Remove the private DMA API implementation from nand/omap2.c
making it use entirely the DMA engine API.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add DMA engine support to the OMAP2 NAND driver. This supplements the
private DMA API implementation contained within this driver, and the
driver can be independently switched at build time between using DMA
engine and the private DMA API.
Tested-by: Grazvydas Ignotas <notasas@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Remove the private DMA API implementation from spi-omap2-mcspi.c,
making it use entirely the DMA engine API.
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add DMA engine support to the OMAP SPI driver. This supplements the
private DMA API implementation contained within this driver, and the
driver can be independently switched at build time between using DMA
engine and the private DMA API for the transmit and receive sides.
Tested-by: Shubhrajyoti <shubhrajyoti@ti.com>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
DMAengine uses the DMA engine device structure when mapping/unmapping
memory for DMA, so the MMC devices do not need their DMA masks
initialized (this reflects hardware: the MMC device is not the device
doing DMA.)
Tested-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Remove the private DMA API implementation from omap, making it use
entirely the DMA engine API.
Tested-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add DMA engine support to the OMAP driver. This supplements the
private DMA API implementation contained within this driver, and the
driver can be switched at build time between using DMA engine and the
private DMA API.
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Remove the private DMA API implementation from omap_hsmmc, making it
use entirely the DMA engine API.
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Venkatraman S <svenkatr@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add DMA engine support to the OMAP HSMMC driver. This supplements the
private DMA API implementation contained within this driver, and the
driver can be switched at build time between using DMA engine and the
private DMA API.
Tested-by: Grazvydas Ignotas <notasas@gmail.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add support for returning the residue for a particular descriptor by
reading the current DMA address for the source or destination side of
the transfer as appropriate, and walking the scatterlist until we find
an entry containing the current DMA address.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The vivt_flush_cache_{range,page} functions check that the mm_struct
of the VMA being flushed has been active on the current CPU before
performing the cache maintenance.
The gate_vma has a NULL mm_struct pointer and, as such, will cause a
kernel fault if we try to flush it with the above operations. This
happens during ELF core dumps, which include the gate_vma as it may be
useful for debugging purposes.
This patch adds checks to the VIVT cache flushing functions so that VMAs
with a NULL mm_struct are flushed unconditionally (the vectors page may
be dirty if we use it to store the current TLS pointer).
Cc: <stable@vger.kernel.org> # 3.4+
Reported-by: Gilles Chanteperdrix <gilles.chanteperdrix@xenomai.org>
Tested-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
While trying to get a v3.5 kernel booted on the cubox, I noticed that
VFP does not work correctly with VFP bounce handling. This is because
of the confusion over 16-bit vs 32-bit instructions, and where PC is
supposed to point to.
The rule is that FP handlers are entered with regs->ARM_pc pointing at
the _next_ instruction to be executed. However, if the exception is
not handled, regs->ARM_pc points at the faulting instruction.
This is easy for ARM mode, because we know that the next instruction and
previous instructions are separated by four bytes. This is not true of
Thumb2 though.
Since all FP instructions are 32-bit in Thumb2, it makes things easy.
We just need to select the appropriate adjustment. Do this by moving
the adjustment out of do_undefinstr() into the assembly code, as only
the assembly code knows whether it's dealing with a 32-bit or 16-bit
instruction.
Cc: <stable@vger.kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit cdf357f1 ("ARM: 6299/1: errata: TLBIASIDIS and TLBIMVAIS
operations can broadcast a faulty ASID") replaced by-ASID TLB flushing
operations with all-ASID variants to workaround A9 erratum #720789.
This patch extends the workaround to include the tlb_range operations,
which were overlooked by the original patch.
Cc: <stable@vger.kernel.org>
Tested-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
vfp_pm_suspend should save the VFP state in suspend after
any lazy context switch. If it only saves when the VFP is enabled,
the state can get lost when, on a UP system:
Thread 1 uses the VFP
Context switch occurs to thread 2, VFP is disabled but the
VFP context is not saved
Thread 2 initiates suspend
vfp_pm_suspend is called with the VFP disabled, and the unsaved
VFP context of Thread 1 in the registers
Modify vfp_pm_suspend to save the VFP context whenever
vfp_current_hw_state is not NULL.
Includes a fix from Ido Yariv <ido@wizery.com>, who pointed out that on
SMP systems, the state pointer can be pointing to a freed task struct if
a task exited on another cpu, fixed by using #ifndef CONFIG_SMP in the
new if clause.
Cc: Barry Song <bs14@csr.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ido Yariv <ido@wizery.com>
Cc: Daniel Drake <dsd@laptop.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
vfp_pm_suspend runs on each cpu, only clear the hardware state
pointer for the current cpu. Prevents a possible crash if one
cpu clears the hw state pointer when another cpu has already
checked if it is valid.
Cc: stable@vger.kernel.org
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 722b3c7469 modified x86 ftrace to
avoid tracing all functions called from irqs when function graph was
used with a filter. Port the same fix to ARM.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The open-coded mutex implementation for ARMv6+ cores suffers from a
severe lack of barriers, so in the uncontended case we don't actually
protect any accesses performed during the critical section.
Furthermore, the code is largely a duplication of the ARMv6+ atomic_dec
code but optimised to remove a branch instruction, as the mutex fastpath
was previously inlined. Now that this is executed out-of-line, we can
reuse the atomic access code for the locking (in fact, we use the xchg
code as this produces shorter critical sections).
This patch uses the generic xchg based implementation for mutexes on
ARMv6+, which introduces barriers to the lock/unlock operations and also
has the benefit of removing a fair amount of inline assembly code.
Cc: <stable@vger.kernel.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Nicolas Pitre <nico@linaro.org>
Reported-by: Shan Kang <kangshan0910@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The CPU will endlessly spin at the end of machine_halt and
machine_restart calls. However, this will lead to a soft lockup
warning after about 20 seconds, if CONFIG_LOCKUP_DETECTOR is enabled,
as system timer is still alive.
Disable interrupt before going to spin endlessly, so that the lockup
warning will never be seen.
Cc: <stable@vger.kernel.org>
Reported-by: Marek Vasut <marex@denx.de>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The IDT codecs initializes the GPIO setup for mute LEDs via
snd_hda_sync_vmaster_hook(). This works in most cases except for the
very first call, which is called before PCM and control creations.
Thus before Master switch is set manually via alsactl, the mute LED
may show the wrong state, depending on the polarity.
Now it's fixed by calling the LED-status update function manually when
no vmaster is set yet.
Cc: <stable@vger.kernel.org> [v3.4+]
Signed-off-by: Takashi Iwai <tiwai@suse.de>
The commit a3e199732b made the LED working again on HP Mini 210 but
with a wrong polarity. This patch fixes the polarity for this
machine, and also introduce a new model string "hp-inv-led".
Bugzilla: https://bugzilla.novell.com/show_bug.cgi?id=772923
Cc: <stable@vger.kernel.org> [v3.3+]
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This will allow md/raid to know why the unplug was called,
and will be able to act according - if !from_schedule it
is safe to perform tasks which could themselves schedule.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
MD raid1 prepares to dispatch request in unplug callback. If make_request in
low level queue also uses unplug callback to dispatch request, the low level
queue's unplug callback will not be called. Recheck the callback list helps
this case.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Both md and umem has similar code for getting notified on an
blk_finish_plug event.
Centralize this code in block/ and allow each driver to
provide its distinctive difference.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This seemed like a good idea at the time, but after further thought I
cannot see it making a difference other than very occasionally and
testing to try to exercise the case it is most likely to help did not
show any performance difference by removing it.
So remove the counting of active plugs and allow 'pending writes' to
be activated at any time, not just when no plugs are active.
This is only relevant when there is a write-intent bitmap, and the
updating of the bitmap will likely introduce enough delay that
the single-threading of bitmap updates will be enough to collect large
numbers of updates together.
Removing this will make it easier to centralise the unplug code, and
will clear the other for other unplug enhancements which have a
measurable effect.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add in-flight cmds to the tail. That way while searching
(during request completion),we will always get a hit on the
first element.
Signed-off-by: Chetan Loke <loke.chetan@gmail.com>
Acked-by: Paul.Clements@steeleye.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
freeze_fs/unfreeze_fs ops are called with s_umount held for write, not read.
Signed-off-by: Valerie Aurora <val@vaaconsulting.com>
Signed-off-by: Kamal Mostafa <kamal@canonical.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that all users are converted, we can remove functions, variables, and
constants defined by the old freezing mechanism.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only missing piece to make freezing work reliably with ext2 is to
stop iput() of unlinked inode from deleting the inode on frozen filesystem.
So add a necessary protection to ext2_evict_inode().
We also provide appropriate ->freeze_fs and ->unfreeze_fs functions.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We convert btrfs_file_aio_write() to use new freeze check. We also add proper
freeze protection to btrfs_page_mkwrite(). We also add freeze protection to
the transaction mechanism to avoid starting transactions on frozen filesystem.
At minimum this is necessary to stop iput() of unlinked file to change frozen
filesystem during truncation.
Checks in cleaner_kthread() and transaction_kthread() can be safely removed
since btrfs_freeze() will lock the mutexes and thus block the threads (and they
shouldn't have anything to do anyway).
CC: linux-btrfs@vger.kernel.org
CC: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We change nilfs_page_mkwrite() to provide proper freeze protection for
writeable page faults (we must wait for frozen filesystem even if the
page is fully mapped).
We remove all vfs_check_frozen() checks since they are now handled by
the generic code.
CC: linux-nilfs@vger.kernel.org
CC: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move check in ntfs_file_aio_write_nolock() to ntfs_file_aio_write() and
use new freeze protection.
CC: linux-ntfs-dev@lists.sourceforge.net
CC: Anton Altaparmakov <anton@tuxera.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert check in fuse_file_aio_write() to using new freeze protection.
CC: fuse-devel@lists.sourceforge.net
CC: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We update gfs2_page_mkwrite() to use new freeze protection and the transaction
code to use freeze protection while the transaction is running. That is needed
to stop iput() of unlinked file from modifying the filesystem. The rest is
handled by the generic code.
CC: cluster-devel@redhat.com
CC: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Protect ocfs2_page_mkwrite() and ocfs2_file_aio_write() using the new freeze
protection. We also protect several ioctl entry points which were missing the
protection. Finally, we add freeze protection to the journaling mechanism so
that iput() of unlinked inode cannot modify a frozen filesystem.
CC: Mark Fasheh <mfasheh@suse.com>
CC: Joel Becker <jlbec@evilplan.org>
CC: ocfs2-devel@oss.oracle.com
Acked-by: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Generic code now blocks all writers from standard write paths. So we add
blocking of all writers coming from ioctl (we get a protection of ioctl against
racing remount read-only as a bonus) and convert xfs_file_aio_write() to a
non-racy freeze protection. We also keep freeze protection on transaction
start to block internal filesystem writes such as removal of preallocated
blocks.
CC: Ben Myers <bpm@sgi.com>
CC: Alex Elder <elder@kernel.org>
CC: xfs@oss.sgi.com
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We remove most of frozen checks since upper layer takes care of blocking all
writes. We have to handle protection in ext4_page_mkwrite() in a special way
because we cannot use generic block_page_mkwrite(). Also we add a freeze
protection to ext4_evict_inode() so that iput() of unlinked inode cannot modify
a frozen filesystem (we cannot easily instrument ext4_journal_start() /
ext4_journal_stop() with freeze protection because we are missing the
superblock pointer in ext4_journal_stop() in nojournal mode).
CC: linux-ext4@vger.kernel.org
CC: "Theodore Ts'o" <tytso@mit.edu>
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Acked-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There are several entry points which dirty pages in a filesystem. mmap
(handled by block_page_mkwrite()), buffered write (handled by
__generic_file_aio_write()), splice write (generic_file_splice_write),
truncate, and fallocate (these can dirty last partial page - handled inside
each filesystem separately). Protect these places with sb_start_write() and
sb_end_write().
->page_mkwrite() calls are particularly complex since they are called with
mmap_sem held and thus we cannot use standard sb_start_write() due to lock
ordering constraints. We solve the problem by using a special freeze protection
sb_start_pagefault() which ranks below mmap_sem.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It is unexpected to block reading of frozen filesystem because of atime update.
Also handling blocking on frozen filesystem because of atime update would make
locking more complex than it already is. So just skip atime update when
filesystem is frozen like we skip it when filesystem is remounted read-only.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Most of places where we want freeze protection coincides with the places where
we also have remount-ro protection. So make mnt_want_write() and
mnt_drop_write() (and their _file alternative) prevent freezing as well.
For the few cases that are really interested only in remount-ro protection
provide new function variants.
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vfs_check_frozen() tests are racy since the filesystem can be frozen just after
the test is performed. Thus in write paths we can end up marking some pages or
inodes dirty even though the file system is already frozen. This creates
problems with flusher thread hanging on frozen filesystem.
Another problem is that exclusion between ->page_mkwrite() and filesystem
freezing has been handled by setting page dirty and then verifying s_frozen.
This guaranteed that either the freezing code sees the faulted page, writes it,
and writeprotects it again or we see s_frozen set and bail out of page fault.
This works to protect from page being marked writeable while filesystem
freezing is running but has an unpleasant artefact of leaving dirty (although
unmodified and writeprotected) pages on frozen filesystem resulting in similar
problems with flusher thread as the first problem.
This patch aims at providing exclusion between write paths and filesystem
freezing. We implement a writer-freeze read-write semaphore in the superblock.
Actually, there are three such semaphores because of lock ranking reasons - one
for page fault handlers (->page_mkwrite), one for all other writers, and one of
internal filesystem purposes (used e.g. to track running transactions). Write
paths which should block freezing (e.g. directory operations, ->aio_write(),
->page_mkwrite) hold reader side of the semaphore. Code freezing the filesystem
takes the writer side.
Only that we don't really want to bounce cachelines of the semaphores between
CPUs for each write happening. So we implement the reader side of the semaphore
as a per-cpu counter and the writer side is implemented using s_writers.frozen
superblock field.
[AV: microoptimize sb_start_write(); we want it fast in normal case]
BugLink: https://bugs.launchpad.net/bugs/897421
Tested-by: Kamal Mostafa <kamal@canonical.com>
Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Massimo Morana <massimo.morana@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Commit b38c77d82e moved the MTMSR_EERI macro from the KVM code to generic
ppc_asm.h code. However, while adding it in the headers for the ppc32 case,
it missed out to remove the former definition in the KVM code.
This patch fixes compilation on server type PPC32 targets with CONFIG_KVM
enabled.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>