Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
For architectures that enable ARCH_HAS_SET_MEMORY having the ability to
verify that a page is mapped in the kernel direct map can be useful
regardless of hibernation.
Add RISC-V implementation of kernel_page_present(), update its forward
declarations and stubs to be a part of set_memory API and remove ugly
ifdefery in inlcude/linux/mm.h around current declarations of
kernel_page_present().
Link: https://lkml.kernel.org/r/20201109192128.960-5-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The design of DEBUG_PAGEALLOC presumes that __kernel_map_pages() must
never fail. With this assumption is wouldn't be safe to allow general
usage of this function.
Moreover, some architectures that implement __kernel_map_pages() have this
function guarded by #ifdef DEBUG_PAGEALLOC and some refuse to map/unmap
pages when page allocation debugging is disabled at runtime.
As all the users of __kernel_map_pages() were converted to use
debug_pagealloc_map_pages() it is safe to make it available only when
DEBUG_PAGEALLOC is set.
Link: https://lkml.kernel.org/r/20201109192128.960-4-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARM and ARM64 free unused parts of the memory map just before the
initialization of the page allocator. To allow holes in the memory map both
architectures overload pfn_valid() and define HAVE_ARCH_PFN_VALID.
Allowing holes in the memory map for FLATMEM may be useful for small
machines, such as ARC and m68k and will enable those architectures to cease
using DISCONTIGMEM and still support more than one memory bank.
Move the functions that free unused memory map to generic mm and enable
them in case HAVE_ARCH_PFN_VALID=y.
Link: https://lkml.kernel.org/r/20201101170454.9567-10-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Michael Schmitz <schmitzmic@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* for-next/kvm-build-fix:
: Fix KVM build issues with 64K pages
KVM: arm64: Fix build error in user_mem_abort()
* for-next/va-refactor:
: VA layout changes
arm64: mm: don't assume struct page is always 64 bytes
Documentation/arm64: fix RST layout of memory.rst
arm64: mm: tidy up top of kernel VA space
arm64: mm: make vmemmap region a projection of the linear region
arm64: mm: extend linear region for 52-bit VA configurations
* for-next/lto:
: Upgrade READ_ONCE() to RCpc acquire on arm64 with LTO
arm64: lto: Strengthen READ_ONCE() to acquire when CONFIG_LTO=y
arm64: alternatives: Remove READ_ONCE() usage during patch operation
arm64: cpufeatures: Add capability for LDAPR instruction
arm64: alternatives: Split up alternative.h
arm64: uaccess: move uao_* alternatives to asm-uaccess.h
* for-next/mem-hotplug:
: Memory hotplug improvements
arm64/mm/hotplug: Ensure early memory sections are all online
arm64/mm/hotplug: Enable MEM_OFFLINE event handling
arm64/mm/hotplug: Register boot memory hot remove notifier earlier
arm64: mm: account for hotplug memory when randomizing the linear region
* for-next/cppc-ffh:
: Add CPPC FFH support using arm64 AMU counters
arm64: abort counter_read_on_cpu() when irqs_disabled()
arm64: implement CPPC FFH support using AMUs
arm64: split counter validation function
arm64: wrap and generalise counter read functions
* for-next/pad-image-header:
: Pad Image header to 64KB and unmap it
arm64: head: tidy up the Image header definition
arm64/head: avoid symbol names pointing into first 64 KB of kernel image
arm64: omit [_text, _stext) from permanent kernel mapping
* for-next/zone-dma-default-32-bit:
: Default to 32-bit wide ZONE_DMA (previously reduced to 1GB for RPi4)
of: unittest: Fix build on architectures without CONFIG_OF_ADDRESS
mm: Remove examples from enum zone_type comment
arm64: mm: Set ZONE_DMA size based on early IORT scan
arm64: mm: Set ZONE_DMA size based on devicetree's dma-ranges
of: unittest: Add test for of_dma_get_max_cpu_address()
of/address: Introduce of_dma_get_max_cpu_address()
arm64: mm: Move zone_dma_bits initialization into zone_sizes_init()
arm64: mm: Move reserve_crashkernel() into mem_init()
arm64: Force NO_BLOCK_MAPPINGS if crashkernel reservation is required
arm64: Ignore any DMA offsets in the max_zone_phys() calculation
* for-next/signal-tag-bits:
: Expose the FAR_EL1 tag bits in siginfo
arm64: expose FAR_EL1 tag bits in siginfo
signal: define the SA_EXPOSE_TAGBITS bit in sa_flags
signal: define the SA_UNSUPPORTED bit in sa_flags
arch: provide better documentation for the arch-specific SA_* flags
signal: clear non-uapi flag bits when passing/returning sa_flags
arch: move SA_* definitions to generic headers
parisc: start using signal-defs.h
parisc: Drop parisc special case for __sighandler_t
* for-next/cmdline-extended:
: Add support for CONFIG_CMDLINE_EXTENDED
arm64: Extend the kernel command line from the bootloader
arm64: kaslr: Refactor early init command line parsing
Now that the uaccess primitives dont take addr_limit into account, we
have no need to manipulate this via set_fs() and get_fs(). Remove
support for these, along with some infrastructure this renders
redundant.
We no longer need to flip UAO to access kernel memory under KERNEL_DS,
and head.S unconditionally clears UAO for all kernel configurations via
an ERET in init_kernel_el. Thus, we don't need to dynamically flip UAO,
nor do we need to context-switch it. However, we still need to adjust
PAN during SDEI entry.
Masking of __user pointers no longer needs to use the dynamic value of
addr_limit, and can use a constant derived from the maximum possible
userspace task size. A new TASK_SIZE_MAX constant is introduced for
this, which is also used by core code. In configurations supporting
52-bit VAs, this may include a region of unusable VA space above a
48-bit TTBR0 limit, but never includes any portion of TTBR1.
Note that TASK_SIZE_MAX is an exclusive limit, while USER_DS and
KERNEL_DS were inclusive limits, and is converted to a mask by
subtracting one.
As the SDEI entry code repurposes the otherwise unnecessary
pt_regs::orig_addr_limit field to store the TTBR1 of the interrupted
context, for now we rename that to pt_regs::sdei_ttbr1. In future we can
consider factoring that out.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201202131558.39270-10-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Let's make SCTLR_ELx initialization a bit clearer by using meaningful
names for the initialization values, following the same scheme for
SCTLR_EL1 and SCTLR_EL2.
These definitions will be used more widely in subsequent patches.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201113124937.20574-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In debug_exception_enter() and debug_exception_exit() we trace hardirqs
on/off while RCU isn't guaranteed to be watching, and we don't save and
restore the hardirq state, and so may return with this having changed.
Handle this appropriately with new entry/exit helpers which do the bare
minimum to ensure this is appropriately maintained, without marking
debug exceptions as NMIs. These are placed in entry-common.c with the
other entry/exit helpers.
In future we'll want to reconsider whether some debug exceptions should
be NMIs, but this will require a significant refactoring, and for now
this should prevent issues with lockdep and RCU.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marins <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-12-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
When built with PROVE_LOCKING, NO_HZ_FULL, and CONTEXT_TRACKING_FORCE
will WARN() at boot time that interrupts are enabled when we call
context_tracking_user_enter(), despite the DAIF flags indicating that
IRQs are masked.
The problem is that we're not tracking IRQ flag changes accurately, and
so lockdep believes interrupts are enabled when they are not (and
vice-versa). We can shuffle things so to make this more accurate. For
kernel->user transitions there are a number of constraints we need to
consider:
1) When we call __context_tracking_user_enter() HW IRQs must be disabled
and lockdep must be up-to-date with this.
2) Userspace should be treated as having IRQs enabled from the PoV of
both lockdep and tracing.
3) As context_tracking_user_enter() stops RCU from watching, we cannot
use RCU after calling it.
4) IRQ flag tracing and lockdep have state that must be manipulated
before RCU is disabled.
... with similar constraints applying for user->kernel transitions, with
the ordering reversed.
The generic entry code has enter_from_user_mode() and
exit_to_user_mode() helpers to handle this. We can't use those directly,
so we add arm64 copies for now (without the instrumentation markers
which aren't used on arm64). These replace the existing user_exit() and
user_exit_irqoff() calls spread throughout handlers, and the exception
unmasking is left as-is.
Note that:
* The accounting for debug exceptions from userspace now happens in
el0_dbg() and ret_to_user(), so this is removed from
debug_exception_enter() and debug_exception_exit(). As
user_exit_irqoff() wakes RCU, the userspace-specific check is removed.
* The accounting for syscalls now happens in el0_svc(),
el0_svc_compat(), and ret_to_user(), so this is removed from
el0_svc_common(). This does not adversely affect the workaround for
erratum 1463225, as this does not depend on any of the state tracking.
* In ret_to_user() we mask interrupts with local_daif_mask(), and so we
need to inform lockdep and tracing. Here a trace_hardirqs_off() is
sufficient and safe as we have not yet exited kernel context and RCU
is usable.
* As PROVE_LOCKING selects TRACE_IRQFLAGS, the ifdeferry in entry.S only
needs to check for the latter.
* EL0 SError handling will be dealt with in a subsequent patch, as this
needs to be treated as an NMI.
Prior to this patch, booting an appropriately-configured kernel would
result in spats as below:
| DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())
| WARNING: CPU: 2 PID: 1 at kernel/locking/lockdep.c:5280 check_flags.part.54+0x1dc/0x1f0
| Modules linked in:
| CPU: 2 PID: 1 Comm: init Not tainted 5.10.0-rc3 #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 804003c5 (Nzcv DAIF +PAN -UAO -TCO BTYPE=--)
| pc : check_flags.part.54+0x1dc/0x1f0
| lr : check_flags.part.54+0x1dc/0x1f0
| sp : ffff80001003bd80
| x29: ffff80001003bd80 x28: ffff66ce801e0000
| x27: 00000000ffffffff x26: 00000000000003c0
| x25: 0000000000000000 x24: ffffc31842527258
| x23: ffffc31842491368 x22: ffffc3184282d000
| x21: 0000000000000000 x20: 0000000000000001
| x19: ffffc318432ce000 x18: 0080000000000000
| x17: 0000000000000000 x16: ffffc31840f18a78
| x15: 0000000000000001 x14: ffffc3184285c810
| x13: 0000000000000001 x12: 0000000000000000
| x11: ffffc318415857a0 x10: ffffc318406614c0
| x9 : ffffc318415857a0 x8 : ffffc31841f1d000
| x7 : 647261685f706564 x6 : ffffc3183ff7c66c
| x5 : ffff66ce801e0000 x4 : 0000000000000000
| x3 : ffffc3183fe00000 x2 : ffffc31841500000
| x1 : e956dc24146b3500 x0 : 0000000000000000
| Call trace:
| check_flags.part.54+0x1dc/0x1f0
| lock_is_held_type+0x10c/0x188
| rcu_read_lock_sched_held+0x70/0x98
| __context_tracking_enter+0x310/0x350
| context_tracking_enter.part.3+0x5c/0xc8
| context_tracking_user_enter+0x6c/0x80
| finish_ret_to_user+0x2c/0x13cr
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201130115950.22492-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
We recently introduced a 1 GB sized ZONE_DMA to cater for platforms
incorporating masters that can address less than 32 bits of DMA, in
particular the Raspberry Pi 4, which has 4 or 8 GB of DRAM, but has
peripherals that can only address up to 1 GB (and its PCIe host
bridge can only access the bottom 3 GB)
Instructing the DMA layer about these limitations is straight-forward,
even though we had to fix some issues regarding memory limits set in
the IORT for named components, and regarding the handling of ACPI _DMA
methods. However, the DMA layer also needs to be able to allocate
memory that is guaranteed to meet those DMA constraints, for bounce
buffering as well as allocating the backing for consistent mappings.
This is why the 1 GB ZONE_DMA was introduced recently. Unfortunately,
it turns out the having a 1 GB ZONE_DMA as well as a ZONE_DMA32 causes
problems with kdump, and potentially in other places where allocations
cannot cross zone boundaries. Therefore, we should avoid having two
separate DMA zones when possible.
So let's do an early scan of the IORT, and only create the ZONE_DMA
if we encounter any devices that need it. This puts the burden on
the firmware to describe such limitations in the IORT, which may be
redundant (and less precise) if _DMA methods are also being provided.
However, it should be noted that this situation is highly unusual for
arm64 ACPI machines. Also, the DMA subsystem still gives precedence to
the _DMA method if implemented, and so we will not lose the ability to
perform streaming DMA outside the ZONE_DMA if the _DMA method permits
it.
[nsaenz: unified implementation with DT's counterpart]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Hanjun Guo <guohanjun@huawei.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20201119175400.9995-7-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We recently introduced a 1 GB sized ZONE_DMA to cater for platforms
incorporating masters that can address less than 32 bits of DMA, in
particular the Raspberry Pi 4, which has 4 or 8 GB of DRAM, but has
peripherals that can only address up to 1 GB (and its PCIe host
bridge can only access the bottom 3 GB)
The DMA layer also needs to be able to allocate memory that is
guaranteed to meet those DMA constraints, for bounce buffering as well
as allocating the backing for consistent mappings. This is why the 1 GB
ZONE_DMA was introduced recently. Unfortunately, it turns out the having
a 1 GB ZONE_DMA as well as a ZONE_DMA32 causes problems with kdump, and
potentially in other places where allocations cannot cross zone
boundaries. Therefore, we should avoid having two separate DMA zones
when possible.
So, with the help of of_dma_get_max_cpu_address() get the topmost
physical address accessible to all DMA masters in system and use that
information to fine-tune ZONE_DMA's size. In the absence of addressing
limited masters ZONE_DMA will span the whole 32-bit address space,
otherwise, in the case of the Raspberry Pi 4 it'll only span the 30-bit
address space, and have ZONE_DMA32 cover the rest of the 32-bit address
space.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Link: https://lore.kernel.org/r/20201119175400.9995-6-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
zone_dma_bits's initialization happens earlier that it's actually
needed, in arm64_memblock_init(). So move it into the more suitable
zone_sizes_init().
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Link: https://lore.kernel.org/r/20201119175400.9995-3-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
crashkernel might reserve memory located in ZONE_DMA. We plan to delay
ZONE_DMA's initialization after unflattening the devicetree and ACPI's
boot table initialization, so move it later in the boot process.
Specifically into bootmem_init() since request_standard_resources()
depends on it.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Link: https://lore.kernel.org/r/20201119175400.9995-2-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
mem_init() currently relies on knowing the boundaries of the crashkernel
reservation to map such region with page granularity for later
unmapping via set_memory_valid(..., 0). If the crashkernel reservation
is deferred, such boundaries are not known when the linear mapping is
created. Simply parse the command line for "crashkernel" and, if found,
create the linear map with NO_BLOCK_MAPPINGS.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Acked-by: James Morse <james.morse@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Link: https://lore.kernel.org/r/20201119175556.18681-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, the kernel assumes that if RAM starts above 32-bit (or
zone_bits), there is still a ZONE_DMA/DMA32 at the bottom of the RAM and
such constrained devices have a hardwired DMA offset. In practice, we
haven't noticed any such hardware so let's assume that we can expand
ZONE_DMA32 to the available memory if no RAM below 4GB. Similarly,
ZONE_DMA is expanded to the 4GB limit if no RAM addressable by
zone_bits.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Cc: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/20201118185809.1078362-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When section mappings are enabled, we allocate vmemmap pages from
physically continuous memory of size PMD_SIZE using
vmemmap_alloc_block_buf(). Section mappings are good to reduce TLB
pressure. But when system is highly fragmented and memory blocks are
being hot-added at runtime, its possible that such physically continuous
memory allocations can fail. Rather than failing the memory hot-add
procedure, add a fallback option to allocate vmemmap pages from
discontinuous pages using vmemmap_populate_basepages().
Signed-off-by: Sudarshan Rajagopalan <sudaraja@codeaurora.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/d6c06f2ef39bbe6c715b2f6db76eb16155fdcee6.1602722808.git.sudaraja@codeaurora.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In a previous patch, we increased the size of the EFI PE/COFF header
to 64 KB, which resulted in the _stext symbol to appear at a fixed
offset of 64 KB into the image.
Since 64 KB is also the largest page size we support, this completely
removes the need to map the first 64 KB of the kernel image, given that
it only contains the arm64 Image header and the EFI header, neither of
which we ever access again after booting the kernel. More importantly,
we should avoid an executable mapping of non-executable and not entirely
predictable data, to deal with the unlikely event that we inadvertently
emitted something that looks like an opcode that could be used as a
gadget for speculative execution.
So let's limit the kernel mapping of .text to the [_stext, _etext)
region, which matches the view of generic code (such as kallsyms) when
it reasons about the boundaries of the kernel's .text section.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201117124729.12642-2-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
During memory hotplug process, the linear mapping should not be created for
a given memory range if that would fall outside the maximum allowed linear
range. Else it might cause memory corruption in the kernel virtual space.
Maximum linear mapping region is [PAGE_OFFSET..(PAGE_END -1)] accommodating
both its ends but excluding PAGE_END. Max physical range that can be mapped
inside this linear mapping range, must also be derived from its end points.
This ensures that arch_add_memory() validates memory hot add range for its
potential linear mapping requirements, before creating it with
__create_pgd_mapping().
Fixes: 4ab2150615 ("arm64: Add memory hotplug support")
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1605252614-761-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Commit 8c96400d6a simplified the page-to-virt and virt-to-page
conversions, based on the assumption that struct page is always 64
bytes in size, in which case we can use a single signed shift to
perform the conversion (provided that the vmemmap array is placed
appropriately in the kernel VA space)
Unfortunately, this assumption turns out not to hold, and so we need
to revert part of this commit, and go back to an affine transformation.
Given that all the quantities involved are compile time constants,
this should not make any practical difference.
Fixes: 8c96400d6a ("arm64: mm: make vmemmap region a projection of the linear region")
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20201110180511.29083-1-ardb@kernel.org
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This adds a validation function that scans the entire boot memory and makes
sure that all early memory sections are online. This check is essential for
the memory notifier to work properly, as it cannot prevent any boot memory
from offlining, if all sections are not online to begin with. Although the
boot section scanning is selectively enabled with DEBUG_VM.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1604896137-16644-4-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This enables MEM_OFFLINE memory event handling. It will help intercept any
possible error condition such as if boot memory some how still got offlined
even after an explicit notifier failure, potentially by a future change in
generic hot plug framework. This would help detect such scenarios and help
debug further. While here, also call out the first section being attempted
for offline or got offlined.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1604896137-16644-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This moves memory notifier registration earlier in the boot process from
device_initcall() to early_initcall() which will help in guarding against
potential early boot memory offline requests. Even though there should not
be any actual offlinig requests till memory block devices are initialized
with memory_dev_init() but then generic init sequence might just change in
future. Hence an early registration for the memory event notifier would be
helpful. While here, just skip the registration if CONFIG_MEMORY_HOTREMOVE
is not enabled and also call out when memory notifier registration fails.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1604896137-16644-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As a hardening measure, we currently randomize the placement of
physical memory inside the linear region when KASLR is in effect.
Since the random offset at which to place the available physical
memory inside the linear region is chosen early at boot, it is
based on the memblock description of memory, which does not cover
hotplug memory. The consequence of this is that the randomization
offset may be chosen such that any hotplugged memory located above
memblock_end_of_DRAM() that appears later is pushed off the end of
the linear region, where it cannot be accessed.
So let's limit this randomization of the linear region to ensure
that this can no longer happen, by using the CPU's addressable PA
range instead. As it is guaranteed that no hotpluggable memory will
appear that falls outside of that range, we can safely put this PA
range sized window anywhere in the linear region.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/20201014081857.3288-1-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Depending on configuration options and specific code paths, we either
use the empty_zero_page or the configuration-dependent reserved_ttbr0
as a reserved value for TTBR{0,1}_EL1.
To simplify this code, let's always allocate and use the same
reserved_pg_dir, replacing reserved_ttbr0. Note that this is allocated
(and hence pre-zeroed), and is also marked as read-only in the kernel
Image mapping.
Keeping this separate from the empty_zero_page potentially helps with
robustness as the empty_zero_page is used in a number of cases where a
failure to map it read-only could allow it to become corrupted.
The (presently unused) swapper_pg_end symbol is also removed, and
comments are added wherever we rely on the offsets between the
pre-allocated pg_dirs to keep these cases easily identifiable.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201103102229.8542-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have reverted the introduction of the vmemmap struct page
pointer and the separate physvirt_offset, we can simplify things further,
and place the vmemmap region in the VA space in such a way that virtual
to page translations and vice versa can be implemented using a single
arithmetic shift.
One happy coincidence resulting from this is that the 48-bit/4k and
52-bit/64k configurations (which are assumed to be the two most
prevalent) end up with the same placement of the vmemmap region. In
a subsequent patch, we will take advantage of this, and unify the
memory maps even more.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Link: https://lore.kernel.org/r/20201008153602.9467-4-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For historical reasons, the arm64 kernel VA space is configured as two
equally sized halves, i.e., on a 48-bit VA build, the VA space is split
into a 47-bit vmalloc region and a 47-bit linear region.
When support for 52-bit virtual addressing was added, this equal split
was kept, resulting in a substantial waste of virtual address space in
the linear region:
48-bit VA 52-bit VA
0xffff_ffff_ffff_ffff +-------------+ +-------------+
| vmalloc | | vmalloc |
0xffff_8000_0000_0000 +-------------+ _PAGE_END(48) +-------------+
| linear | : :
0xffff_0000_0000_0000 +-------------+ : :
: : : :
: : : :
: : : :
: : : currently :
: unusable : : :
: : : unused :
: by : : :
: : : :
: hardware : : :
: : : :
0xfff8_0000_0000_0000 : : _PAGE_END(52) +-------------+
: : | |
: : | |
: : | |
: : | |
: : | |
: unusable : | |
: : | linear |
: by : | |
: : | region |
: hardware : | |
: : | |
: : | |
: : | |
: : | |
: : | |
: : | |
0xfff0_0000_0000_0000 +-------------+ PAGE_OFFSET +-------------+
As illustrated above, the 52-bit VA kernel uses 47 bits for the vmalloc
space (as before), to ensure that a single 64k granule kernel image can
support any 64k granule capable system, regardless of whether it supports
the 52-bit virtual addressing extension. However, due to the fact that
the VA space is still split in equal halves, the linear region is only
2^51 bytes in size, wasting almost half of the 52-bit VA space.
Let's fix this, by abandoning the equal split, and simply assigning all
VA space outside of the vmalloc region to the linear region.
The KASAN shadow region is reconfigured so that it ends at the start of
the vmalloc region, and grows downwards. That way, the arrangement of
the vmalloc space (which contains kernel mappings, modules, BPF region,
the vmemmap array etc) is identical between non-KASAN and KASAN builds,
which aids debugging.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Link: https://lore.kernel.org/r/20201008153602.9467-3-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On Cortex-A77 r0p0 and r1p0, a sequence of a non-cacheable or device load
and a store exclusive or PAR_EL1 read can cause a deadlock.
The workaround requires a DMB SY before and after a PAR_EL1 register
read. In addition, it's possible an interrupt (doing a device read) or
KVM guest exit could be taken between the DMB and PAR read, so we
also need a DMB before returning from interrupt and before returning to
a guest.
A deadlock is still possible with the workaround as KVM guests must also
have the workaround. IOW, a malicious guest can deadlock an affected
systems.
This workaround also depends on a firmware counterpart to enable the h/w
to insert DMB SY after load and store exclusive instructions. See the
errata document SDEN-1152370 v10 [1] for more information.
[1] https://static.docs.arm.com/101992/0010/Arm_Cortex_A77_MP074_Software_Developer_Errata_Notice_v10.pdf
Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: kvmarm@lists.cs.columbia.edu
Link: https://lore.kernel.org/r/20201028182839.166037-2-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Improve performance of Spectre-v2 mitigation on Falkor CPUs (if you're lucky
enough to have one)
- Select HAVE_MOVE_PMD. This has been shown to improve mremap() performance,
which is used heavily by the Android runtime GC, and it seems we forgot to
enable this upstream back in 2018.
- Ensure linker flags are consistent between LLVM and BFD
- Fix stale comment in Spectre mitigation rework
- Fix broken copyright header
- Fix KASLR randomisation of the linear map
- Prevent arm64-specific prctl()s from compat tasks (return -EINVAL)
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl+QEPAQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNE8jB/0YNYKO9mis/Xn5KcOCwlg4dbc2uVBknZXD
f7otEJ6SOax2HcWz8qJlrJ+qbGFawPIqFBUAM0vU1VmoyctIoKRFTA8ACfWfWtnK
QBfHrcxtJCh/GGq+E1IyuqWzCjppeY/7gYVdgi1xDEZRSaLz53MC1GVBwKBtu5cf
X2Bfm8d9+PSSnmKfpO65wSCTvN3PQX1SNEHwwTWFZQx0p7GcQK1DdwoobM6dRnVy
+e984ske+2a+nTrkhLSyQIgsfHuLB4pD6XdM/UOThnfdNxdQ0dUGn375sXP+b4dW
7MTH9HP/dXIymTcuErMXOHJXLk/zUiUBaOxkmOxdvrhQd0uFNFIc
=e9p9
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 updates from Will Deacon:
"A small selection of further arm64 fixes and updates. Most of these
are fixes that came in during the merge window, with the exception of
the HAVE_MOVE_PMD mremap() speed-up which we discussed back in 2018
and somehow forgot to enable upstream.
- Improve performance of Spectre-v2 mitigation on Falkor CPUs (if
you're lucky enough to have one)
- Select HAVE_MOVE_PMD. This has been shown to improve mremap()
performance, which is used heavily by the Android runtime GC, and
it seems we forgot to enable this upstream back in 2018.
- Ensure linker flags are consistent between LLVM and BFD
- Fix stale comment in Spectre mitigation rework
- Fix broken copyright header
- Fix KASLR randomisation of the linear map
- Prevent arm64-specific prctl()s from compat tasks (return -EINVAL)"
Link: https://lore.kernel.org/kvmarm/20181108181201.88826-3-joelaf@google.com/
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: proton-pack: Update comment to reflect new function name
arm64: spectre-v2: Favour CPU-specific mitigation at EL2
arm64: link with -z norelro regardless of CONFIG_RELOCATABLE
arm64: Fix a broken copyright header in gen_vdso_offsets.sh
arm64: mremap speedup - Enable HAVE_MOVE_PMD
arm64: mm: use single quantity to represent the PA to VA translation
arm64: reject prctl(PR_PAC_RESET_KEYS) on compat tasks
- rework the non-coherent DMA allocator
- move private definitions out of <linux/dma-mapping.h>
- lower CMA_ALIGNMENT (Paul Cercueil)
- remove the omap1 dma address translation in favor of the common
code
- make dma-direct aware of multiple dma offset ranges (Jim Quinlan)
- support per-node DMA CMA areas (Barry Song)
- increase the default seg boundary limit (Nicolin Chen)
- misc fixes (Robin Murphy, Thomas Tai, Xu Wang)
- various cleanups
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl+IiPwLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPKEQ//TM8vxjucnRl/pklpMin49dJorwiVvROLhQqLmdxw
286ZKpVzYYAPc7LnNqwIBugnFZiXuHu8xPKQkIiOa2OtNDTwhKNoBxOAmOJaV6DD
8JfEtZYeX5mKJ/Nqd2iSkIqOvCwZ9Wzii+aytJ2U88wezQr1fnyF4X49MegETEey
FHWreSaRWZKa0MMRu9AQ0QxmoNTHAQUNaPc0PeqEtPULybfkGOGw4/ghSB7WcKrA
gtKTuooNOSpVEHkTas2TMpcBp6lxtOjFqKzVN0ml+/nqq5NeTSDx91VOCX/6Cj76
mXIg+s7fbACTk/BmkkwAkd0QEw4fo4tyD6Bep/5QNhvEoAriTuSRbhvLdOwFz0EF
vhkF0Rer6umdhSK7nPd7SBqn8kAnP4vBbdmB68+nc3lmkqysLyE4VkgkdH/IYYQI
6TJ0oilXWFmU6DT5Rm4FBqCvfcEfU2dUIHJr5wZHqrF2kLzoZ+mpg42fADoG4GuI
D/oOsz7soeaRe3eYfWybC0omGR6YYPozZJ9lsfftcElmwSsFrmPsbO1DM5IBkj1B
gItmEbOB9ZK3RhIK55T/3u1UWY3Uc/RVr+kchWvADGrWnRQnW0kxYIqDgiOytLFi
JZNH8uHpJIwzoJAv6XXSPyEUBwXTG+zK37Ce769HGbUEaUrE71MxBbQAQsK8mDpg
7fM=
=Bkf/
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.10' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- rework the non-coherent DMA allocator
- move private definitions out of <linux/dma-mapping.h>
- lower CMA_ALIGNMENT (Paul Cercueil)
- remove the omap1 dma address translation in favor of the common code
- make dma-direct aware of multiple dma offset ranges (Jim Quinlan)
- support per-node DMA CMA areas (Barry Song)
- increase the default seg boundary limit (Nicolin Chen)
- misc fixes (Robin Murphy, Thomas Tai, Xu Wang)
- various cleanups
* tag 'dma-mapping-5.10' of git://git.infradead.org/users/hch/dma-mapping: (63 commits)
ARM/ixp4xx: add a missing include of dma-map-ops.h
dma-direct: simplify the DMA_ATTR_NO_KERNEL_MAPPING handling
dma-direct: factor out a dma_direct_alloc_from_pool helper
dma-direct check for highmem pages in dma_direct_alloc_pages
dma-mapping: merge <linux/dma-noncoherent.h> into <linux/dma-map-ops.h>
dma-mapping: move large parts of <linux/dma-direct.h> to kernel/dma
dma-mapping: move dma-debug.h to kernel/dma/
dma-mapping: remove <asm/dma-contiguous.h>
dma-mapping: merge <linux/dma-contiguous.h> into <linux/dma-map-ops.h>
dma-contiguous: remove dma_contiguous_set_default
dma-contiguous: remove dev_set_cma_area
dma-contiguous: remove dma_declare_contiguous
dma-mapping: split <linux/dma-mapping.h>
cma: decrease CMA_ALIGNMENT lower limit to 2
firewire-ohci: use dma_alloc_pages
dma-iommu: implement ->alloc_noncoherent
dma-mapping: add new {alloc,free}_noncoherent dma_map_ops methods
dma-mapping: add a new dma_alloc_pages API
dma-mapping: remove dma_cache_sync
53c700: convert to dma_alloc_noncoherent
...
On arm64, the global variable memstart_addr represents the physical
address of PAGE_OFFSET, and so physical to virtual translations or
vice versa used to come down to simple additions or subtractions
involving the values of PAGE_OFFSET and memstart_addr.
When support for 52-bit virtual addressing was introduced, we had to
deal with PAGE_OFFSET potentially being outside of the region that
can be covered by the virtual range (as the 52-bit VA capable build
needs to be able to run on systems that are only 48-bit VA capable),
and for this reason, another translation was introduced, and recorded
in the global variable physvirt_offset.
However, if we go back to the original definition of memstart_addr,
i.e., the physical address of PAGE_OFFSET, it turns out that there is
no need for two separate translations: instead, we can simply subtract
the size of the unaddressable VA space from memstart_addr to make the
available physical memory appear in the 48-bit addressable VA region.
This simplifies things, but also fixes a bug on KASLR builds, which
may update memstart_addr later on in arm64_memblock_init(), but fails
to update vmemmap and physvirt_offset accordingly.
Fixes: 5383cc6efe ("arm64: mm: Introduce vabits_actual")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Link: https://lore.kernel.org/r/20201008153602.9467-2-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
for_each_memblock() is used to iterate over memblock.memory in a few
places that use data from memblock_region rather than the memory ranges.
Introduce separate for_each_mem_region() and
for_each_reserved_mem_region() to improve encapsulation of memblock
internals from its users.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org> [x86]
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> [MIPS]
Acked-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> [.clang-format]
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Emil Renner Berthing <kernel@esmil.dk>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20200818151634.14343-18-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several occurrences of the following pattern:
for_each_memblock(memory, reg) {
start = __pfn_to_phys(memblock_region_memory_base_pfn(reg);
end = __pfn_to_phys(memblock_region_memory_end_pfn(reg));
/* do something with start and end */
}
Using for_each_mem_range() iterator is more appropriate in such cases and
allows simpler and cleaner code.
[akpm@linux-foundation.org: fix arch/arm/mm/pmsa-v7.c build]
[rppt@linux.ibm.com: mips: fix cavium-octeon build caused by memblock refactoring]
Link: http://lkml.kernel.org/r/20200827124549.GD167163@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Emil Renner Berthing <kernel@esmil.dk>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20200818151634.14343-13-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several occurrences of the following pattern:
for_each_memblock(memory, reg) {
start_pfn = memblock_region_memory_base_pfn(reg);
end_pfn = memblock_region_memory_end_pfn(reg);
/* do something with start_pfn and end_pfn */
}
Rather than iterate over all memblock.memory regions and each time query
for their start and end PFNs, use for_each_mem_pfn_range() iterator to get
simpler and clearer code.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> [.clang-format]
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Emil Renner Berthing <kernel@esmil.dk>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20200818151634.14343-12-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dummy_numa_init() loops over memblock.memory and passes nid=0 to
numa_add_memblk() which essentially wraps memblock_set_node(). However,
memblock_set_node() can cope with entire memory span itself, so the loop
over memblock.memory regions is redundant.
Using a single call to memblock_set_node() rather than a loop also fixes
an issue with a buggy ACPI firmware in which the SRAT table covers some
but not all of the memory in the EFI memory map.
Jonathan Cameron says:
This issue can be easily triggered by having an SRAT table which fails
to cover all elements of the EFI memory map.
This firmware error is detected and a warning printed. e.g.
"NUMA: Warning: invalid memblk node 64 [mem 0x240000000-0x27fffffff]"
At that point we fall back to dummy_numa_init().
However, the failed ACPI init has left us with our memblocks all broken
up as we split them when trying to assign them to NUMA nodes.
We then iterate over the memblocks and add them to node 0.
numa_add_memblk() calls memblock_set_node() which merges regions that
were previously split up during the earlier attempt to add them to
different nodes during parsing of SRAT.
This means elements are moved in the memblock array and we can end up
in a different memblock after the call to numa_add_memblk().
Result is:
Unable to handle kernel paging request at virtual address 0000000000003a40
Mem abort info:
ESR = 0x96000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
[0000000000003a40] user address but active_mm is swapper
Internal error: Oops: 96000004 [#1] PREEMPT SMP
...
Call trace:
sparse_init_nid+0x5c/0x2b0
sparse_init+0x138/0x170
bootmem_init+0x80/0xe0
setup_arch+0x2a0/0x5fc
start_kernel+0x8c/0x648
Replace the loop with a single call to memblock_set_node() to the entire
memory.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Emil Renner Berthing <kernel@esmil.dk>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20200818151634.14343-5-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
because the heuristics that various linkers & compilers use to handle them
(include these bits into the output image vs discarding them silently)
are both highly idiosyncratic and also version dependent.
Instead of this historically problematic mess, this tree by Kees Cook (et al)
adds build time asserts and build time warnings if there's any orphan section
in the kernel or if a section is not sized as expected.
And because we relied on so many silent assumptions in this area, fix a metric
ton of dependencies and some outright bugs related to this, before we can
finally enable the checks on the x86, ARM and ARM64 platforms.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+Edv4RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hiKBAApdJEOaK7hMc3013DYNctklIxEPJL2mFJ
11YJRIh4pUJTF0TE+EHT/D+rSIuRsyuoSmOQBQ61/wVSnyG067GjjVJRqh/eYaJ1
fDhJi2FuHOjXl+CiN0KxzBjjp+V4NhF7jHT59tpQSvfZeg7FjteoxfztxaCp5ek3
S3wHB3CC4c4jE3lfjHem1E9/PwT4kwPYx1c3gAUdEqJdjkihjX9fWusfjLeqW6/d
Y5VkApi6bL9XiZUZj5l0dEIweLJJ86+PkKJqpo3spxxEak1LSn1MEix+lcJ8e1Kg
sb/bEEivDcmFlFWOJnn0QLquCR0Cx5bz1pwsL0tuf0yAd4+sXX5IMuGUysZlEdKM
BHL9h5HbevGF4BScwZwZH7lyEg7q67s5KnRu4hxy0Swfcj7y0oT/9lXqpbpZ2DqO
Hd+bRRQKIbqnTMp0hcit9LfpLp93vj0dBlaV5ocAJJlu62u9VnwGG5HQuZ5giLUr
kA1SLw63Y1wopFRxgFyER8les7eLsu0zxHeK44rRVlVnfI99OMTOgVNicmDFy3Fm
AfcnfJG0BqBEJGQz5es34uQQKKBwFPtC9NztopI62KiwOspYYZyrO1BNxdOc6DlS
mIHrmO89HMXuid5eolvLaFqUWirHoWO8TlycgZxUWVHc2txVPjAEU/axouU/dSSU
w/6GpzAa+7g=
=fXAw
-----END PGP SIGNATURE-----
Merge tag 'core-build-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull orphan section checking from Ingo Molnar:
"Orphan link sections were a long-standing source of obscure bugs,
because the heuristics that various linkers & compilers use to handle
them (include these bits into the output image vs discarding them
silently) are both highly idiosyncratic and also version dependent.
Instead of this historically problematic mess, this tree by Kees Cook
(et al) adds build time asserts and build time warnings if there's any
orphan section in the kernel or if a section is not sized as expected.
And because we relied on so many silent assumptions in this area, fix
a metric ton of dependencies and some outright bugs related to this,
before we can finally enable the checks on the x86, ARM and ARM64
platforms"
* tag 'core-build-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/boot/compressed: Warn on orphan section placement
x86/build: Warn on orphan section placement
arm/boot: Warn on orphan section placement
arm/build: Warn on orphan section placement
arm64/build: Warn on orphan section placement
x86/boot/compressed: Add missing debugging sections to output
x86/boot/compressed: Remove, discard, or assert for unwanted sections
x86/boot/compressed: Reorganize zero-size section asserts
x86/build: Add asserts for unwanted sections
x86/build: Enforce an empty .got.plt section
x86/asm: Avoid generating unused kprobe sections
arm/boot: Handle all sections explicitly
arm/build: Assert for unwanted sections
arm/build: Add missing sections
arm/build: Explicitly keep .ARM.attributes sections
arm/build: Refactor linker script headers
arm64/build: Assert for unwanted sections
arm64/build: Add missing DWARF sections
arm64/build: Use common DISCARDS in linker script
arm64/build: Remove .eh_frame* sections due to unwind tables
...
Merge dma-contiguous.h into dma-map-ops.h, after removing the comment
describing the contiguous allocator into kernel/dma/contigous.c.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Split out all the bits that are purely for dma_map_ops implementations
and related code into a new <linux/dma-map-ops.h> header so that they
don't get pulled into all the drivers. That also means the architecture
specific <asm/dma-mapping.h> is not pulled in by <linux/dma-mapping.h>
any more, which leads to a missing includes that were pulled in by the
x86 or arm versions in a few not overly portable drivers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Add userspace support for the Memory Tagging Extension introduced by
Armv8.5.
(Catalin Marinas and others)
* for-next/mte: (30 commits)
arm64: mte: Fix typo in memory tagging ABI documentation
arm64: mte: Add Memory Tagging Extension documentation
arm64: mte: Kconfig entry
arm64: mte: Save tags when hibernating
arm64: mte: Enable swap of tagged pages
mm: Add arch hooks for saving/restoring tags
fs: Handle intra-page faults in copy_mount_options()
arm64: mte: ptrace: Add NT_ARM_TAGGED_ADDR_CTRL regset
arm64: mte: ptrace: Add PTRACE_{PEEK,POKE}MTETAGS support
arm64: mte: Allow {set,get}_tagged_addr_ctrl() on non-current tasks
arm64: mte: Restore the GCR_EL1 register after a suspend
arm64: mte: Allow user control of the generated random tags via prctl()
arm64: mte: Allow user control of the tag check mode via prctl()
mm: Allow arm64 mmap(PROT_MTE) on RAM-based files
arm64: mte: Validate the PROT_MTE request via arch_validate_flags()
mm: Introduce arch_validate_flags()
arm64: mte: Add PROT_MTE support to mmap() and mprotect()
mm: Introduce arch_calc_vm_flag_bits()
arm64: mte: Tags-aware aware memcmp_pages() implementation
arm64: Avoid unnecessary clear_user_page() indirection
...
Remove unused functions and parameters from ACPI IORT code.
(Zenghui Yu via Lorenzo Pieralisi)
* for-next/acpi:
ACPI/IORT: Remove the unused inline functions
ACPI/IORT: Drop the unused @ops of iort_add_device_replay()
Remove redundant code and fix documentation of caching behaviour for the
HVC_SOFT_RESTART hypercall.
(Pingfan Liu)
* for-next/boot:
Documentation/kvm/arm: improve description of HVC_SOFT_RESTART
arm64/relocate_kernel: remove redundant code
Improve reporting of unexpected kernel traps due to BPF JIT failure.
(Will Deacon)
* for-next/bpf:
arm64: Improve diagnostics when trapping BRK with FAULT_BRK_IMM
Improve robustness of user-visible HWCAP strings and their corresponding
numerical constants.
(Anshuman Khandual)
* for-next/cpuinfo:
arm64/cpuinfo: Define HWCAP name arrays per their actual bit definitions
Cleanups to handling of SVE and FPSIMD register state in preparation
for potential future optimisation of handling across syscalls.
(Julien Grall)
* for-next/fpsimd:
arm64/sve: Implement a helper to load SVE registers from FPSIMD state
arm64/sve: Implement a helper to flush SVE registers
arm64/fpsimdmacros: Allow the macro "for" to be used in more cases
arm64/fpsimdmacros: Introduce a macro to update ZCR_EL1.LEN
arm64/signal: Update the comment in preserve_sve_context
arm64/fpsimd: Update documentation of do_sve_acc
Miscellaneous changes.
(Tian Tao and others)
* for-next/misc:
arm64/mm: return cpu_all_mask when node is NUMA_NO_NODE
arm64: mm: Fix missing-prototypes in pageattr.c
arm64/fpsimd: Fix missing-prototypes in fpsimd.c
arm64: hibernate: Remove unused including <linux/version.h>
arm64/mm: Refactor {pgd, pud, pmd, pte}_ERROR()
arm64: Remove the unused include statements
arm64: get rid of TEXT_OFFSET
arm64: traps: Add str of description to panic() in die()
Memory management updates and cleanups.
(Anshuman Khandual and others)
* for-next/mm:
arm64: dbm: Invalidate local TLB when setting TCR_EL1.HD
arm64: mm: Make flush_tlb_fix_spurious_fault() a no-op
arm64/mm: Unify CONT_PMD_SHIFT
arm64/mm: Unify CONT_PTE_SHIFT
arm64/mm: Remove CONT_RANGE_OFFSET
arm64/mm: Enable THP migration
arm64/mm: Change THP helpers to comply with generic MM semantics
arm64/mm/ptdump: Add address markers for BPF regions
Allow prefetchable PCI BARs to be exposed to userspace using normal
non-cacheable mappings.
(Clint Sbisa)
* for-next/pci:
arm64: Enable PCI write-combine resources under sysfs
Perf/PMU driver updates.
(Julien Thierry and others)
* for-next/perf:
perf: arm-cmn: Fix conversion specifiers for node type
perf: arm-cmn: Fix unsigned comparison to less than zero
arm_pmu: arm64: Use NMIs for PMU
arm_pmu: Introduce pmu_irq_ops
KVM: arm64: pmu: Make overflow handler NMI safe
arm64: perf: Defer irq_work to IPI_IRQ_WORK
arm64: perf: Remove PMU locking
arm64: perf: Avoid PMXEV* indirection
arm64: perf: Add missing ISB in armv8pmu_enable_counter()
perf: Add Arm CMN-600 PMU driver
perf: Add Arm CMN-600 DT binding
arm64: perf: Add support caps under sysfs
drivers/perf: thunderx2_pmu: Fix memory resource error handling
drivers/perf: xgene_pmu: Fix uninitialized resource struct
perf: arm_dsu: Support DSU ACPI devices
arm64: perf: Remove unnecessary event_idx check
drivers/perf: hisi: Add missing include of linux/module.h
arm64: perf: Add general hardware LLC events for PMUv3
Support for the Armv8.3 Pointer Authentication enhancements.
(By Amit Daniel Kachhap)
* for-next/ptrauth:
arm64: kprobe: clarify the comment of steppable hint instructions
arm64: kprobe: disable probe of fault prone ptrauth instruction
arm64: cpufeature: Modify address authentication cpufeature to exact
arm64: ptrauth: Introduce Armv8.3 pointer authentication enhancements
arm64: traps: Allow force_signal_inject to pass esr error code
arm64: kprobe: add checks for ARMv8.3-PAuth combined instructions
Tonnes of cleanup to the SDEI driver.
(Gavin Shan)
* for-next/sdei:
firmware: arm_sdei: Remove _sdei_event_unregister()
firmware: arm_sdei: Remove _sdei_event_register()
firmware: arm_sdei: Introduce sdei_do_local_call()
firmware: arm_sdei: Cleanup on cross call function
firmware: arm_sdei: Remove while loop in sdei_event_unregister()
firmware: arm_sdei: Remove while loop in sdei_event_register()
firmware: arm_sdei: Remove redundant error message in sdei_probe()
firmware: arm_sdei: Remove duplicate check in sdei_get_conduit()
firmware: arm_sdei: Unregister driver on error in sdei_init()
firmware: arm_sdei: Avoid nested statements in sdei_init()
firmware: arm_sdei: Retrieve event number from event instance
firmware: arm_sdei: Common block for failing path in sdei_event_create()
firmware: arm_sdei: Remove sdei_is_err()
Selftests for Pointer Authentication and FPSIMD/SVE context-switching.
(Mark Brown and Boyan Karatotev)
* for-next/selftests:
selftests: arm64: Add build and documentation for FP tests
selftests: arm64: Add wrapper scripts for stress tests
selftests: arm64: Add utility to set SVE vector lengths
selftests: arm64: Add stress tests for FPSMID and SVE context switching
selftests: arm64: Add test for the SVE ptrace interface
selftests: arm64: Test case for enumeration of SVE vector lengths
kselftests/arm64: add PAuth tests for single threaded consistency and differently initialized keys
kselftests/arm64: add PAuth test for whether exec() changes keys
kselftests/arm64: add nop checks for PAuth tests
kselftests/arm64: add a basic Pointer Authentication test
Implementation of ARCH_STACKWALK for unwinding.
(Mark Brown)
* for-next/stacktrace:
arm64: Move console stack display code to stacktrace.c
arm64: stacktrace: Convert to ARCH_STACKWALK
arm64: stacktrace: Make stack walk callback consistent with generic code
stacktrace: Remove reliable argument from arch_stack_walk() callback
Support for ASID pinning, which is required when sharing page-tables with
the SMMU.
(Jean-Philippe Brucker)
* for-next/svm:
arm64: cpufeature: Export symbol read_sanitised_ftr_reg()
arm64: mm: Pin down ASIDs for sharing mm with devices
Rely on firmware tables for establishing CPU topology.
(Valentin Schneider)
* for-next/topology:
arm64: topology: Stop using MPIDR for topology information
Spelling fixes.
(Xiaoming Ni and Yanfei Xu)
* for-next/tpyos:
arm64/numa: Fix a typo in comment of arm64_numa_init
arm64: fix some spelling mistakes in the comments by codespell
vDSO cleanups.
(Will Deacon)
* for-next/vdso:
arm64: vdso: Fix unusual formatting in *setup_additional_pages()
arm64: vdso32: Remove a bunch of #ifdef CONFIG_COMPAT_VDSO guards
Our use of broadcast TLB maintenance means that spurious page-faults
that have been handled already by another CPU do not require additional
TLB maintenance.
Make flush_tlb_fix_spurious_fault() a no-op and rely on the existing TLB
invalidation instead. Add an explicit flush_tlb_page() when making a page
dirty, as the TLB is permitted to cache the old read-only entry.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20200728092220.GA21800@willie-the-truck
Signed-off-by: Will Deacon <will@kernel.org>
To enable address space sharing with the IOMMU, introduce
arm64_mm_context_get() and arm64_mm_context_put(), that pin down a
context and ensure that it will keep its ASID after a rollover. Export
the symbols to let the modular SMMUv3 driver use them.
Pinning is necessary because a device constantly needs a valid ASID,
unlike tasks that only require one when running. Without pinning, we would
need to notify the IOMMU when we're about to use a new ASID for a task,
and it would get complicated when a new task is assigned a shared ASID.
Consider the following scenario with no ASID pinned:
1. Task t1 is running on CPUx with shared ASID (gen=1, asid=1)
2. Task t2 is scheduled on CPUx, gets ASID (1, 2)
3. Task tn is scheduled on CPUy, a rollover occurs, tn gets ASID (2, 1)
We would now have to immediately generate a new ASID for t1, notify
the IOMMU, and finally enable task tn. We are holding the lock during
all that time, since we can't afford having another CPU trigger a
rollover. The IOMMU issues invalidation commands that can take tens of
milliseconds.
It gets needlessly complicated. All we wanted to do was schedule task tn,
that has no business with the IOMMU. By letting the IOMMU pin tasks when
needed, we avoid stalling the slow path, and let the pinning fail when
we're out of shareable ASIDs.
After a rollover, the allocator expects at least one ASID to be available
in addition to the reserved ones (one per CPU). So (NR_ASIDS - NR_CPUS -
1) is the maximum number of ASIDs that can be shared with the IOMMU.
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20200918101852.582559-5-jean-philippe@linaro.org
Signed-off-by: Will Deacon <will@kernel.org>
The @node passed to cpumask_of_node() can be NUMA_NO_NODE, in that
case it will trigger the following WARN_ON(node >= nr_node_ids) due to
mismatched data types of @node and @nr_node_ids. Actually we should
return cpu_all_mask just like most other architectures do if passed
NUMA_NO_NODE.
Also add a similar check to the inline cpumask_of_node() in numa.h.
Signed-off-by: Zhengyuan Liu <liuzhengyuan@tj.kylinos.cn>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20200921023936.21846-1-liuzhengyuan@tj.kylinos.cn
Signed-off-by: Will Deacon <will@kernel.org>
When generating instructions at runtime, for example due to kernel text
patching or the BPF JIT, we can emit a trapping BRK instruction if we
are asked to encode an invalid instruction such as an out-of-range]
branch. This is indicative of a bug in the caller, and will result in a
crash on executing the generated code. Unfortunately, the message from
the crash is really unhelpful, and mumbles something about ptrace:
| Unexpected kernel BRK exception at EL1
| Internal error: ptrace BRK handler: f2000100 [#1] SMP
We can do better than this. Install a break handler for FAULT_BRK_IMM,
which is the immediate used to encode the "I've been asked to generate
an invalid instruction" error, and triage the faulting PC to determine
whether or not the failure occurred in the BPF JIT.
Link: https://lore.kernel.org/r/20200915141707.GB26439@willie-the-truck
Reported-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Will Deacon <will@kernel.org>