a
Signed-off-by: David E. Box <david.e.box@linux.intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some various cleanups and renames.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds a new API - acpi_install_table(). OSPMs can use this API
to install tables during early boot stage. Lv Zheng.
References: https://lkml.org/lkml/2014/2/28/372
Cc: Thomas Renninger <trenn@suse.de>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
[rjw: Subject]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It is reported that when acpi_gbl_disable_ssdt_table_load is specified, user
still can see it installed into /sys/firmware/acpi/tables on Linux boxes.
This is because the option only stops table "loading", but doesn't stop
table "installing", thus it is still in the acpi_gbl_root_table_list. With
previous cleanups, it is possible to prevent SSDT installations to make
it not such confusing. The global variable is also renamed. Lv Zheng.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
[rjw: Subject]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch refines ACPI_TABLE_ORIGIN_xxx flags. No functional changes.
The previous commits have introduced the following internal APIs:
1. acpi_tb_acquire_table: Acquire struct acpi_table_header according to
ACPI_TABLE_ORIGIN_xxx flags.
2. acpi_tb_release_table: Release struct acpi_table_header according to
ACPI_TABLE_ORIGIN_xxx flags.
3. acpi_tb_install_table: Make struct acpi_table_desc.Address not NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
4. acpi_tb_uninstall_table: Make struct acpi_table_desc.Address NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
5. acpi_tb_validate_table: Make struct acpi_table_desc.Pointer not NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
6. acpi_tb_invalidate_table: Make struct acpi_table_desc.Pointer NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
It thus detects that the ACPI_TABLE_ORIGIN_UNKNOWN is redundant to
ACPI_TABLE_ORIGIN_OVERRIDE.
The ACPI_TABLE_ORIGIN_xxTERN_VIRTUAL flags are named as VIRTUAL in order
not to confuse with x86 logical address, this patch also renames all
"logical override" into "virtual override".
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The original table handling code does not always verify checksums before
installing a table, this is because code to achieve this must be
implemented here and there in the redundant code blocks.
There are two stages during table initialization:
1. "INSTALLED" after acpi_tb_install_table() and acpi_tb_override_table(),
struct acpi_table_desc.Pointer is ensured to be NULL. This can be safely used
during OSPM's early boot stage.
2. "VALIDATED" after acpi_tb_validate_table(), struct acpi_table_desc.Pointer is
ensured to be not NULL. This must not be used during OSPM's early boot
stage.
This patch changes acpi_tb_add_table() into an early boot safe API to reduce
code redundancies by changing the table state that is returned by this
function from "VALIDATED" to "INSTALLED". Then the table verification
code can be done in a single place. Originally, the acpi_tb_add_table() can
only be used by dynamic table loadings that are executed after early boot
stage, it cannot be used by static table loadings that are executed in
early boot stage as:
1. The address of the table is a virtual address either maintained by
OSPMs who call acpi_load_table() or by ACPICA whenever "Load" or
"LoadTable" opcodes are executed, while during early boot stage,
physical address of the table should be used for table loading.
2. The API will ensure the state of the loaded table to be "VALIDATED"
while during early boot stage, tables maintained by root table list
should be kept as "INSTALLED".
To achieve this:
1. Rename acpi_tb_install_table() to acpi_tb_install_fixed_table() as it only
applies to DSDT/FACS installation. Rename acpi_tb_add_table() to
acpi_tb_install_non_fixed_table() as it will be applied to the installation
of the rest kinds of tables.
2. Introduce acpi_tb_install_table(), acpi_tb_install_and_override_table to collect
redudant code where their invocations actually have slight differences.
1. acpi_tb_install_table() is used to fill an struct acpi_table_desc where the
table length is known to the caller.
2. acpi_tb_install_and_override_table() is used to perform necessary
overriding before installation.
3. Change a parameter of acpi_tb_install_non_fixed_table() from struct acpi_table_desc
to acpi_physical_address to allow it to be invoked by static table
loadings. Also cleanup acpi_ex_load_op() and acpi_load_table() to accomodate
to the parameter change.
4. Invoke acpi_tb_install_non_fixed_table() for all table loadings other than
DSDT/FACS in acpi_tb_parse_root_table() to improve code maintainability
(logics are collected in the single function). Also delete useless code
from acpi_tb_parse_root_table().
5. Remove all acpi_tb_validate_table() from acpi_tb_install_non_fixed_table() and
acpi_tb_install_fixed_table() so that the table descriptor is kept in the
state of "INSTALLED" but not "VALIDATED" after returning from these
functions.
6. Introduce temporary struct acpi_table_desc (new_table_desc/old_table_desc) into
the functions to indicate a table descriptor that is not maintained by
acpi_gbl_root_table_list. Introduce acpi_tb_acquire_temporal_table() and
acpi_tb_release_temporal_table() to handle the use cases of such temporal
tables. They are only used for verified installation.
7. Introduce acpi_tb_verify_table() to validate table and verify table
checksum, also remove table checksum verification from
acpi_tb_validate_table(). Invoke acpi_tb_validate_table() in the functions
that will convert a table into "LOADED" state or invoke it from
acpi_get_table_XXX() APIs. Invoke acpi_tb_verify_table() on temporary
struct acpi_table_desc(s) that are going to be "INSTALLED".
8. Change acpi_tb_override_table() logic so that a temporary struct acpi_table_desc
will be overridden before installtion, this makes code simpler.
After applying the patch, tables are always installed after being
overridden and the table checksums are always verified before installation.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
[rjw: Subject]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch is mainly a naming cleanup to clarify hidden logics, no
functional changes.
acpi_initialize_tables() is used by Linux to install table addresses for
early boot steps. During this stage, table addresses are mapped by
early_ioremap() mechanism which is different from the runtime IO mappings.
Thus it is not safe for ACPICA to keep mapped pointers in struct acpi_table_desc
structure during this stage.
In order to support this in ACPICA, table states are divided into
1. "INSTALLED" (where struct acpi_table_desc.Pointer is always NULL) and
2. "VALIDATED" (where struct acpi_table_desc.Pointer is always not NULL).
During acpi_initialize_tables(), table state are ensured to be "INSTALLED"
but not "VALIDATED". This logic is ensured by the original code in very
ambigious way. For example, currently acpi_tb_delete_table() is invoked in
some place to perform an uninstallation while it is invoked in other place
to perform an invalidation. They happen to work just because no one enters
the penalty where the 2 behaviours are not equivalent.
The naming cleanups are made in this patch:
A. For installation and validation:
There is code setting struct acpi_table_desc.Pointer first and delete it
immediately to keep the descriptor's state as "INSTALLED" during the
installation. This patch implements this in more direct way. After
applying it, struct acpi_table_desc.Pointer will never be set in
acpi_tb_install_table() and acpi_tb_override_table() as they are the only
functions invoked during acpi_initialize_tables(). This is achieved by:
1. Rename acpi_tb_verify_table() to acpi_tb_validate_table() to clarify this
change.
2. Rename acpi_tb_table_override() to acpi_tb_override_table() to keep nameing
consistencies as other APIs (verb. Table).
3. Stops setting struct acpi_table_desc.Pointer in acpi_tb_install_table() and
acpi_tb_table_override().
4. Introduce acpi_tb_acquire_table() to acquire the table pointer that is not
maintained in the struct acpi_table_desc of the global root table list and
rewrite acpi_tb_validate_table() using this new function to reduce
redundancies.
5. Replace the table pointer using the overridden table pointer in
acpi_tb_add_table(). As acpi_tb_add_table() is not invoked during early boot
stage, tables returned from this functions should be "VALIDATED". As
acpi_tb_override_table() is modified by this patch to return a "INSTALLED"
but not "VALIDATED" descriptor, to keep acpi_tb_add_table() unchanged,
struct acpi_table_desc.Pointer is filled in acpi_tb_add_table().
B. For invalidation and uninstallation:
The original code invalidate table by invoking acpi_tb_delete_table() here
and there, but actually this function should only be used to uninstall
tables. This can work just because its invocations are equivalent to
invalidation in some cases.
This patch splits acpi_tb_delete_table() into acpi_tb_invalidate_table() and
acpi_tb_uninstall_table() and cleans up the hidden logic using the new
APIs. This is achieved by:
1. Rename acpi_tb_delete_table() to acpi_tb_uninstall_table() as it is mainly
called before resetting struct acpi_table_desc.Address. Thus the table
descriptor is in "not INSTALLED" state. This patch enforces this by
setting struct acpi_table_desc.Address to NULL in this function.
2. Introduce acpi_tb_invalidate_table() to be the reversal of
acpi_tb_validate_table() and invoke it in acpi_tb_uninstall_table().
3. Introduce acpi_tb_release_table() to release the table pointer that is not
maintained in acpi_gbl_root_table_list and rewrite acpi_tb_invalidate_table()
using this new function to reduce redundancies.
After cleaning up, the maintainability of the internal APIs are also
improved:
1. acpi_tb_acquire_table: Acquire struct acpi_table_header according to
ACPI_TABLE_ORIGIN_xxx flags.
2. acpi_tb_release_table: Release struct acpi_table_header according to
ACPI_TABLE_ORIGIN_xxx flags.
3. acpi_tb_install_table: Make struct acpi_table_desc.Address not NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
4. acpi_tb_uninstall_table: Make struct acpi_table_desc.Address NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
5. acpi_tb_validate_table: Make struct acpi_table_desc.Pointer not NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
6. acpi_tb_invalidate_table: Make struct acpi_table_desc.Pointer NULL according to
ACPI_TABLE_ORIGIN_xxx flags.
7. acpi_tb_override_table: Replace struct acpi_table_desc.Address and
struct acpi_table_desc.Flags. It only happens in
"INSTALLED" state.
The patch has been unit tested in acpi_exec by:
1. Initializing;
2. Executing exc_tbl ASLTS tests;
3. Executing "Load" command.
So that all original acpi_tb_install_table() and acpi_tb_override_table()
invocations are covered.
Known Issues:
1. Cleanup acpi_tb_add_table() to Kill Code Redundancies
Current implementation in acpi_tb_add_table() is not very clean, further
patch can rewrite acpi_tb_add_table() with ordered acpi_tb_install_table(),
acpi_tb_override_table() and acpi_tb_validate_table(). It is not done in this
patch so that it is easy for the reviewers to understand the changes in
this patch.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Update ACPICA copyrights to 2014. Includes all source headers and
signons for the various tools.
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds __init to the ACPICA documented initializers:
acpi_initialize_tables()
acpi_initialize_subsystem()
acpi_load_tables()
acpi_enable_subsystem()
acpi_initialize_objects()
and to acpi_reallocate_root_table(), acpi_find_root_pointer() which
are also meant to be called only during initialization.
This patch adds __init to the ACPICA documented finalizer:
acpi_terminate()
as this finalizer is only called in __init function now.
This change helps to reduce source code differences between
ACPICA upstream and Linux.
[rjw: Changelog]
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This changes can reduce source code differences between Linux and ACPICA
upstream to help improving the release automation.
The side effect of applying this patch in Linux is:
1. Some ACPICA initialization/termination APIs are no longer exported in
Linux, these include:
acpi_load_tables
acpi_initialize_subsystem
acpi_enable_subsystem
acpi_initialize_objects
acpi_terminate
2. This patch does not affect the following APIs as they are currently not
marked with ACPI_EXPORT_SYMBOL in Linux:
acpi_reallocate_root_table
acpi_initialize_tables
Such functions should not be exported as they are internal to ACPI
subsystem in Linux, and will only be invoked inside of ACPI subsystem's
initialization routines marked with __init and termination routines marked
with __exit. While on other OSPMs, such functions may still need to be
exported.
Thus this patch adds the configurability for ACPICA, so that it leaves
OSPMs to determine if the __init/__exit marked functions should be exported
or not. Lv Zheng.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Bob Moore <robert.moore@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>