Commit Graph

70 Commits

Author SHA1 Message Date
Rafael Aquini
cbab0e4eec swap: avoid read_swap_cache_async() race to deadlock while waiting on discard I/O completion
read_swap_cache_async() can race against get_swap_page(), and stumble
across a SWAP_HAS_CACHE entry in the swap map whose page wasn't brought
into the swapcache yet.

This transient swap_map state is expected to be transitory, but the
actual placement of discard at scan_swap_map() inserts a wait for I/O
completion thus making the thread at read_swap_cache_async() to loop
around its -EEXIST case, while the other end at get_swap_page() is
scheduled away at scan_swap_map().  This can leave the system deadlocked
if the I/O completion happens to be waiting on the CPU waitqueue where
read_swap_cache_async() is busy looping and !CONFIG_PREEMPT.

This patch introduces a cond_resched() call to make the aforementioned
read_swap_cache_async() busy loop condition to bail out when necessary,
thus avoiding the subtle race window.

Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-12 16:29:45 -07:00
Shaohua Li
5bc7b8aca9 mm: thp: add split tail pages to shrink page list in page reclaim
In page reclaim, huge page is split.  split_huge_page() adds tail pages
to LRU list.  Since we are reclaiming a huge page, it's better we
reclaim all subpages of the huge page instead of just the head page.
This patch adds split tail pages to shrink page list so the tail pages
can be reclaimed soon.

Before this patch, run a swap workload:
  thp_fault_alloc 3492
  thp_fault_fallback 608
  thp_collapse_alloc 6
  thp_collapse_alloc_failed 0
  thp_split 916

With this patch:
  thp_fault_alloc 4085
  thp_fault_fallback 16
  thp_collapse_alloc 90
  thp_collapse_alloc_failed 0
  thp_split 1272

fallback allocation is reduced a lot.

[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:38 -07:00
Seth Jennings
2f772e6cad mm: break up swap_writepage() for frontswap backends
swap_writepage() is currently where frontswap hooks into the swap write
path to capture pages with the frontswap_store() function.  However, if
a frontswap backend wants to "resume" the writeback of a page to the
swap device, it can't call swap_writepage() as the page will simply
reenter the backend.

This patch separates swap_writepage() into a top and bottom half, the
bottom half named __swap_writepage() to allow a frontswap backend, like
zswap, to resume writeback beyond the frontswap_store() hook.

__add_to_swap_cache() is also made non-static so that the page for which
writeback is to be resumed can be added to the swap cache.

Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:54:38 -07:00
Shaohua Li
ec8acf20af swap: add per-partition lock for swapfile
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD).  The main contention comes
from swap_info_get().  This patch tries to fix the gap with adding a new
per-partition lock.

Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.

nr_swap_pages is an atomic now, it can be changed without swap_lock.  In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages.  But sounds not a big problem.

Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.

Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it.  read the
flags is ok with either the locks hold.

If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.

swap_entry_free() can change swap_list.  To delete that code, we add a
new highest_priority_index.  Whenever get_swap_page() is called, we
check it.  If it's valid, we use it.

It's a pity get_swap_page() still holds swap_lock().  But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush).  And
BTW, looks get_swap_page() doesn't really need the lock.  We never free
swap_info[] and we check SWAP_WRITEOK flag.  The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.

"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s.  This patch further improves the
speed to 2.3G/s, so around 15% improvement.  It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.

[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:17 -08:00
Shaohua Li
33806f06da swap: make each swap partition have one address_space
When I use several fast SSD to do swap, swapper_space.tree_lock is
heavily contended.  This makes each swap partition have one
address_space to reduce the lock contention.  There is an array of
address_space for swap.  The swap entry type is the index to the array.

In my test with 3 SSD, this increases the swapout throughput 20%.

[akpm@linux-foundation.org: revert unneeded change to  __add_to_swap_cache]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:17 -08:00
Mel Gorman
62c230bc17 mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages
Currently swapfiles are managed entirely by the core VM by using ->bmap to
allocate space and write to the blocks directly.  This effectively ensures
that the underlying blocks are allocated and avoids the need for the swap
subsystem to locate what physical blocks store offsets within a file.

If the swap subsystem is to use the filesystem information to locate the
blocks, it is critical that information such as block groups, block
bitmaps and the block descriptor table that map the swap file were
resident in memory.  This patch adds address_space_operations that the VM
can call when activating or deactivating swap backed by a file.

  int swap_activate(struct file *);
  int swap_deactivate(struct file *);

The ->swap_activate() method is used to communicate to the file that the
VM relies on it, and the address_space should take adequate measures such
as reserving space in the underlying device, reserving memory for mempools
and pinning information such as the block descriptor table in memory.  The
->swap_deactivate() method is called on sys_swapoff() if ->swap_activate()
returned success.

After a successful swapfile ->swap_activate, the swapfile is marked
SWP_FILE and swapper_space.a_ops will proxy to
sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache
pages and ->readpage to read.

It is perfectly possible that direct_IO be used to read the swap pages but
it is an unnecessary complication.  Similarly, it is possible that
->writepage be used instead of direct_io to write the pages but filesystem
developers have stated that calling writepage from the VM is undesirable
for a variety of reasons and using direct_IO opens up the possibility of
writing back batches of swap pages in the future.

[a.p.zijlstra@chello.nl: Original patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:47 -07:00
Christian Ehrhardt
3fb5c298b0 swap: allow swap readahead to be merged
Swap readahead works fine, but the I/O to disk is almost always done in
page size requests, despite the fact that readahead submits
1<<page-cluster pages at a time.

On older kernels the old per device plugging behavior might have captured
this and merged the requests, but currently all comes down to much more
I/Os than required.

On a single device this might not be an issue, but as soon as a server
runs on shared san resources savin I/Os not only improves swapin
throughput but also provides a lower resource utilization.

With a load running KVM in a lot of memory overcommitment (the hot memory
is 1.5 times the host memory) swapping throughput improves significantly
and the lead feels more responsive as well as achieves more throughput.

In a test setup with 16 swap disks running blocktrace on one of those disks
shows the improved merging:
Prior:
Reads Queued:     560,888,    2,243MiB  Writes Queued:     226,242,  904,968KiB
Read Dispatches:  544,701,    2,243MiB  Write Dispatches:  159,318,  904,968KiB
Reads Requeued:         0               Writes Requeued:         0
Reads Completed:  544,716,    2,243MiB  Writes Completed:  159,321,  904,980KiB
Read Merges:       16,187,   64,748KiB  Write Merges:       61,744,  246,976KiB
IO unplugs:       149,614               Timer unplugs:       2,940

With the patch:
Reads Queued:     734,315,    2,937MiB  Writes Queued:     300,188,    1,200MiB
Read Dispatches:  214,972,    2,937MiB  Write Dispatches:  215,176,    1,200MiB
Reads Requeued:         0               Writes Requeued:         0
Reads Completed:  214,971,    2,937MiB  Writes Completed:  215,177,    1,200MiB
Read Merges:      519,343,    2,077MiB  Write Merges:       73,325,  293,300KiB
IO unplugs:       337,130               Timer unplugs:      11,184

I got ~10% to ~40% more throughput in my cases and at the same time much
lower cpu consumption when broken down per transferred kilobyte (the
majority of that due to saved interrupts and better cache handling).  In a
shared SAN others might get an additional benefit as well, because this
now causes less protocol overhead.

Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:39 -07:00
Hugh Dickins
aca50bd3b4 mm: fix s390 BUG by __set_page_dirty_no_writeback on swap
Mel reports a BUG_ON(slot == NULL) in radix_tree_tag_set() on s390
3.0.13: called from __set_page_dirty_nobuffers() when page_remove_rmap()
tries to transfer dirty flag from s390 storage key to struct page and
radix_tree.

That would be because of reclaim's shrink_page_list() calling
add_to_swap() on this page at the same time: first PageSwapCache is set
(causing page_mapping(page) to appear as &swapper_space), then
page->private set, then tree_lock taken, then page inserted into
radix_tree - so there's an interval before taking the lock when the
radix_tree slot is empty.

We could fix this by moving __add_to_swap_cache()'s spin_lock_irq up
before the SetPageSwapCache.  But a better fix is simply to do what's
five years overdue: Ken Chen introduced __set_page_dirty_no_writeback()
(if !PageDirty TestSetPageDirty) for tmpfs to skip all the radix_tree
overhead, and swap is just the same - it ignores the radix_tree tag, and
does not participate in dirty page accounting, so should be using
__set_page_dirty_no_writeback() too.

s390 testing now confirms that this does indeed fix the problem.

Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ken Chen <kenchen@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-04-23 18:19:22 -07:00
Rik van Riel
67f96aa252 mm: make swapin readahead skip over holes
Ever since abandoning the virtual scan of processes, for scalability
reasons, swap space has been a little more fragmented than before.  This
can lead to the situation where a large memory user is killed, swap space
ends up full of "holes" and swapin readahead is totally ineffective.

On my home system, after killing a leaky firefox it took over an hour to
page just under 2GB of memory back in, slowing the virtual machines down
to a crawl.

This patch makes swapin readahead simply skip over holes, instead of
stopping at them.  This allows the system to swap things back in at rates
of several MB/second, instead of a few hundred kB/second.

The checks done in valid_swaphandles are already done in
read_swap_cache_async as well, allowing us to remove a fair amount of
code.

[akpm@linux-foundation.org: fix it for page_cluster >= 32]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Adrian Drzewiecki <z@drze.net>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Hugh Dickins
7512102cf6 memcg: fix GPF when cgroup removal races with last exit
When moving tasks from old memcg (with move_charge_at_immigrate on new
memcg), followed by removal of old memcg, hit General Protection Fault in
mem_cgroup_lru_del_list() (called from release_pages called from
free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from
exit_mmap from mmput from exit_mm from do_exit).

Somewhat reproducible, takes a few hours: the old struct mem_cgroup has
been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is
still trying to update its stats, and take page off lru before freeing.

A task, or a charge, or a page on lru: each secures a memcg against
removal.  In this case, the last task has been moved out of the old memcg,
and it is exiting: anonymous pages are uncharged one by one from the
memcg, as they are zapped from its pagetables, so the charge gets down to
0; but the pages themselves are queued in an mmu_gather for freeing.

Most of those pages will be on lru (and force_empty is careful to
lru_add_drain_all, to add pages from pagevec to lru first), but not
necessarily all: perhaps some have been isolated for page reclaim, perhaps
some isolated for other reasons.  So, force_empty may find no task, no
charge and no page on lru, and let the removal proceed.

There would still be no problem if these pages were immediately freed; but
typically (and the put_page_testzero protocol demands it) they have to be
added back to lru before they are found freeable, then removed from lru
and freed.  We don't see the issue when adding, because the
mem_cgroup_iter() loops keep their own reference to the memcg being
scanned; but when it comes to mem_cgroup_lru_del_list().

I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and
PageCgroupUsed flags were used (like a trick with mirrors) to deflect view
of pc->mem_cgroup to the stable root_mem_cgroup when neither set.
38c5d72f3e ("memcg: simplify LRU handling by new rule") mercifully
removed those convolutions, but left this General Protection Fault.

But it's surprisingly easy to restore the old behaviour: just check
PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec
to add), and reset pc to root_mem_cgroup if page is uncharged.  A risky
change?  just going back to how it worked before; testing, and an audit of
uses of pc->mem_cgroup, show no problem.

And there's a nice bonus: with mem_cgroup_lru_add_list() itself making
sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no
longer has any purpose, and we can safely revert 4e5f01c2b9 ("memcg:
clear pc->mem_cgroup if necessary").

Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c
is not strictly necessary: the lru_lock there, with RCU before memcg
structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe
without that; but it seems cleaner to rely on one dependency less.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-05 15:49:43 -08:00
KAMEZAWA Hiroyuki
4e5f01c2b9 memcg: clear pc->mem_cgroup if necessary.
This is a preparation before removing a flag PCG_ACCT_LRU in page_cgroup
and reducing atomic ops/complexity in memcg LRU handling.

In some cases, pages are added to lru before charge to memcg and pages
are not classfied to memory cgroup at lru addtion.  Now, the lru where
the page should be added is determined a bit in page_cgroup->flags and
pc->mem_cgroup.  I'd like to remove the check of flag.

To handle the case pc->mem_cgroup may contain stale pointers if pages
are added to LRU before classification.  This patch resets
pc->mem_cgroup to root_mem_cgroup before lru additions.

[akpm@linux-foundation.org: fix CONFIG_CGROUP_MEM_CONT=n build]
[hughd@google.com: fix CONFIG_CGROUP_MEM_RES_CTLR=y CONFIG_CGROUP_MEM_RES_CTLR_SWAP=n build]
[akpm@linux-foundation.org: ksm.c needs memcontrol.h, per Michal]
[hughd@google.com: stop oops in mem_cgroup_reset_owner()]
[hughd@google.com: fix page migration to reset_owner]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
Al Viro
ff01bb4832 fs: move code out of buffer.c
Move invalidate_bdev, block_sync_page into fs/block_dev.c.  Export
kill_bdev as well, so brd doesn't have to open code it.  Reduce
buffer_head.h requirement accordingly.

Removed a rather large comment from invalidate_bdev, as it looked a bit
obsolete to bother moving.  The small comment replacing it says enough.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-01-03 22:54:07 -05:00
Paul Gortmaker
e25934a517 mm: delete various needless include <linux/module.h>
There is nothing modular in these files, and no reason to drag
in all the 357 headers that module.h brings with it, since
it just slows down compiles.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 09:20:11 -04:00
Jens Axboe
7eaceaccab block: remove per-queue plugging
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().

Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-10 08:52:07 +01:00
Andrea Arcangeli
3f04f62f90 thp: split_huge_page paging
Paging logic that splits the page before it is unmapped and added to swap
to ensure backwards compatibility with the legacy swap code.  Eventually
swap should natively pageout the hugepages to increase performance and
decrease seeking and fragmentation of swap space.  swapoff can just skip
over huge pmd as they cannot be part of swap yet.  In add_to_swap be
careful to split the page only if we got a valid swap entry so we don't
split hugepages with a full swap.

In theory we could split pages before isolating them during the lru scan,
but for khugepaged to be safe, I'm relying on either mmap_sem write mode,
or PG_lock taken, so split_huge_page has to run either with mmap_sem
read/write mode or PG_lock taken.  Calling it from isolate_lru_page would
make locking more complicated, in addition to that split_huge_page would
deadlock if called by __isolate_lru_page because it has to take the lru
lock to add the tail pages.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:41 -08:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from  to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Daisuke Nishimura
2ca4532a49 mm: add_to_swap_cache() does not return -EEXIST
After commit 355cfa73 ("mm: modify swap_map and add SWAP_HAS_CACHE flag"),
only the context which have set SWAP_HAS_CACHE flag by swapcache_prepare()
or get_swap_page() would call add_to_swap_cache().  So add_to_swap_cache()
doesn't return -EEXIST any more.

Even though it doesn't return -EEXIST, it's not good behavior conceptually
to call swapcache_prepare() in the -EEXIST case, because it means clearing
SWAP_HAS_CACHE flag while the entry is on swap cache.

This patch removes redundant codes and comments from callers of it, and
adds VM_BUG_ON() in error path of add_to_swap_cache() and some comments.

Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:35 -07:00
Daisuke Nishimura
31a5639623 mm: add_to_swap_cache() must not sleep
After commit 355cfa73 ("mm: modify swap_map and add SWAP_HAS_CACHE flag"),
read_swap_cache_async() will busy-wait while a entry doesn't exist in swap
cache but it has SWAP_HAS_CACHE flag.

Such entries can exist on add/delete path of swap cache.  On add path,
add_to_swap_cache() is called soon after SWAP_HAS_CACHE flag is set, and
on delete path, swapcache_free() will be called (SWAP_HAS_CACHE flag is
cleared) soon after __delete_from_swap_cache() is called.  So, the
busy-wait works well in most cases.

But this mechanism can cause soft lockup if add_to_swap_cache() sleeps and
read_swap_cache_async() tries to swap-in the same entry on the same cpu.

This patch calls radix_tree_preload() before swapcache_prepare() and
divides add_to_swap_cache() into two part: radix_tree_preload() part and
radix_tree_insert() part(define it as __add_to_swap_cache()).

Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:35 -07:00
Jens Axboe
d993831fa7 writeback: add name to backing_dev_info
This enables us to track who does what and print info. Its main use
is catching dirty inodes on the default_backing_dev_info, so we can
fix that up.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-11 09:20:26 +02:00
Minchan Kim
aca8bf323e mm: remove file argument from swap_readpage()
The file argument resulted from address_space's readpage long time ago.

We don't use it any more.  Let's remove unnecessary argement.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:44 -07:00
Minchan Kim
8192da6a88 mm: remove annotation of gfp_mask in add_to_swap
Hugh removed add_to_swap's gfp_mask argument.  (mm: remove gfp_mask from
add_to_swap) So we have to remove annotation of gfp_mask of the function.

Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:43 -07:00
KAMEZAWA Hiroyuki
355cfa73dd mm: modify swap_map and add SWAP_HAS_CACHE flag
This is a part of the patches for fixing memcg's swap accountinf leak.
But, IMHO, not a bad patch even if no memcg.

There are 2 kinds of references to swap.
 - reference from swap entry
 - reference from swap cache

Then,

 - If there is swap cache && swap's refcnt is 1, there is only swap cache.
  (*) swapcount(entry) == 1 && find_get_page(swapper_space, entry) != NULL

This counting logic have worked well for a long time.  But considering
that we cannot know there is a _real_ reference or not by swap_map[],
current usage of counter is not very good.

This patch adds a flag SWAP_HAS_CACHE and recored information that a swap
entry has a cache or not.  This will remove -1 magic used in swapfile.c
and be a help to avoid unnecessary find_get_page().

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:42 -07:00
KAMEZAWA Hiroyuki
cb4b86ba47 mm: add swap cache interface for swap reference
In a following patch, the usage of swap cache is recorded into swap_map.
This patch is for necessary interface changes to do that.

2 interfaces:

  - swapcache_prepare()
  - swapcache_free()

are added for allocating/freeing refcnt from swap-cache to existing swap
entries.  But implementation itself is not changed under this patch.  At
adding swapcache_free(), memcg's hook code is moved under
swapcache_free().  This is better than using scattered hooks.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:42 -07:00
Daisuke Nishimura
e767e0561d memcg: fix deadlock between lock_page_cgroup and mapping tree_lock
mapping->tree_lock can be acquired from interrupt context.  Then,
following dead lock can occur.

Assume "A" as a page.

 CPU0:
       lock_page_cgroup(A)
		interrupted
			-> take mapping->tree_lock.
 CPU1:
       take mapping->tree_lock
		-> lock_page_cgroup(A)

This patch tries to fix above deadlock by moving memcg's hook to out of
mapping->tree_lock.  charge/uncharge of pagecache/swapcache is protected
by page lock, not tree_lock.

After this patch, lock_page_cgroup() is not called under mapping->tree_lock.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-29 08:40:02 -07:00
KAMEZAWA Hiroyuki
8c7c6e34a1 memcg: mem+swap controller core
This patch implements per cgroup limit for usage of memory+swap.  However
there are SwapCache, double counting of swap-cache and swap-entry is
avoided.

Mem+Swap controller works as following.
  - memory usage is limited by memory.limit_in_bytes.
  - memory + swap usage is limited by memory.memsw_limit_in_bytes.

This has following benefits.
  - A user can limit total resource usage of mem+swap.

    Without this, because memory resource controller doesn't take care of
    usage of swap, a process can exhaust all the swap (by memory leak.)
    We can avoid this case.

    And Swap is shared resource but it cannot be reclaimed (goes back to memory)
    until it's used. This characteristic can be trouble when the memory
    is divided into some parts by cpuset or memcg.
    Assume group A and group B.
    After some application executes, the system can be..

    Group A -- very large free memory space but occupy 99% of swap.
    Group B -- under memory shortage but cannot use swap...it's nearly full.

    Ability to set appropriate swap limit for each group is required.

Maybe someone wonder "why not swap but mem+swap ?"

  - The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
    to move account from memory to swap...there is no change in usage of
    mem+swap.

    In other words, when we want to limit the usage of swap without affecting
    global LRU, mem+swap limit is better than just limiting swap.

Accounting target information is stored in swap_cgroup which is
per swap entry record.

Charge is done as following.
  map
    - charge  page and memsw.

  unmap
    - uncharge page/memsw if not SwapCache.

  swap-out (__delete_from_swap_cache)
    - uncharge page
    - record mem_cgroup information to swap_cgroup.

  swap-in (do_swap_page)
    - charged as page and memsw.
      record in swap_cgroup is cleared.
      memsw accounting is decremented.

  swap-free (swap_free())
    - if swap entry is freed, memsw is uncharged by PAGE_SIZE.

There are people work under never-swap environments and consider swap as
something bad. For such people, this mem+swap controller extension is just an
overhead.  This overhead is avoided by config or boot option.
(see Kconfig. detail is not in this patch.)

TODO:
 - maybe more optimization can be don in swap-in path. (but not very safe.)
   But we just do simple accounting at this stage.

[nishimura@mxp.nes.nec.co.jp: make resize limit hold mutex]
[hugh@veritas.com: memswap controller core swapcache fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:05 -08:00
KAMEZAWA Hiroyuki
d13d144309 memcg: handle swap caches
SwapCache support for memory resource controller (memcg)

Before mem+swap controller, memcg itself should handle SwapCache in proper
way.  This is cut-out from it.

In current memcg, SwapCache is just leaked and the user can create tons of
SwapCache.  This is a leak of account and should be handled.

SwapCache accounting is done as following.

  charge (anon)
	- charged when it's mapped.
	  (because of readahead, charge at add_to_swap_cache() is not sane)
  uncharge (anon)
	- uncharged when it's dropped from swapcache and fully unmapped.
	  means it's not uncharged at unmap.
	  Note: delete from swap cache at swap-in is done after rmap information
	        is established.
  charge (shmem)
	- charged at swap-in. this prevents charge at add_to_page_cache().

  uncharge (shmem)
	- uncharged when it's dropped from swapcache and not on shmem's
	  radix-tree.

  at migration, check against 'old page' is modified to handle shmem.

Comparing to the old version discussed (and caused troubles), we have
advantages of
  - PCG_USED bit.
  - simple migrating handling.

So, situation is much easier than several months ago, maybe.

[hugh@veritas.com: memcg: handle swap caches build fix]
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 08:31:05 -08:00
Hugh Dickins
ac47b003d0 mm: remove gfp_mask from add_to_swap
Remove gfp_mask argument from add_to_swap(): it's misleading because its
only caller, shrink_page_list(), is not atomic at that point; and in due
course (implementing discard) we'll sometimes want to allocate some memory
with GFP_NOIO (as is used in swap_writepage) when allocating swap.

No change to the gfp_mask passed down to add_to_swap_cache(): still use
__GFP_HIGH without __GFP_WAIT (with nomemalloc and nowarn as before):
though it's not obvious if that's the best combination to ask for here.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:04 -08:00
Hugh Dickins
a2c43eed83 mm: try_to_free_swap replaces remove_exclusive_swap_page
remove_exclusive_swap_page(): its problem is in living up to its name.

It doesn't matter if someone else has a reference to the page (raised
page_count); it doesn't matter if the page is mapped into userspace
(raised page_mapcount - though that hints it may be worth keeping the
swap): all that matters is that there be no more references to the swap
(and no writeback in progress).

swapoff (try_to_unuse) has been removing pages from swapcache for years,
with no concern for page count or page mapcount, and we used to have a
comment in lookup_swap_cache() recognizing that: if you go for a page of
swapcache, you'll get the right page, but it could have been removed from
swapcache by the time you get page lock.

So, give up asking for exclusivity: get rid of
remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and
remove_exclusive_swap_page_count() which were spawned for the recent LRU
work: replace them by the simpler try_to_free_swap() which just checks
page_swapcount().

Similarly, remove the page_count limitation from free_swap_and_count(),
but assume that it's worth holding on to the swap if page is mapped and
swap nowhere near full.  Add a vm_swap_full() test in free_swap_cache()?
It would be consistent, but I think we probably have enough for now.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:03 -08:00
Hugh Dickins
51726b1222 mm: replace some BUG_ONs by VM_BUG_ONs
The swap code is over-provisioned with BUG_ONs on assorted page flags,
mostly dating back to 2.3.  They're good documentation, and guard against
developer error, but a waste of space on most systems: change them to
VM_BUG_ONs, conditional on CONFIG_DEBUG_VM.  Just delete the PagePrivate
ones: they're later, from 2.5.69, but even less interesting now.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:02 -08:00
Nick Piggin
f45840b5c1 mm: pagecache insertion fewer atomics
Setting and clearing the page locked when inserting it into swapcache /
pagecache when it has no other references can use non-atomic page flags
operations because no other CPU may be operating on it at this time.

This saves one atomic operation when inserting a page into pagecache.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Rik van Riel
c5fdae469a vmscan: add newly swapped in pages to the inactive list
Swapin_readahead can read in a lot of data that the processes in memory
never need.  Adding swap cache pages to the inactive list prevents them
from putting too much pressure on the working set.

This has the potential to help the programs that are already in memory,
but it could also be a disadvantage to processes that are trying to get
swapped in.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Rik van Riel
4f98a2fee8 vmscan: split LRU lists into anon & file sets
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon").  The latter includes tmpfs.

The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.

This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists.  The big
policy changes are in separate patches.

[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Rik van Riel
b2e185384f define page_file_cache() function
Define page_file_cache() function to answer the question:
	is page backed by a file?

Originally part of Rik van Riel's split-lru patch.  Extracted to make
available for other, independent reclaim patches.

Moved inline function to linux/mm_inline.h where it will be needed by
subsequent "split LRU" and "noreclaim" patches.

Unfortunately this needs to use a page flag, since the PG_swapbacked state
needs to be preserved all the way to the point where the page is last
removed from the LRU.  Trying to derive the status from other info in the
page resulted in wrong VM statistics in earlier split VM patchsets.

The total number of page flags in use on a 32 bit machine after this patch
is 19.

[akpm@linux-foundation.org: fix up out-of-order merge fallout]
[hugh@veritas.com: splitlru: shmem_getpage SetPageSwapBacked sooner[
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Hugh Dickins
07279cdfd9 mm: show free swap as signed
Adjust <Alt><SysRq>m show_swap_cache_info() to show "Free swap" as a
signed long: the signed format is preferable, because during swapoff
nr_swap_pages can legitimately go negative, so makes more sense thus
(it used to be shown redundantly, once as signed and once as unsigned).

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-20 15:40:30 -07:00
Nick Piggin
529ae9aaa0 mm: rename page trylock
Converting page lock to new locking bitops requires a change of page flag
operation naming, so we might as well convert it to something nicer
(!TestSetPageLocked_Lock => trylock_page, SetPageLocked => set_page_locked).

This also facilitates lockdeping of page lock.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-04 21:31:34 -07:00
Johannes Weiner
2c97b7fc0d mm: print swapcache page count in show_swap_cache_info()
Every arch implements its own show_mem() function.  Most of them share
quite some code, some of them are completely identical.

This series implements a generic version of this function and migrates
almost all architectures to it.

This patch:

Most show_mem() implementations calculate the amount of pages within
the swapcache every time.  Move the output to a more appropriate place
and use the anyway available total_swapcache_pages variable.

Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Bryan Wu <cooloney@kernel.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:10 -07:00
Nick Piggin
19fd623127 mm: spinlock tree_lock
mapping->tree_lock has no read lockers.  convert the lock from an rwlock
to a spinlock.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:06 -07:00
Nick Piggin
e286781d5f mm: speculative page references
If we can be sure that elevating the page_count on a pagecache page will
pin it, we can speculatively run this operation, and subsequently check to
see if we hit the right page rather than relying on holding a lock or
otherwise pinning a reference to the page.

This can be done if get_page/put_page behaves consistently throughout the
whole tree (ie.  if we "get" the page after it has been used for something
else, we must be able to free it with a put_page).

Actually, there is a period where the count behaves differently: when the
page is free or if it is a constituent page of a compound page.  We need
an atomic_inc_not_zero operation to ensure we don't try to grab the page
in either case.

This patch introduces the core locking protocol to the pagecache (ie.
adds page_cache_get_speculative, and tweaks some update-side code to make
it work).

Thanks to Hugh for pointing out an improvement to the algorithm setting
page_count to zero when we have control of all references, in order to
hold off speculative getters.

[kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()]
[hugh@veritas.com: fix add_to_page_cache]
[akpm@linux-foundation.org: repair a comment]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:06 -07:00
Miklos Szeredi
e4ad08fe64 mm: bdi: add separate writeback accounting capability
Add a new BDI capability flag: BDI_CAP_NO_ACCT_WB.  If this flag is
set, then don't update the per-bdi writeback stats from
test_set_page_writeback() and test_clear_page_writeback().

Misc cleanups:

 - convert bdi_cap_writeback_dirty() and friends to static inline functions
 - create a flag that includes all three dirty/writeback related flags,
   since almst all users will want to have them toghether

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 08:29:50 -07:00
Randy Dunlap
7682486b3e mm: fix various kernel-doc comments
Fix various kernel-doc notation in mm/:

filemap.c: add function short description; convert 2 to kernel-doc
fremap.c: change parameter 'prot' to @prot
pagewalk.c: change "-" in function parameters to ":"
slab.c: fix short description of kmem_ptr_validate()
swap.c: fix description & parameters of put_pages_list()
swap_state.c: fix function parameters
vmalloc.c: change "@returns" to "Returns:" since that is not a parameter

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:35 -07:00
Hugh Dickins
fa1de9008c memcgroup: revert swap_state mods
If we're charging rss and we're charging cache, it seems obvious that we
should be charging swapcache - as has been done.  But in practice that
doesn't work out so well: both swapin readahead and swapoff leave the
majority of pages charged to the wrong cgroup (the cgroup that happened to
read them in, rather than the cgroup to which they belong).

(Which is why unuse_pte's GFP_KERNEL while holding pte lock never showed up
as a problem: no allocation was ever done there, every page read being
already charged to the cgroup which initiated the swapoff.)

It all works rather better if we leave the charging to do_swap_page and
unuse_pte, and do nothing for swapcache itself: revert mm/swap_state.c to
what it was before the memory-controller patches.  This also speeds up
significantly a contained process working at its limit: because it no
longer needs to keep waiting for swap writeback to complete.

Is it unfair that swap pages become uncharged once they're unmapped, even
though they're still clearly private to particular cgroups?  For a short
while, yes; but PageReclaim arranges for those pages to go to the end of
the inactive list and be reclaimed soon if necessary.

shmem/tmpfs pages are a distinct case: their charging also benefits from
this change, but their second life on the lists as swapcache pages may
prove more unfair - that I need to check next.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:20 -08:00
Balbir Singh
35c754d79f memory controller BUG_ON()
Move mem_controller_cache_charge() above radix_tree_preload().
radix_tree_preload() disables preemption, even though the gfp_mask passed
contains __GFP_WAIT, we cannot really do __GFP_WAIT allocations, thus we
hit a BUG_ON() in kmem_cache_alloc().

This patch moves mem_controller_cache_charge() to above radix_tree_preload()
for cache charging.

Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:19 -08:00
Balbir Singh
e1a1cd590e Memory controller: make charging gfp mask aware
Nick Piggin pointed out that swap cache and page cache addition routines
could be called from non GFP_KERNEL contexts.  This patch makes the
charging routine aware of the gfp context.  Charging might fail if the
cgroup is over it's limit, in which case a suitable error is returned.

This patch was tested on a Powerpc box.  I am still looking at being able
to test the path, through which allocations happen in non GFP_KERNEL
contexts.

[kamezawa.hiroyu@jp.fujitsu.com: problem with ZONE_MOVABLE]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:19 -08:00
Balbir Singh
8697d33194 Memory controller: add switch to control what type of pages to limit
Choose if we want cached pages to be accounted or not.  By default both are
accounted for.  A new set of tunables are added.

echo -n 1 > mem_control_type

switches the accounting to account for only mapped pages

echo -n 3 > mem_control_type

switches the behaviour back

[bunk@kernel.org: mm/memcontrol.c: clenups]
[akpm@linux-foundation.org: fix sparc32 build]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:19 -08:00
Balbir Singh
8a9f3ccd24 Memory controller: memory accounting
Add the accounting hooks.  The accounting is carried out for RSS and Page
Cache (unmapped) pages.  There is now a common limit and accounting for both.
The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap()
time.  Page cache is accounted at add_to_page_cache(),
__delete_from_page_cache().  Swap cache is also accounted for.

Each page's page_cgroup is protected with the last bit of the
page_cgroup pointer, this makes handling of race conditions involving
simultaneous mappings of a page easier.  A reference count is kept in the
page_cgroup to deal with cases where a page might be unmapped from the RSS
of all tasks, but still lives in the page cache.

Credits go to Vaidyanathan Srinivasan for helping with reference counting work
of the page cgroup.  Almost all of the page cache accounting code has help
from Vaidyanathan Srinivasan.

[hugh@veritas.com: fix swapoff breakage]
[akpm@linux-foundation.org: fix locking]
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: <Valdis.Kletnieks@vt.edu>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:18 -08:00
Nick Piggin
0ed361dec3 mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.

Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.

Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.

Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked.  Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.

Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such.  Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem.  Both file and anonymous pages are
handled with the same barriers.

FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.

Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.

Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:19 -08:00
Hugh Dickins
73b1262fa4 tmpfs: move swap swizzling into shmem
move_to_swap_cache and move_from_swap_cache functions (which swizzle a page
between tmpfs page cache and swap cache, to avoid page copying) are only used
by shmem.c; and our subsequent fix for unionfs needs different treatments in
the two instances of move_from_swap_cache.  Move them from swap_state.c into
their callsites shmem_writepage, shmem_unuse_inode and shmem_getpage, making
add_to_swap_cache externally visible.

shmem.c likes to say set_page_dirty where swap_state.c liked to say
SetPageDirty: respect that diversity, which __set_page_dirty_no_writeback
makes moot (and implies we should lose that "shift page from clean_pages to
dirty_pages list" comment: it's on neither).

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:15 -08:00
Hugh Dickins
f000944d03 tmpfs: shuffle add_to_swap_caches
add_to_swap_cache doesn't amount to much: merge it into its sole caller
read_swap_cache_async.  But we'll be needing to call __add_to_swap_cache from
shmem.c, so promote it to the new add_to_swap_cache.  Both were static, so
there's no interface confusion to worry about.

And lose that inappropriate "Anon pages are already on the LRU" comment in the
merging: they're not already on the LRU, as Nick Piggin noticed.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
No-problems-with: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:15 -08:00
Hugh Dickins
bb63be0a09 tmpfs: move swap_state stats update
Both unionfs and memcgroups pose challenges to tmpfs and shmem.  To help fix,
it's best to move the swap swizzling functions from swap_state.c to shmem.c.
As a preliminary to that, move swap stats updating down into
__add_to_swap_cache, which will remain internal to swap_state.c.

Well, actually, just move down the incrementation of add_total: remove
noent_race and exist_race completely, they are relics of my 2.4.11 testing.
Alt-SysRq-m users will be thrilled if 2.6.25 is at last free of "race M+N"s.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:15 -08:00
Hugh Dickins
02098feaa4 swapin needs gfp_mask for loop on tmpfs
Building in a filesystem on a loop device on a tmpfs file can hang when
swapping, the loop thread caught in that infamous throttle_vm_writeout.

In theory this is a long standing problem, which I've either never seen in
practice, or long ago suppressed the recollection, after discounting my load
and my tmpfs size as unrealistically high.  But now, with the new aops, it has
become easy to hang on one machine.

Loop used to grab_cache_page before the old prepare_write to tmpfs, which
seems to have been enough to free up some memory for any swapin needed; but
the new write_begin lets tmpfs find or allocate the page (much nicer, since
grab_cache_page missed tmpfs pages in swapcache).

When allocating a fresh page, tmpfs respects loop's mapping_gfp_mask, which
has __GFP_IO|__GFP_FS stripped off, and throttle_vm_writeout is designed to
break out when __GFP_IO or GFP_FS is unset; but when tmfps swaps in,
read_swap_cache_async allocates with GFP_HIGHUSER_MOVABLE regardless of the
mapping_gfp_mask - hence the hang.

So, pass gfp_mask down the line from shmem_getpage to shmem_swapin to
swapin_readahead to read_swap_cache_async to add_to_swap_cache.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:14 -08:00