We have both APIC_SHORT_MASK and KVM_APIC_SHORT_MASK defined for the
shorthand mask. Similarly, we have both APIC_DEST_MASK and
KVM_APIC_DEST_MASK defined for the destination mode mask.
Drop the KVM_APIC_* macros and replace the only user of them to use
the APIC_DEST_* macros instead. At the meantime, move APIC_SHORT_MASK
and APIC_DEST_MASK from lapic.c to lapic.h.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The 3rd parameter of kvm_apic_match_dest() is the irq shorthand,
rather than the irq delivery mode.
Fixes: 7ee30bc132 ("KVM: x86: deliver KVM IOAPIC scan request to target vCPUs")
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In IOAPIC fixed delivery mode instead of flushing the scan
requests to all vCPUs, we should only send the requests to
vCPUs specified within the destination field.
This patch introduces kvm_get_dest_vcpus_mask() API which
retrieves an array of target vCPUs by using
kvm_apic_map_get_dest_lapic() and then based on the
vcpus_idx, it sets the bit in a bitmap. However, if the above
fails kvm_get_dest_vcpus_mask() finds the target vCPUs by
traversing all available vCPUs. Followed by setting the
bits in the bitmap.
If we had different vCPUs in the previous request for the
same redirection table entry then bits corresponding to
these vCPUs are also set. This to done to keep
ioapic_handled_vectors synchronized.
This bitmap is then eventually passed on to
kvm_make_vcpus_request_mask() to generate a masked request
only for the target vCPUs.
This would enable us to reduce the latency overhead on isolated
vCPUs caused by the IPI to process due to KVM_REQ_IOAPIC_SCAN.
Suggested-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Nitesh Narayan Lal <nitesh@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are some duplicate code in kvm_pv_send_ipi when deal with ipi
bitmap. Add helper func to remove it, and eliminate odd out label,
get rid of unnecessary kvm_lapic_irq field init and so on.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 4b9852f4f3 ("KVM: x86: Fix INIT signal handling in various CPU states")
fixed KVM to also latch pending LAPIC INIT event when vCPU is in VMX
operation.
However, current API of KVM_SET_MP_STATE allows userspace to put vCPU
into KVM_MP_STATE_SIPI_RECEIVED or KVM_MP_STATE_INIT_RECEIVED even when
vCPU is in VMX operation.
Fix this by introducing a util method to check if vCPU state latch INIT
signals and use it in KVM_SET_MP_STATE handler.
Fixes: 4b9852f4f3 ("KVM: x86: Fix INIT signal handling in various CPU states")
Reported-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guest physical APIC ID may not equal to vcpu->vcpu_id in some case.
We may set the wrong physical id in avic_handle_ldr_update as we
always use vcpu->vcpu_id. Get physical APIC ID from vAPIC page
instead.
Export and use kvm_xapic_id here and in avic_handle_apic_id_update
as suggested by Vitaly.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
5000 guest cycles delta is easy to encounter on desktop, per-vCPU
lapic_timer_advance_ns always keeps at 1000ns initial value, let's
loosen the filter a bit to let adaptive tuning make progress.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Filter out drastic fluctuation and random fluctuation, remove
timer_advance_adjust_done altogether, the adjustment would be
continuous.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* ARM: ITS translation cache; support for 512 vCPUs, various cleanups
and bugfixes
* PPC: various minor fixes and preparation
* x86: bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT), some IPI optimizations
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdf7fdAAoJEL/70l94x66DJzkIAKDcuWXJB4Qtoto6yUvPiHZm
LYkY/Dn1zulb/DhzrBoXFey/jZXwl9kxMYkVTefnrAl0fRwFGX+G1UYnQrtAL6Gr
ifdTYdy3kZhXCnnp99QAantWDswJHo1THwbmHrlmkxS4MdisEaTHwgjaHrDRZ4/d
FAEwW2isSonP3YJfTtsKFFjL9k2D4iMnwZ/R2B7UOaWvgnerZ1GLmOkilvnzGGEV
IQ89IIkWlkKd4SKgq8RkDKlfW5JrLrSdTK2Uf0DvAxV+J0EFkEaR+WlLsqumra0z
Eg3KwNScfQj0DyT0TzurcOxObcQPoMNSFYXLRbUu1+i0CGgm90XpF1IosiuihgU=
=w6I3
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"s390:
- ioctl hardening
- selftests
ARM:
- ITS translation cache
- support for 512 vCPUs
- various cleanups and bugfixes
PPC:
- various minor fixes and preparation
x86:
- bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT)
- some IPI optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits)
KVM: X86: Use IPI shorthands in kvm guest when support
KVM: x86: Fix INIT signal handling in various CPU states
KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode
KVM: VMX: Stop the preemption timer during vCPU reset
KVM: LAPIC: Micro optimize IPI latency
kvm: Nested KVM MMUs need PAE root too
KVM: x86: set ctxt->have_exception in x86_decode_insn()
KVM: x86: always stop emulation on page fault
KVM: nVMX: trace nested VM-Enter failures detected by H/W
KVM: nVMX: add tracepoint for failed nested VM-Enter
x86: KVM: svm: Fix a check in nested_svm_vmrun()
KVM: x86: Return to userspace with internal error on unexpected exit reason
KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
doc: kvm: Fix return description of KVM_SET_MSRS
KVM: X86: Tune PLE Window tracepoint
KVM: VMX: Change ple_window type to unsigned int
KVM: X86: Remove tailing newline for tracepoints
KVM: X86: Trace vcpu_id for vmexit
KVM: x86: Manually calculate reserved bits when loading PDPTRS
...
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
Commit cd7764fe9f ("KVM: x86: latch INITs while in system management mode")
changed code to latch INIT while vCPU is in SMM and process latched INIT
when leaving SMM. It left a subtle remark in commit message that similar
treatment should also be done while vCPU is in VMX non-root-mode.
However, INIT signals should actually be latched in various vCPU states:
(*) For both Intel and AMD, INIT signals should be latched while vCPU
is in SMM.
(*) For Intel, INIT should also be latched while vCPU is in VMX
operation and later processed when vCPU leaves VMX operation by
executing VMXOFF.
(*) For AMD, INIT should also be latched while vCPU runs with GIF=0
or in guest-mode with intercept defined on INIT signal.
To fix this:
1) Add kvm_x86_ops->apic_init_signal_blocked() such that each CPU vendor
can define the various CPU states in which INIT signals should be
blocked and modify kvm_apic_accept_events() to use it.
2) Modify vmx_check_nested_events() to check for pending INIT signal
while vCPU in guest-mode. If so, emualte vmexit on
EXIT_REASON_INIT_SIGNAL. Note that nSVM should have similar behaviour
but is currently left as a TODO comment to implement in the future
because nSVM don't yet implement svm_check_nested_events().
Note: Currently KVM nVMX implementation don't support VMX wait-for-SIPI
activity state as specified in MSR_IA32_VMX_MISC bits 6:8 exposed to
guest (See nested_vmx_setup_ctls_msrs()).
If and when support for this activity state will be implemented,
kvm_check_nested_events() would need to avoid emulating vmexit on
INIT signal in case activity-state is wait-for-SIPI. In addition,
kvm_apic_accept_events() would need to be modified to avoid discarding
SIPI in case VMX activity-state is wait-for-SIPI but instead delay
SIPI processing to vmx_check_nested_events() that would clear
pending APIC events and emulate vmexit on SIPI.
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Co-developed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
recalculate_apic_map does not santize ldr and it's possible that
multiple bits are set. In that case, a previous valid entry
can potentially be overwritten by an invalid one.
This condition is hit when booting a 32 bit, >8 CPU, RHEL6 guest and then
triggering a crash to boot a kdump kernel. This is the sequence of
events:
1. Linux boots in bigsmp mode and enables PhysFlat, however, it still
writes to the LDR which probably will never be used.
2. However, when booting into kdump, the stale LDR values remain as
they are not cleared by the guest and there isn't a apic reset.
3. kdump boots with 1 cpu, and uses Logical Destination Mode but the
logical map has been overwritten and points to an inactive vcpu.
Signed-off-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_set_pending_timer() will take care to wake up the sleeping vCPU which
has pending timer, don't need to check this in apic_timer_expired() again.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On PREEMPT_RT enabled kernels unmarked hrtimers are moved into soft
interrupt expiry mode by default.
While that's not a functional requirement for the KVM local APIC timer
emulation, it's a latency issue which can be avoided by marking the timer
so hard interrupt context expiry is enforced.
No functional change.
[ tglx: Split out from larger combo patch. Add changelog. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185753.363363474@linutronix.de
Dedicated instances are currently disturbed by unnecessary jitter due
to the emulated lapic timers firing on the same pCPUs where the
vCPUs reside. There is no hardware virtual timer on Intel for guest
like ARM, so both programming timer in guest and the emulated timer fires
incur vmexits. This patch tries to avoid vmexit when the emulated timer
fires, at least in dedicated instance scenario when nohz_full is enabled.
In that case, the emulated timers can be offload to the nearest busy
housekeeping cpus since APICv has been found for several years in server
processors. The guest timer interrupt can then be injected via posted interrupts,
which are delivered by the housekeeping cpu once the emulated timer fires.
The host should tuned so that vCPUs are placed on isolated physical
processors, and with several pCPUs surplus for busy housekeeping.
If disabled mwait/hlt/pause vmexits keep the vCPUs in non-root mode,
~3% redis performance benefit can be observed on Skylake server, and the
number of external interrupt vmexits drops substantially. Without patch
VM-EXIT Samples Samples% Time% Min Time Max Time Avg time
EXTERNAL_INTERRUPT 42916 49.43% 39.30% 0.47us 106.09us 0.71us ( +- 1.09% )
While with patch:
VM-EXIT Samples Samples% Time% Min Time Max Time Avg time
EXTERNAL_INTERRUPT 6871 9.29% 2.96% 0.44us 57.88us 0.72us ( +- 4.02% )
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 61abdbe0bc ("kvm: x86: make lapic hrtimer pinned") pinned the
lapic timer to avoid to wait until the next kvm exit for the guest to
see KVM_REQ_PENDING_TIMER set. There is another solution to give a kick
after setting the KVM_REQ_PENDING_TIMER bit, make lapic timer unpinned
will be used in follow up patches.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ioapic_debug and apic_debug have been not used
for years, and kvm tracepoints are enough for debugging,
so remove them as Paolo suggested.
However, there may be something wrong when pv evi get/put
user, so it's better to retain some log there.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* support for chained PMU counters in guests
* improved SError handling
* handle Neoverse N1 erratum #1349291
* allow side-channel mitigation status to be migrated
* standardise most AArch64 system register accesses to msr_s/mrs_s
* fix host MPIDR corruption on 32bit
* selftests ckleanups
x86:
* PMU event {white,black}listing
* ability for the guest to disable host-side interrupt polling
* fixes for enlightened VMCS (Hyper-V pv nested virtualization),
* new hypercall to yield to IPI target
* support for passing cstate MSRs through to the guest
* lots of cleanups and optimizations
Generic:
* Some txt->rST conversions for the documentation
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdJzdIAAoJEL/70l94x66DQDoH/i83/8kX4I8AWDlushPru4ts
Q4lCE5VAPha+o4pLb1dtfFL3gTmSbsB1N++JSlqK3JOo6LphIOy6b0wBjQBbAa6U
3CT1dJaHJoScLLj09vyBlvClGUH2ZKEQTWOiquCCf7JfPofxwPUA6vJ7TYsdkckx
zR3ygbADWmnfS7hFfiqN3JzuYh9eoooGNWSU+Giq6VF41SiL3IqhBGZhWS0zE9c2
2c5lpqqdeHmAYNBqsyzNiDRKp7+zLFSmZ7Z5/0L755L8KYwR6F5beTnmBMHvb4lA
PWH/SWOC8EYR+PEowfrH+TxKZwp0gMn1kcAKjilHk0uCRwG1IzuHAr2jlNxICCk=
=t/Oq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for chained PMU counters in guests
- improved SError handling
- handle Neoverse N1 erratum #1349291
- allow side-channel mitigation status to be migrated
- standardise most AArch64 system register accesses to msr_s/mrs_s
- fix host MPIDR corruption on 32bit
- selftests ckleanups
x86:
- PMU event {white,black}listing
- ability for the guest to disable host-side interrupt polling
- fixes for enlightened VMCS (Hyper-V pv nested virtualization),
- new hypercall to yield to IPI target
- support for passing cstate MSRs through to the guest
- lots of cleanups and optimizations
Generic:
- Some txt->rST conversions for the documentation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (128 commits)
Documentation: virtual: Add toctree hooks
Documentation: kvm: Convert cpuid.txt to .rst
Documentation: virtual: Convert paravirt_ops.txt to .rst
KVM: x86: Unconditionally enable irqs in guest context
KVM: x86: PMU Event Filter
kvm: x86: Fix -Wmissing-prototypes warnings
KVM: Properly check if "page" is valid in kvm_vcpu_unmap
KVM: arm/arm64: Initialise host's MPIDRs by reading the actual register
KVM: LAPIC: Retry tune per-vCPU timer_advance_ns if adaptive tuning goes insane
kvm: LAPIC: write down valid APIC registers
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
KVM: doc: Add API documentation on the KVM_REG_ARM_WORKAROUNDS register
KVM: arm/arm64: Add save/restore support for firmware workaround state
arm64: KVM: Propagate full Spectre v2 workaround state to KVM guests
KVM: arm/arm64: Support chained PMU counters
KVM: arm/arm64: Remove pmc->bitmask
KVM: arm/arm64: Re-create event when setting counter value
KVM: arm/arm64: Extract duplicated code to own function
KVM: arm/arm64: Rename kvm_pmu_{enable/disable}_counter functions
KVM: LAPIC: ARBPRI is a reserved register for x2APIC
...
- Add support for chained PMU counters in guests
- Improve SError handling
- Handle Neoverse N1 erratum #1349291
- Allow side-channel mitigation status to be migrated
- Standardise most AArch64 system register accesses to msr_s/mrs_s
- Fix host MPIDR corruption on 32bit
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl0kge4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDYyQP/3XY5tFcLKkp/h9rnGaCXwAxhNzn
TyF/IZEFBKFTSoDMXKLLc8KllvoPQ7aUl03heYbuayYpyKR1+LCx7lDwu1MYyEf+
aSSuOKlbG//tLUEGp09pTRCgjs2mhhZYqOj5GF2mZ7xpovFVSNOPzTazbXDNQ7tw
zUAs43YNg+bUMwj+SLWpBlizjrLr7T34utIr6daKJE/GSfmIrcYXhGbZqUh0zbO0
z5LNasebws8/pHyeGI7+/yoMIKaQ8foMgywTpsRpBsx6YI+AbOLjEmCk2IBOPcEK
pm9KkSIBZEO2CSxZKl3NQiEow/Qd/lnz2xLMCSfh4XrYoI2Th4gNcsbJpiBDWP5a
0eZ5jSiexxKngIbM+to7jR3m0yc9RgcuzceJg3Uly7Ya0vb5RqKwOX4Ge4XP4VDT
DzIVFdQjxDKdVIf3EvGp1cj4P7dRUU3xbZcbzyuRPEmT3vgjEnbxawmPLs3QMAl1
31Wd2wIsPB86kSxzSMel27Vs5VgMhgyHE26zN91R745CvhDXaDKydIWjGjdVMHsB
GuX/h2kL+ohx+N/OpZPgwsVUAGLSOQFP3pE/EcGtqc2kkfqa+bx12DKcZ3zdmJvy
+cu5ixU8q5thPH/pZob/C3hKUY/eLy02emS34RK0Jh2sZHbQgAOtMsiqUxNHEjUm
6TkpdWa5SRd7CtGV
=yfCs
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 5.3
- Add support for chained PMU counters in guests
- Improve SError handling
- Handle Neoverse N1 erratum #1349291
- Allow side-channel mitigation status to be migrated
- Standardise most AArch64 system register accesses to msr_s/mrs_s
- Fix host MPIDR corruption on 32bit
Retry tune per-vCPU timer_advance_ns if adaptive tuning goes insane which
can happen sporadically in product environment.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a magic 64-bit mask with a list of valid registers, computing
the same mask in the end.
Suggested-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm-unit-tests were adjusted to match bare metal behavior, but KVM
itself was not doing what bare metal does; fix that.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Thomas reported that:
| Background:
|
| In preparation of supporting IPI shorthands I changed the CPU offline
| code to software disable the local APIC instead of just masking it.
| That's done by clearing the APIC_SPIV_APIC_ENABLED bit in the APIC_SPIV
| register.
|
| Failure:
|
| When the CPU comes back online the startup code triggers occasionally
| the warning in apic_pending_intr_clear(). That complains that the IRRs
| are not empty.
|
| The offending vector is the local APIC timer vector who's IRR bit is set
| and stays set.
|
| It took me quite some time to reproduce the issue locally, but now I can
| see what happens.
|
| It requires apicv_enabled=0, i.e. full apic emulation. With apicv_enabled=1
| (and hardware support) it behaves correctly.
|
| Here is the series of events:
|
| Guest CPU
|
| goes down
|
| native_cpu_disable()
|
| apic_soft_disable();
|
| play_dead()
|
| ....
|
| startup()
|
| if (apic_enabled())
| apic_pending_intr_clear() <- Not taken
|
| enable APIC
|
| apic_pending_intr_clear() <- Triggers warning because IRR is stale
|
| When this happens then the deadline timer or the regular APIC timer -
| happens with both, has fired shortly before the APIC is disabled, but the
| interrupt was not serviced because the guest CPU was in an interrupt
| disabled region at that point.
|
| The state of the timer vector ISR/IRR bits:
|
| ISR IRR
| before apic_soft_disable() 0 1
| after apic_soft_disable() 0 1
|
| On startup 0 1
|
| Now one would assume that the IRR is cleared after the INIT reset, but this
| happens only on CPU0.
|
| Why?
|
| Because our CPU0 hotplug is just for testing to make sure nothing breaks
| and goes through an NMI wakeup vehicle because INIT would send it through
| the boots-trap code which is not really working if that CPU was not
| physically unplugged.
|
| Now looking at a real world APIC the situation in that case is:
|
| ISR IRR
| before apic_soft_disable() 0 1
| after apic_soft_disable() 0 1
|
| On startup 0 0
|
| Why?
|
| Once the dying CPU reenables interrupts the pending interrupt gets
| delivered as a spurious interupt and then the state is clear.
|
| While that CPU0 hotplug test case is surely an esoteric issue, the APIC
| emulation is still wrong, Even if the play_dead() code would not enable
| interrupts then the pending IRR bit would turn into an ISR .. interrupt
| when the APIC is reenabled on startup.
From SDM 10.4.7.2 Local APIC State After It Has Been Software Disabled
* Pending interrupts in the IRR and ISR registers are held and require
masking or handling by the CPU.
In Thomas's testing, hardware cpu will not respect soft disable LAPIC
when IRR has already been set or APICv posted-interrupt is in flight,
so we can skip soft disable APIC checking when clearing IRR and set ISR,
continue to respect soft disable APIC when attempting to set IRR.
Reported-by: Rong Chen <rong.a.chen@intel.com>
Reported-by: Feng Tang <feng.tang@intel.com>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Rong Chen <rong.a.chen@intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function kvm_create_lapic() attempts to allocate the apic structure
and sets a pointer to it in the virtual processor structure. However, if
get_zeroed_page() failed, the function frees the apic chunk, but forgets
to set the pointer in the vcpu to NULL. It's not a security issue since
there isn't a use of that pointer if kvm_create_lapic() returns error,
but it's more accurate that way.
Signed-off-by: Saar Amar <saaramar@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Based on 1 normalized pattern(s):
this work is licensed under the terms of the gnu gpl version 2 see
the copying file in the top level directory
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 35 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.797835076@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In function apic_mmio_write(), the offset has been checked in:
* apic_mmio_in_range()
* offset & 0xf
These two ensures offset is in range [0x010, 0xff0].
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
apic_clear_vector() is the counterpart of kvm_lapic_set_vector(),
while they have different naming convention.
Rename it and move together to arch/x86/kvm/lapic.h. Also fix one typo
in comment by hand.
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Advance lapic timer tries to hidden the hypervisor overhead between the
host emulated timer fires and the guest awares the timer is fired. However,
it just hidden the time between apic_timer_fn/handle_preemption_timer ->
wait_lapic_expire, instead of the real position of vmentry which is
mentioned in the orignial commit d0659d946b ("KVM: x86: add option to
advance tscdeadline hrtimer expiration"). There is 700+ cpu cycles between
the end of wait_lapic_expire and before world switch on my haswell desktop.
This patch tries to narrow the last gap(wait_lapic_expire -> world switch),
it takes the real overhead time between apic_timer_fn/handle_preemption_timer
and before world switch into consideration when adaptively tuning timer
advancement. The patch can reduce 40% latency (~1600+ cycles to ~1000+ cycles
on a haswell desktop) for kvm-unit-tests/tscdeadline_latency when testing
busy waits.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
wait_lapic_expire() call was moved above guest_enter_irqoff() because of
its tracepoint, which violated the RCU extended quiescent state invoked
by guest_enter_irqoff()[1][2]. This patch simply moves the tracepoint
below guest_exit_irqoff() in vcpu_enter_guest(). Snapshot the delta before
VM-Enter, but trace it after VM-Exit. This can help us to move
wait_lapic_expire() just before vmentry in the later patch.
[1] Commit 8b89fe1f6c ("kvm: x86: move tracepoints outside extended quiescent state")
[2] https://patchwork.kernel.org/patch/7821111/
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Track whether wait_lapic_expire was called, and do not invoke the tracepoint
if not. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extract adaptive tune timer advancement logic to a single function.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Rename new function. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
memory and performance optimizations.
* x86: support for accessing memory not backed by struct page, fixes and refactoring
* Generic: dirty page tracking improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
=D0+p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for SVE and Pointer Authentication in guests
- PMU improvements
POWER:
- support for direct access to the POWER9 XIVE interrupt controller
- memory and performance optimizations
x86:
- support for accessing memory not backed by struct page
- fixes and refactoring
Generic:
- dirty page tracking improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
kvm: fix compilation on aarch64
Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
kvm: x86: Fix L1TF mitigation for shadow MMU
KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
tests: kvm: Add tests for KVM_SET_NESTED_STATE
KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
tests: kvm: Add tests to .gitignore
KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
KVM: Fix the bitmap range to copy during clear dirty
KVM: arm64: Fix ptrauth ID register masking logic
KVM: x86: use direct accessors for RIP and RSP
KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
KVM: x86: Omit caching logic for always-available GPRs
kvm, x86: Properly check whether a pfn is an MMIO or not
...
Checking for a pending non-periodic interrupt in start_hv_timer() leads
to restart_apic_timer() making an unnecessary call to start_sw_timer()
due to start_hv_timer() returning false.
Alternatively, start_hv_timer() could return %true when there is a
pending non-periodic interrupt, but that approach is less intuitive,
i.e. would require a beefy comment to explain an otherwise simple check.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor kvm_x86_ops->set_hv_timer to use an explicit parameter for
stating that the timer has expired. Overloading the return value is
unnecessarily clever, e.g. can lead to confusion over the proper return
value from start_hv_timer() when r==1.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly call cancel_hv_timer() instead of returning %false to coerce
restart_apic_timer() into canceling it by way of start_sw_timer().
Functionally, the existing code is correct in the sense that it doesn't
doing anything visibily wrong, e.g. generate spurious interrupts or miss
an interrupt. But it's extremely confusing and inefficient, e.g. there
are multiple extraneous calls to apic_timer_expired() that effectively
get dropped due to @timer_pending being %true.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that VMX's preemption timer, i.e. the hv_timer, also adjusts its
programmed time based on lapic_timer_advance_ns. Without the delay, a
guest can see a timer interrupt arrive before the requested time when
KVM is using the hv_timer to emulate the guest's interrupt.
Fixes: c5ce8235cf ("KVM: VMX: Optimize tscdeadline timer latency")
Cc: <stable@vger.kernel.org>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event. In
the event that the adjustments are too aggressive, i.e. the timer fires
earlier than the guest expects, KVM busy waits immediately prior to
entering the guest.
Currently, KVM manually converts the delay from nanoseconds to clock
cycles. But, the conversion is done in the guest's time domain, while
the delay occurs in the host's time domain. This is perfectly ok when
the guest and host are using the same TSC ratio, but if the guest is
using a different ratio then the delay may not be accurate and could
wait too little or too long.
When the guest is not using the host's ratio, convert the delay from
guest clock cycles to host nanoseconds and use ndelay() instead of
__delay() to provide more accurate timing. Because converting to
nanoseconds is relatively expensive, e.g. requires division and more
multiplication ops, continue using __delay() directly when guest and
host TSCs are running at the same ratio.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The introduction of adaptive tuning of lapic timer advancement did not
allow for the scenario where userspace would want to disable adaptive
tuning but still employ timer advancement, e.g. for testing purposes or
to handle a use case where adaptive tuning is unable to settle on a
suitable time. This is epecially pertinent now that KVM places a hard
threshold on the maximum advancment time.
Rework the timer semantics to accept signed values, with a value of '-1'
being interpreted as "use adaptive tuning with KVM's internal default",
and any other value being used as an explicit advancement time, e.g. a
time of '0' effectively disables advancement.
Note, this does not completely restore the original behavior of
lapic_timer_advance_ns. Prior to tracking the advancement per vCPU,
which is necessary to support autotuning, userspace could adjust
lapic_timer_advance_ns for *running* vCPU. With per-vCPU tracking, the
module params are snapshotted at vCPU creation, i.e. applying a new
advancement effectively requires restarting a VM.
Dynamically updating a running vCPU is possible, e.g. a helper could be
added to retrieve the desired delay, choosing between the global module
param and the per-VCPU value depending on whether or not auto-tuning is
(globally) enabled, but introduces a great deal of complexity. The
wrapper itself is not complex, but understanding and documenting the
effects of dynamically toggling auto-tuning and/or adjusting the timer
advancement is nigh impossible since the behavior would be dependent on
KVM's implementation as well as compiler optimizations. In other words,
providing stable behavior would require extremely careful consideration
now and in the future.
Given that the expected use of a manually-tuned timer advancement is to
"tune once, run many", use the vastly simpler approach of recognizing
changes to the module params only when creating a new vCPU.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Automatically adjusting the globally-shared timer advancement could
corrupt the timer, e.g. if multiple vCPUs are concurrently adjusting
the advancement value. That could be partially fixed by using a local
variable for the arithmetic, but it would still be susceptible to a
race when setting timer_advance_adjust_done.
And because virtual_tsc_khz and tsc_scaling_ratio are per-vCPU, the
correct calibration for a given vCPU may not apply to all vCPUs.
Furthermore, lapic_timer_advance_ns is marked __read_mostly, which is
effectively violated when finding a stable advancement takes an extended
amount of timer.
Opportunistically change the definition of lapic_timer_advance_ns to
a u32 so that it matches the style of struct kvm_timer. Explicitly
pass the param to kvm_create_lapic() so that it doesn't have to be
exposed to lapic.c, thus reducing the probability of unintentionally
using the global value instead of the per-vCPU value.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event. Now
that the timer advancement is automatically tuned during runtime, it's
effectively unbounded by default, e.g. if KVM is running as L1 the
advancement can measure in hundreds of milliseconds.
Disable timer advancement if adaptive tuning yields an advancement of
more than 5000ns, as large advancements can break reasonable assumptions
of the guest, e.g. that a timer configured to fire after 1ms won't
arrive on the next instruction. Although KVM busy waits to mitigate the
case of a timer event arriving too early, complications can arise when
shifting the interrupt too far, e.g. kvm-unit-test's vmx.interrupt test
will fail when its "host" exits on interrupts as KVM may inject the INTR
before the guest executes STI+HLT. Arguably the unit test is "broken"
in the sense that delaying a timer interrupt by 1ms doesn't technically
guarantee the interrupt will arrive after STI+HLT, but it's a reasonable
assumption that KVM should support.
Furthermore, an unbounded advancement also effectively unbounds the time
spent busy waiting, e.g. if the guest programs a timer with a very large
delay.
5000ns is a somewhat arbitrary threshold. When running on bare metal,
which is the intended use case, timer advancement is expected to be in
the general vicinity of 1000ns. 5000ns is high enough that false
positives are unlikely, while not being so high as to negatively affect
the host's performance/stability.
Note, a future patch will enable userspace to disable KVM's adaptive
tuning, which will allow priveleged userspace will to specifying an
advancement value in excess of this arbitrary threshold in order to
satisfy an abnormal use case.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If guest sets MSR_IA32_TSCDEADLINE to value such that in host
time-domain it's shorter than lapic_timer_advance_ns, we can
reach a case that we call hrtimer_start() with expiration time set at
the past.
Because lapic_timer.timer is init with HRTIMER_MODE_ABS_PINNED, it
is not allowed to run in softirq and therefore will never expire.
To avoid such a scenario, verify that deadline expiration time is set on
host time-domain further than (now + lapic_timer_advance_ns).
A future patch can also consider adding a min_timer_deadline_ns module parameter,
similar to min_timer_period_us to avoid races that amount of ns it takes
to run logic could still call hrtimer_start() with expiration timer set
at the past.
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.
Tested:
Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
introduced no new failures.
Ran a kernel memory accounting test which creates a VM to touch
memory and then checks that the kernel memory allocated for the
process is within certain bounds.
With this patch we account for much more of the vmalloc and slab memory
allocated for the VM.
There remain a few allocations which should be charged to the VM's
cgroup but are not. In x86, they include:
vcpu->arch.pio_data
There allocations are unaccounted in this patch because they are mapped
to userspace, and accounting them to a cgroup causes problems. This
should be addressed in a future patch.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to enabling -Wimplicit-fallthrough, mark switch
cases where we are expecting to fall through.
This patch fixes the following warnings:
arch/x86/kvm/lapic.c:1037:27: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/lapic.c:1876:3: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/hyperv.c:1637:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/svm.c:4396:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/mmu.c:4372:36: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/x86.c:3835:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/x86.c:7938:23: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/vmx/vmx.c:2015:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/vmx/vmx.c:1773:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
Warning level 3 was used: -Wimplicit-fallthrough=3
This patch is part of the ongoing efforts to enabling -Wimplicit-fallthrough.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the previous code, the variable apic_sw_disabled influences
recalculate_apic_map. But in "KVM: x86: simplify kvm_apic_map"
(commit: 3b5a5ffa92),
the access to apic_sw_disabled in recalculate_apic_map has been
deleted.
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We get the following warnings about empty statements when building
with 'W=1':
arch/x86/kvm/lapic.c:632:53: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]
arch/x86/kvm/lapic.c:1907:42: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]
arch/x86/kvm/lapic.c:1936:65: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]
arch/x86/kvm/lapic.c:1975:44: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]
Rework the debug helper macro to get rid of these warnings.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported by syzkaller:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000014
PGD 800000040410c067 P4D 800000040410c067 PUD 40410d067 PMD 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 2567 Comm: poc Tainted: G OE 4.19.0-rc5 #16
RIP: 0010:kvm_pv_send_ipi+0x94/0x350 [kvm]
Call Trace:
kvm_emulate_hypercall+0x3cc/0x700 [kvm]
handle_vmcall+0xe/0x10 [kvm_intel]
vmx_handle_exit+0xc1/0x11b0 [kvm_intel]
vcpu_enter_guest+0x9fb/0x1910 [kvm]
kvm_arch_vcpu_ioctl_run+0x35c/0x610 [kvm]
kvm_vcpu_ioctl+0x3e9/0x6d0 [kvm]
do_vfs_ioctl+0xa5/0x690
ksys_ioctl+0x6d/0x80
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x83/0x6e0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
The reason is that the apic map has not yet been initialized, the testcase
triggers pv_send_ipi interface by vmcall which results in kvm->arch.apic_map
is dereferenced. This patch fixes it by checking whether or not apic map is
NULL and bailing out immediately if that is the case.
Fixes: 4180bf1b65 (KVM: X86: Implement "send IPI" hypercall)
Reported-by: Wei Wu <ww9210@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wei Wu <ww9210@gmail.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
"sizeof(x)" is the canonical coding style used in arch/x86 most of the time.
Fix the few places that didn't follow the convention.
(Also do some whitespace cleanups in a few places while at it.)
[ mingo: Rewrote the changelog. ]
Signed-off-by: Jordan Borgner <mail@jordan-borgner.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181028125828.7rgammkgzep2wpam@JordanDesktop
Signed-off-by: Ingo Molnar <mingo@kernel.org>