a829a8445f
756 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
e34bac726d |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: - various misc bits - most of MM (quite a lot of MM material is awaiting the merge of linux-next dependencies) - kasan - printk updates - procfs updates - MAINTAINERS - /lib updates - checkpatch updates * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits) init: reduce rootwait polling interval time to 5ms binfmt_elf: use vmalloc() for allocation of vma_filesz checkpatch: don't emit unified-diff error for rename-only patches checkpatch: don't check c99 types like uint8_t under tools checkpatch: avoid multiple line dereferences checkpatch: don't check .pl files, improve absolute path commit log test scripts/checkpatch.pl: fix spelling checkpatch: don't try to get maintained status when --no-tree is given lib/ida: document locking requirements a bit better lib/rbtree.c: fix typo in comment of ____rb_erase_color lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM MAINTAINERS: add drm and drm/i915 irc channels MAINTAINERS: add "C:" for URI for chat where developers hang out MAINTAINERS: add drm and drm/i915 bug filing info MAINTAINERS: add "B:" for URI where to file bugs get_maintainer: look for arbitrary letter prefixes in sections printk: add Kconfig option to set default console loglevel printk/sound: handle more message headers printk/btrfs: handle more message headers printk/kdb: handle more message headers ... |
||
Linus Torvalds
|
e71c3978d6 |
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp hotplug updates from Thomas Gleixner: "This is the final round of converting the notifier mess to the state machine. The removal of the notifiers and the related infrastructure will happen around rc1, as there are conversions outstanding in other trees. The whole exercise removed about 2000 lines of code in total and in course of the conversion several dozen bugs got fixed. The new mechanism allows to test almost every hotplug step standalone, so usage sites can exercise all transitions extensively. There is more room for improvement, like integrating all the pointlessly different architecture mechanisms of synchronizing, setting cpus online etc into the core code" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits) tracing/rb: Init the CPU mask on allocation soc/fsl/qbman: Convert to hotplug state machine soc/fsl/qbman: Convert to hotplug state machine zram: Convert to hotplug state machine KVM/PPC/Book3S HV: Convert to hotplug state machine arm64/cpuinfo: Convert to hotplug state machine arm64/cpuinfo: Make hotplug notifier symmetric mm/compaction: Convert to hotplug state machine iommu/vt-d: Convert to hotplug state machine mm/zswap: Convert pool to hotplug state machine mm/zswap: Convert dst-mem to hotplug state machine mm/zsmalloc: Convert to hotplug state machine mm/vmstat: Convert to hotplug state machine mm/vmstat: Avoid on each online CPU loops mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead() tracing/rb: Convert to hotplug state machine oprofile/nmi timer: Convert to hotplug state machine net/iucv: Use explicit clean up labels in iucv_init() x86/pci/amd-bus: Convert to hotplug state machine x86/oprofile/nmi: Convert to hotplug state machine ... |
||
Shaohua Li
|
5f33a0803b |
mm/vmscan.c: set correct defer count for shrinker
Our system uses significantly more slab memory with memcg enabled with the latest kernel. With 3.10 kernel, slab uses 2G memory, while with 4.6 kernel, 6G memory is used. The shrinker has problem. Let's see we have two memcg for one shrinker. In do_shrink_slab: 1. Check cg1. nr_deferred = 0, assume total_scan = 700. batch size is 1024, then no memory is freed. nr_deferred = 700 2. Check cg2. nr_deferred = 700. Assume freeable = 20, then total_scan = 10 or 40. Let's assume it's 10. No memory is freed. nr_deferred = 10. The deferred share of cg1 is lost in this case. kswapd will free no memory even run above steps again and again. The fix makes sure one memcg's deferred share isn't lost. Link: http://lkml.kernel.org/r/2414be961b5d25892060315fbb56bb19d81d0c07.1476227351.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
bd041733c9 |
mm, vmscan: add cond_resched() into shrink_node_memcg()
Boris Zhmurov has reported RCU stalls during the kswapd reclaim: INFO: rcu_sched detected stalls on CPUs/tasks: 23-...: (22 ticks this GP) idle=92f/140000000000000/0 softirq=2638404/2638404 fqs=23 (detected by 4, t=6389 jiffies, g=786259, c=786258, q=42115) Task dump for CPU 23: kswapd1 R running task 0 148 2 0x00000008 Call Trace: shrink_node+0xd2/0x2f0 kswapd+0x2cb/0x6a0 mem_cgroup_shrink_node+0x160/0x160 kthread+0xbd/0xe0 __switch_to+0x1fa/0x5c0 ret_from_fork+0x1f/0x40 kthread_create_on_node+0x180/0x180 a closer code inspection has shown that we might indeed miss all the scheduling points in the reclaim path if no pages can be isolated from the LRU list. This is a pathological case but other reports from Donald Buczek have shown that we might indeed hit such a path: clusterd-989 [009] .... 118023.654491: mm_vmscan_direct_reclaim_end: nr_reclaimed=193 kswapd1-86 [001] dN.. 118023.987475: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239830 nr_taken=0 file=1 kswapd1-86 [001] dN.. 118024.320968: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239844 nr_taken=0 file=1 kswapd1-86 [001] dN.. 118024.654375: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239858 nr_taken=0 file=1 kswapd1-86 [001] dN.. 118024.987036: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239872 nr_taken=0 file=1 kswapd1-86 [001] dN.. 118025.319651: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239886 nr_taken=0 file=1 kswapd1-86 [001] dN.. 118025.652248: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239900 nr_taken=0 file=1 kswapd1-86 [001] dN.. 118025.984870: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239914 nr_taken=0 file=1 [...] kswapd1-86 [001] dN.. 118084.274403: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4241133 nr_taken=0 file=1 this is minute long snapshot which didn't take a single page from the LRU. It is not entirely clear why only 1303 pages have been scanned during that time (maybe there was a heavy IRQ activity interfering). In any case it looks like we can really hit long periods without scheduling on non preemptive kernels so an explicit cond_resched() in shrink_node_memcg which is independent on the reclaim operation is due. Link: http://lkml.kernel.org/r/20161202095841.16648-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Boris Zhmurov <bb@kernelpanic.ru> Tested-by: Boris Zhmurov <bb@kernelpanic.ru> Reported-by: Donald Buczek <buczek@molgen.mpg.de> Reported-by: "Christopher S. Aker" <caker@theshore.net> Reported-by: Paul Menzel <pmenzel@molgen.mpg.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
517bbed906 |
mm/vmscan: Convert to hotplug state machine
Install the callbacks via the state machine. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Cc: rt@linutronix.de Link: http://lkml.kernel.org/r/20161103145021.28528-8-bigeasy@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Johannes Weiner
|
89a2848381 |
mm: memcontrol: do not recurse in direct reclaim
On 4.0, we saw a stack corruption from a page fault entering direct memory cgroup reclaim, calling into btrfs_releasepage(), which then tried to allocate an extent and recursed back into a kmem charge ad nauseam: [...] btrfs_releasepage+0x2c/0x30 try_to_release_page+0x32/0x50 shrink_page_list+0x6da/0x7a0 shrink_inactive_list+0x1e5/0x510 shrink_lruvec+0x605/0x7f0 shrink_zone+0xee/0x320 do_try_to_free_pages+0x174/0x440 try_to_free_mem_cgroup_pages+0xa7/0x130 try_charge+0x17b/0x830 memcg_charge_kmem+0x40/0x80 new_slab+0x2d9/0x5a0 __slab_alloc+0x2fd/0x44f kmem_cache_alloc+0x193/0x1e0 alloc_extent_state+0x21/0xc0 __clear_extent_bit+0x2b5/0x400 try_release_extent_mapping+0x1a3/0x220 __btrfs_releasepage+0x31/0x70 btrfs_releasepage+0x2c/0x30 try_to_release_page+0x32/0x50 shrink_page_list+0x6da/0x7a0 shrink_inactive_list+0x1e5/0x510 shrink_lruvec+0x605/0x7f0 shrink_zone+0xee/0x320 do_try_to_free_pages+0x174/0x440 try_to_free_mem_cgroup_pages+0xa7/0x130 try_charge+0x17b/0x830 mem_cgroup_try_charge+0x65/0x1c0 handle_mm_fault+0x117f/0x1510 __do_page_fault+0x177/0x420 do_page_fault+0xc/0x10 page_fault+0x22/0x30 On later kernels, kmem charging is opt-in rather than opt-out, and that particular kmem allocation in btrfs_releasepage() is no longer being charged and won't recurse and overrun the stack anymore. But it's not impossible for an accounted allocation to happen from the memcg direct reclaim context, and we needed to reproduce this crash many times before we even got a useful stack trace out of it. Like other direct reclaimers, mark tasks in memcg reclaim PF_MEMALLOC to avoid recursing into any other form of direct reclaim. Then let recursive charges from PF_MEMALLOC contexts bypass the cgroup limit. Link: http://lkml.kernel.org/r/20161025141050.GA13019@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
c9634cf012 |
mm: use zonelist name instead of using hardcoded index
Use the existing enums instead of hardcoded index when looking at the zonelist. This makes it more readable. No functionality change by this patch. Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
bf48438354 |
mm, vmscan: get rid of throttle_vm_writeout
throttle_vm_writeout() was introduced back in 2005 to fix OOMs caused by excessive pageout activity during the reclaim. Too many pages could be put under writeback therefore LRUs would be full of unreclaimable pages until the IO completes and in turn the OOM killer could be invoked. There have been some important changes introduced since then in the reclaim path though. Writers are throttled by balance_dirty_pages when initiating the buffered IO and later during the memory pressure, the direct reclaim is throttled by wait_iff_congested if the node is considered congested by dirty pages on LRUs and the underlying bdi is congested by the queued IO. The kswapd is throttled as well if it encounters pages marked for immediate reclaim or under writeback which signals that that there are too many pages under writeback already. Finally should_reclaim_retry does congestion_wait if the reclaim cannot make any progress and there are too many dirty/writeback pages. Another important aspect is that we do not issue any IO from the direct reclaim context anymore. In a heavy parallel load this could queue a lot of IO which would be very scattered and thus unefficient which would just make the problem worse. This three mechanisms should throttle and keep the amount of IO in a steady state even under heavy IO and memory pressure so yet another throttling point doesn't really seem helpful. Quite contrary, Mikulas Patocka has reported that swap backed by dm-crypt doesn't work properly because the swapout IO cannot make sufficient progress as the writeout path depends on dm_crypt worker which has to allocate memory to perform the encryption. In order to guarantee a forward progress it relies on the mempool allocator. mempool_alloc(), however, prefers to use the underlying (usually page) allocator before it grabs objects from the pool. Such an allocation can dive into the memory reclaim and consequently to throttle_vm_writeout. If there are too many dirty or pages under writeback it will get throttled even though it is in fact a flusher to clear pending pages. kworker/u4:0 D ffff88003df7f438 10488 6 2 0x00000000 Workqueue: kcryptd kcryptd_crypt [dm_crypt] Call Trace: schedule+0x3c/0x90 schedule_timeout+0x1d8/0x360 io_schedule_timeout+0xa4/0x110 congestion_wait+0x86/0x1f0 throttle_vm_writeout+0x44/0xd0 shrink_zone_memcg+0x613/0x720 shrink_zone+0xe0/0x300 do_try_to_free_pages+0x1ad/0x450 try_to_free_pages+0xef/0x300 __alloc_pages_nodemask+0x879/0x1210 alloc_pages_current+0xa1/0x1f0 new_slab+0x2d7/0x6a0 ___slab_alloc+0x3fb/0x5c0 __slab_alloc+0x51/0x90 kmem_cache_alloc+0x27b/0x310 mempool_alloc_slab+0x1d/0x30 mempool_alloc+0x91/0x230 bio_alloc_bioset+0xbd/0x260 kcryptd_crypt+0x114/0x3b0 [dm_crypt] Let's just drop throttle_vm_writeout altogether. It is not very much helpful anymore. I have tried to test a potential writeback IO runaway similar to the one described in the original patch which has introduced that [1]. Small virtual machine (512MB RAM, 4 CPUs, 2G of swap space and disk image on a rather slow NFS in a sync mode on the host) with 8 parallel writers each writing 1G worth of data. As soon as the pagecache fills up and the direct reclaim hits then I start anon memory consumer in a loop (allocating 300M and exiting after populating it) in the background to make the memory pressure even stronger as well as to disrupt the steady state for the IO. The direct reclaim is throttled because of the congestion as well as kswapd hitting congestion_wait due to nr_immediate but throttle_vm_writeout doesn't ever trigger the sleep throughout the test. Dirty+writeback are close to nr_dirty_threshold with some fluctuations caused by the anon consumer. [1] https://www2.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.9-rc1/2.6.9-rc1-mm3/broken-out/vm-pageout-throttling.patch Link: http://lkml.kernel.org/r/1471171473-21418-1-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Mikulas Patocka <mpatocka@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: NeilBrown <neilb@suse.com> Cc: Ondrej Kozina <okozina@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
fdd4c6149a |
mm, vmscan: make compaction_ready() more accurate and readable
The compaction_ready() is used during direct reclaim for costly order allocations to skip reclaim for zones where compaction should be attempted instead. It's combining the standard compaction_suitable() check with its own watermark check based on high watermark with extra gap, and the result is confusing at best. This patch attempts to better structure and document the checks involved. First, compaction_suitable() can determine that the allocation should either succeed already, or that compaction doesn't have enough free pages to proceed. The third possibility is that compaction has enough free pages, but we still decide to reclaim first - unless we are already above the high watermark with gap. This does not mean that the reclaim will actually reach this watermark during single attempt, this is rather an over-reclaim protection. So document the code as such. The check for compaction_deferred() is removed completely, as it in fact had no proper role here. The result after this patch is mainly a less confusing code. We also skip some over-reclaim in cases where the allocation should already succed. Link: http://lkml.kernel.org/r/20160810091226.6709-12-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
9861a62c33 |
mm, compaction: create compact_gap wrapper
Compaction uses a watermark gap of (2UL << order) pages at various places and it's not immediately obvious why. Abstract it through a compact_gap() wrapper to create a single place with a thorough explanation. [vbabka@suse.cz: clarify the comment of compact_gap()] Link: http://lkml.kernel.org/r/7b6aed1f-fdf8-2063-9ff4-bbe4de712d37@suse.cz Link: http://lkml.kernel.org/r/20160810091226.6709-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
cf378319d3 |
mm, compaction: rename COMPACT_PARTIAL to COMPACT_SUCCESS
COMPACT_PARTIAL has historically meant that compaction returned after doing some work without fully compacting a zone. It however didn't distinguish if compaction terminated because it succeeded in creating the requested high-order page. This has changed recently and now we only return COMPACT_PARTIAL when compaction thinks it succeeded, or the high-order watermark check in compaction_suitable() passes and no compaction needs to be done. So at this point we can make the return value clearer by renaming it to COMPACT_SUCCESS. The next patch will remove some redundant tests for success where compaction just returned COMPACT_SUCCESS. Link: http://lkml.kernel.org/r/20160810091226.6709-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
b385d21f27 |
mm: delete unnecessary and unsafe init_tlb_ubc()
init_tlb_ubc() looked unnecessary to me: tlb_ubc is statically
initialized with zeroes in the init_task, and copied from parent to
child while it is quiescent in arch_dup_task_struct(); so I went to
delete it.
But inserted temporary debug WARN_ONs in place of init_tlb_ubc() to
check that it was always empty at that point, and found them firing:
because memcg reclaim can recurse into global reclaim (when allocating
biosets for swapout in my case), and arrive back at the init_tlb_ubc()
in shrink_node_memcg().
Resetting tlb_ubc.flush_required at that point is wrong: if the upper
level needs a deferred TLB flush, but the lower level turns out not to,
we miss a TLB flush. But fortunately, that's the only part of the
protocol that does not nest: with the initialization removed, cpumask
collects bits from upper and lower levels, and flushes TLB when needed.
Fixes:
|
||
Mel Gorman
|
6aa303defb |
mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator
Firmware Assisted Dump (FA_DUMP) on ppc64 reserves substantial amounts
of memory when booting a secondary kernel. Srikar Dronamraju reported
that multiple nodes may have no memory managed by the buddy allocator
but still return true for populated_zone().
Commit
|
||
Vladimir Davydov
|
b5afba2974 |
mm: vmscan: fix memcg-aware shrinkers not called on global reclaim
We must call shrink_slab() for each memory cgroup on both global and
memcg reclaim in shrink_node_memcg(). Commit d71df22b55099 accidentally
changed that so that now shrink_slab() is only called with memcg != NULL
on memcg reclaim. As a result, memcg-aware shrinkers (including
dentry/inode) are never invoked on global reclaim. Fix that.
Fixes:
|
||
Minchan Kim
|
91dcade47a |
mm: bail out in shrink_inactive_list()
With node-lru, if there are enough reclaimable pages in highmem but nothing in lowmem, VM can try to shrink inactive list although the requested zone is lowmem. The problem is that if the inactive list is full of highmem pages then a direct reclaimer searching for a lowmem page waste CPU scanning uselessly. It just burns out CPU. Even, many direct reclaimers are stalled by too_many_isolated if lots of parallel reclaimer are going on although there are no reclaimable memory in inactive list. I tried the experiment 4 times in 32bit 2G 8 CPU KVM machine to get elapsed time. hackbench 500 process 2 = Old = 1st: 289s 2nd: 310s 3rd: 112s 4th: 272s = Now = 1st: 31s 2nd: 132s 3rd: 162s 4th: 50s. [akpm@linux-foundation.org: fixes per Mel] Link: http://lkml.kernel.org/r/1469433119-1543-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d7f05528ee |
mm, vmscan: account for skipped pages as a partial scan
Page reclaim determines whether a pgdat is unreclaimable by examining how many pages have been scanned since a page was freed and comparing that to the LRU sizes. Skipped pages are not reclaim candidates but contribute to scanned. This can prematurely mark a pgdat as unreclaimable and trigger an OOM kill. This patch accounts for skipped pages as a partial scan so that an unreclaimable pgdat will still be marked as such but by scaling the cost of a skip, it'll avoid the pgdat being marked prematurely. Link: http://lkml.kernel.org/r/1469110261-7365-6-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
f8d1a31163 |
mm: consider whether to decivate based on eligible zones inactive ratio
Minchan Kim reported that with per-zone lru state it was possible to identify that a normal zone with 8^M anonymous pages could trigger OOM with non-atomic order-0 allocations as all pages in the zone were in the active list. gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 Call Trace: __alloc_pages_nodemask+0xe52/0xe60 ? new_slab+0x39c/0x3b0 new_slab+0x39c/0x3b0 ___slab_alloc.constprop.87+0x6da/0x840 ? __alloc_skb+0x3c/0x260 ? enqueue_task_fair+0x73/0xbf0 ? poll_select_copy_remaining+0x140/0x140 __slab_alloc.isra.81.constprop.86+0x40/0x6d ? __alloc_skb+0x3c/0x260 kmem_cache_alloc+0x22c/0x260 ? __alloc_skb+0x3c/0x260 __alloc_skb+0x3c/0x260 alloc_skb_with_frags+0x4e/0x1a0 sock_alloc_send_pskb+0x16a/0x1b0 ? wait_for_unix_gc+0x31/0x90 unix_stream_sendmsg+0x28d/0x340 sock_sendmsg+0x2d/0x40 sock_write_iter+0x6c/0xc0 __vfs_write+0xc0/0x120 vfs_write+0x9b/0x1a0 ? __might_fault+0x49/0xa0 SyS_write+0x44/0x90 do_fast_syscall_32+0xa6/0x1e0 Mem-Info: active_anon:101103 inactive_anon:102219 isolated_anon:0 active_file:503 inactive_file:544 isolated_file:0 unevictable:0 dirty:0 writeback:34 unstable:0 slab_reclaimable:6298 slab_unreclaimable:74669 mapped:863 shmem:0 pagetables:100998 bounce:0 free:23573 free_pcp:1861 free_cma:0 Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 54409 total pagecache pages 53215 pages in swap cache Swap cache stats: add 300982, delete 247765, find 157978/226539 Free swap = 3803244kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9642 pages reserved 0 pages cma reserved The problem is due to the active deactivation logic in inactive_list_is_low: Node 0 active_anon:404412kB inactive_anon:409040kB IOW, (inactive_anon of node * inactive_ratio > active_anon of node) due to highmem anonymous stat so VM never deactivates normal zone's anonymous pages. This patch is a modified version of Minchan's original solution but based upon it. The problem with Minchan's patch is that any low zone with an imbalanced list could force a rotation. In this patch, a zone-constrained global reclaim will rotate the list if the inactive/active ratio of all eligible zones needs to be corrected. It is possible that higher zone pages will be initially rotated prematurely but this is the safer choice to maintain overall LRU age. Link: http://lkml.kernel.org/r/20160722090929.GJ10438@techsingularity.net Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5a1c84b404 |
mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point approximating whether reclaim and compaction should retry based on pgdat statistics. This is effectively a revert of "mm, vmstat: remove zone and node double accounting by approximating retries" with the difference that inactive/active stats are still available. This preserves the history of why the approximation was retried and why it had to be reverted to handle OOM kills on 32-bit systems. Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
71c799f498 |
mm: add per-zone lru list stat
When I did stress test with hackbench, I got OOM message frequently which didn't ever happen in zone-lru. gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 .. .. __alloc_pages_nodemask+0xe52/0xe60 ? new_slab+0x39c/0x3b0 new_slab+0x39c/0x3b0 ___slab_alloc.constprop.87+0x6da/0x840 ? __alloc_skb+0x3c/0x260 ? _raw_spin_unlock_irq+0x27/0x60 ? trace_hardirqs_on_caller+0xec/0x1b0 ? finish_task_switch+0xa6/0x220 ? poll_select_copy_remaining+0x140/0x140 __slab_alloc.isra.81.constprop.86+0x40/0x6d ? __alloc_skb+0x3c/0x260 kmem_cache_alloc+0x22c/0x260 ? __alloc_skb+0x3c/0x260 __alloc_skb+0x3c/0x260 alloc_skb_with_frags+0x4e/0x1a0 sock_alloc_send_pskb+0x16a/0x1b0 ? wait_for_unix_gc+0x31/0x90 ? alloc_set_pte+0x2ad/0x310 unix_stream_sendmsg+0x28d/0x340 sock_sendmsg+0x2d/0x40 sock_write_iter+0x6c/0xc0 __vfs_write+0xc0/0x120 vfs_write+0x9b/0x1a0 ? __might_fault+0x49/0xa0 SyS_write+0x44/0x90 do_fast_syscall_32+0xa6/0x1e0 sysenter_past_esp+0x45/0x74 Mem-Info: active_anon:104698 inactive_anon:105791 isolated_anon:192 active_file:433 inactive_file:283 isolated_file:22 unevictable:0 dirty:0 writeback:296 unstable:0 slab_reclaimable:6389 slab_unreclaimable:78927 mapped:474 shmem:0 pagetables:101426 bounce:0 free:10518 free_pcp:334 free_cma:0 Node 0 active_anon:418792kB inactive_anon:423164kB active_file:1732kB inactive_file:1132kB unevictable:0kB isolated(anon):768kB isolated(file):88kB mapped:1896kB dirty:0kB writeback:1184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1478632 all_unreclaimable? yes DMA free:3304kB min:68kB low:84kB high:100kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:4088kB kernel_stack:0kB pagetables:2480kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3436kB min:3604kB low:4504kB high:5404kB present:897016kB managed:858460kB mlocked:0kB slab_reclaimable:25556kB slab_unreclaimable:311712kB kernel_stack:164608kB pagetables:30844kB bounce:0kB free_pcp:620kB local_pcp:104kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:33808kB min:512kB low:1796kB high:3080kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:372252kB bounce:0kB free_pcp:428kB local_pcp:72kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 2*4kB (UM) 2*8kB (UM) 0*16kB 1*32kB (U) 1*64kB (U) 2*128kB (UM) 1*256kB (U) 1*512kB (M) 0*1024kB 1*2048kB (U) 0*4096kB = 3192kB Normal: 33*4kB (MH) 79*8kB (ME) 11*16kB (M) 4*32kB (M) 2*64kB (ME) 2*128kB (EH) 7*256kB (EH) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3244kB HighMem: 2590*4kB (UM) 1568*8kB (UM) 491*16kB (UM) 60*32kB (UM) 6*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 33064kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 25121 total pagecache pages 24160 pages in swap cache Swap cache stats: add 86371, delete 62211, find 42865/60187 Free swap = 4015560kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9658 pages reserved 0 pages cma reserved The order-0 allocation for normal zone failed while there are a lot of reclaimable memory(i.e., anonymous memory with free swap). I wanted to analyze the problem but it was hard because we removed per-zone lru stat so I couldn't know how many of anonymous memory there are in normal/dma zone. When we investigate OOM problem, reclaimable memory count is crucial stat to find a problem. Without it, it's hard to parse the OOM message so I believe we should keep it. With per-zone lru stat, gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 Mem-Info: active_anon:101103 inactive_anon:102219 isolated_anon:0 active_file:503 inactive_file:544 isolated_file:0 unevictable:0 dirty:0 writeback:34 unstable:0 slab_reclaimable:6298 slab_unreclaimable:74669 mapped:863 shmem:0 pagetables:100998 bounce:0 free:23573 free_pcp:1861 free_cma:0 Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 54409 total pagecache pages 53215 pages in swap cache Swap cache stats: add 300982, delete 247765, find 157978/226539 Free swap = 3803244kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9642 pages reserved 0 pages cma reserved With that, we can see normal zone has a 86M reclaimable memory so we can know something goes wrong(I will fix the problem in next patch) in reclaim. [mgorman@techsingularity.net: rename zone LRU stats in /proc/vmstat] Link: http://lkml.kernel.org/r/20160725072300.GK10438@techsingularity.net Link: http://lkml.kernel.org/r/1469110261-7365-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
785b99febb |
mm, vmscan: release/reacquire lru_lock on pgdat change
With node-lru, the locking is based on the pgdat. As Minchan pointed out, there is an opportunity to reduce LRU lock release/acquire in check_move_unevictable_pages by only changing lock on a pgdat change. [mgorman@techsingularity.net: remove double initialisation] Link: http://lkml.kernel.org/r/20160719074835.GC10438@techsingularity.net Link: http://lkml.kernel.org/r/1468853426-12858-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
22fecdf5e1 |
mm, vmscan: remove redundant check in shrink_zones()
As pointed out by Minchan Kim, shrink_zones() checks for populated zones in a zonelist but a zonelist can never contain unpopulated zones. While it's not related to the node-lru series, it can be cleaned up now. Link: http://lkml.kernel.org/r/1468853426-12858-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Suggested-by: Minchan Kim <minchan@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
7ee36a14f0 |
mm, vmscan: Update all zone LRU sizes before updating memcg
Minchan Kim reported setting the following warning on a 32-bit system although it can affect 64-bit systems. WARNING: CPU: 4 PID: 1322 at mm/memcontrol.c:998 mem_cgroup_update_lru_size+0x103/0x110 mem_cgroup_update_lru_size(f44b4000, 1, -7): zid 1 lru_size 1 but empty Modules linked in: CPU: 4 PID: 1322 Comm: cp Not tainted 4.7.0-rc4-mm1+ #143 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: dump_stack+0x76/0xaf __warn+0xea/0x110 ? mem_cgroup_update_lru_size+0x103/0x110 warn_slowpath_fmt+0x3b/0x40 mem_cgroup_update_lru_size+0x103/0x110 isolate_lru_pages.isra.61+0x2e2/0x360 shrink_active_list+0xac/0x2a0 ? __delay+0xe/0x10 shrink_node_memcg+0x53c/0x7a0 shrink_node+0xab/0x2a0 do_try_to_free_pages+0xc6/0x390 try_to_free_pages+0x245/0x590 LRU list contents and counts are updated separately. Counts are updated before pages are added to the LRU and updated after pages are removed. The warning above is from a check in mem_cgroup_update_lru_size that ensures that list sizes of zero are empty. The problem is that node-lru needs to account for highmem pages if CONFIG_HIGHMEM is set. One impact of the implementation is that the sizes are updated in multiple passes when pages from multiple zones were isolated. This happens whether HIGHMEM is set or not. When multiple zones are isolated, it's possible for a debugging check in memcg to be tripped. This patch forces all the zone counts to be updated before the memcg function is called. Link: http://lkml.kernel.org/r/1468588165-12461-6-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Tested-by: Minchan Kim <minchan@kernel.org> Reported-by: Minchan Kim <minchan@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
bca6759258 |
mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.
Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
|
||
Mel Gorman
|
7cc30fcfd2 |
mm: vmstat: account per-zone stalls and pages skipped during reclaim
The vmstat allocstall was fairly useful in the general sense but node-based LRUs change that. It's important to know if a stall was for an address-limited allocation request as this will require skipping pages from other zones. This patch adds pgstall_* counters to replace allocstall. The sum of the counters will equal the old allocstall so it can be trivially recalculated. A high number of address-limited allocation requests may result in a lot of useless LRU scanning for suitable pages. As address-limited allocations require pages to be skipped, it's important to know how much useless LRU scanning took place so this patch adds pgskip* counters. This yields the following model 1. The number of address-space limited stalls can be accounted for (pgstall) 2. The amount of useless work required to reclaim the data is accounted (pgskip) 3. The total number of scans is available from pgscan_kswapd and pgscan_direct so from that the ratio of useful to useless scans can be calculated. [mgorman@techsingularity.net: s/pgstall/allocstall/] Link: http://lkml.kernel.org/r/1468404004-5085-3-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-33-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e5146b12e2 |
mm, vmscan: add classzone information to tracepoints
This is convenient when tracking down why the skip count is high because it'll show what classzone kswapd woke up at and what zones are being isolated. Link: http://lkml.kernel.org/r/1467970510-21195-29-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
84c7a7771f |
mm, vmscan: Have kswapd reclaim from all zones if reclaiming and buffer_heads_over_limit
The buffer_heads_over_limit limit in kswapd is inconsistent with direct reclaim behaviour. It may force an an attempt to reclaim from all zones and then not reclaim at all because higher zones were balanced than required by the original request. This patch will causes kswapd to consider reclaiming from all zones if buffer_heads_over_limit. However, if there are eligible zones for the allocation request that woke kswapd then no reclaim will occur even if buffer_heads_over_limit. This avoids kswapd over-reclaiming just because buffer_heads_over_limit. [mgorman@techsingularity.net: fix comment about buffer_heads_over_limit] Link: http://lkml.kernel.org/r/1468404004-5085-2-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-28-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d9f21d426d |
mm, vmscan: avoid passing in `remaining' unnecessarily to prepare_kswapd_sleep()
As pointed out by Minchan Kim, the first call to prepare_kswapd_sleep() always passes in 0 for `remaining' and the second call can trivially check the parameter in advance. Suggested-by: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1467970510-21195-27-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
4f588331bd |
mm, vmscan: avoid passing in classzone_idx unnecessarily to compaction_ready
The scan_control structure has enough information available for compaction_ready() to make a decision. The classzone_idx manipulations in shrink_zones() are no longer necessary as the highest populated zone is no longer used to determine if shrink_slab should be called or not. [mgorman@techsingularity.net remove redundant check in shrink_zones()] Link: http://lkml.kernel.org/r/1468588165-12461-3-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-26-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
970a39a363 |
mm, vmscan: avoid passing in classzone_idx unnecessarily to shrink_node
shrink_node receives all information it needs about classzone_idx from sc->reclaim_idx so remove the aliases. Link: http://lkml.kernel.org/r/1467970510-21195-25-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a5f5f91da6 |
mm: convert zone_reclaim to node_reclaim
As reclaim is now per-node based, convert zone_reclaim to be node_reclaim. It is possible that a node will be reclaimed multiple times if it has multiple zones but this is unavoidable without caching all nodes traversed so far. The documentation and interface to userspace is the same from a configuration perspective and will will be similar in behaviour unless the node-local allocation requests were also limited to lower zones. Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e1a556374a |
mm, vmscan: only wakeup kswapd once per node for the requested classzone
kswapd is woken when zones are below the low watermark but the wakeup decision is not taking the classzone into account. Now that reclaim is node-based, it is only required to wake kswapd once per node and only if all zones are unbalanced for the requested classzone. Note that one node might be checked multiple times if the zonelist is ordered by node because there is no cheap way of tracking what nodes have already been visited. For zone-ordering, each node should be checked only once. Link: http://lkml.kernel.org/r/1467970510-21195-22-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c4a25635b6 |
mm: move vmscan writes and file write accounting to the node
As reclaim is now node-based, it follows that page write activity due to page reclaim should also be accounted for on the node. For consistency, also account page writes and page dirtying on a per-node basis. After this patch, there are a few remaining zone counters that may appear strange but are fine. NUMA stats are still per-zone as this is a user-space interface that tools consume. NR_MLOCK, NR_SLAB_*, NR_PAGETABLE, NR_KERNEL_STACK and NR_BOUNCE are all allocations that potentially pin low memory and cannot trivially be reclaimed on demand. This information is still useful for debugging a page allocation failure warning. Link: http://lkml.kernel.org/r/1467970510-21195-21-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
11fb998986 |
mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
50658e2e04 |
mm: move page mapped accounting to the node
Reclaim makes decisions based on the number of pages that are mapped but it's mixing node and zone information. Account NR_FILE_MAPPED and NR_ANON_PAGES pages on the node. Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
ef8f232799 |
mm, memcg: move memcg limit enforcement from zones to nodes
Memcg needs adjustment after moving LRUs to the node. Limits are tracked per memcg but the soft-limit excess is tracked per zone. As global page reclaim is based on the node, it is easy to imagine a situation where a zone soft limit is exceeded even though the memcg limit is fine. This patch moves the soft limit tree the node. Technically, all the variable names should also change but people are already familiar by the meaning of "mz" even if "mn" would be a more appropriate name now. Link: http://lkml.kernel.org/r/1467970510-21195-15-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a9dd0a8310 |
mm, vmscan: make shrink_node decisions more node-centric
Earlier patches focused on having direct reclaim and kswapd use data that is node-centric for reclaiming but shrink_node() itself still uses too much zone information. This patch removes unnecessary zone-based information with the most important decision being whether to continue reclaim or not. Some memcg APIs are adjusted as a result even though memcg itself still uses some zone information. [mgorman@techsingularity.net: optimization] Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
86c79f6b54 |
mm: vmscan: do not reclaim from kswapd if there is any eligible zone
kswapd scans from highest to lowest for a zone that requires balancing. This was necessary when reclaim was per-zone to fairly age pages on lower zones. Now that we are reclaiming on a per-node basis, any eligible zone can be used and pages will still be aged fairly. This patch avoids reclaiming excessively unless buffer_heads are over the limit and it's necessary to reclaim from a higher zone than requested by the waker of kswapd to relieve low memory pressure. [hillf.zj@alibaba-inc.com: Force kswapd reclaim no more than needed] Link: http://lkml.kernel.org/r/1466518566-30034-12-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-13-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
6256c6b499 |
mm, vmscan: remove duplicate logic clearing node congestion and dirty state
Reclaim may stall if there is too much dirty or congested data on a node. This was previously based on zone flags and the logic for clearing the flags is in two places. As congestion/dirty tracking is now tracked on a per-node basis, we can remove some duplicate logic. Link: http://lkml.kernel.org/r/1467970510-21195-12-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
79dafcdca3 |
mm, vmscan: by default have direct reclaim only shrink once per node
Direct reclaim iterates over all zones in the zonelist and shrinking them but this is in conflict with node-based reclaim. In the default case, only shrink once per node. Link: http://lkml.kernel.org/r/1467970510-21195-11-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
38087d9b03 |
mm, vmscan: simplify the logic deciding whether kswapd sleeps
kswapd goes through some complex steps trying to figure out if it should stay awake based on the classzone_idx and the requested order. It is unnecessarily complex and passes in an invalid classzone_idx to balance_pgdat(). What matters most of all is whether a larger order has been requsted and whether kswapd successfully reclaimed at the previous order. This patch irons out the logic to check just that and the end result is less headache inducing. Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
31483b6ad2 |
mm, vmscan: remove balance gap
The balance gap was introduced to apply equal pressure to all zones when reclaiming for a higher zone. With node-based LRU, the need for the balance gap is removed and the code is dead so remove it. [vbabka@suse.cz: Also remove KSWAPD_ZONE_BALANCE_GAP_RATIO] Link: http://lkml.kernel.org/r/1467970510-21195-9-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
1d82de618d |
mm, vmscan: make kswapd reclaim in terms of nodes
Patch "mm: vmscan: Begin reclaiming pages on a per-node basis" started thinking of reclaim in terms of nodes but kswapd is still zone-centric. This patch gets rid of many of the node-based versus zone-based decisions. o A node is considered balanced when any eligible lower zone is balanced. This eliminates one class of age-inversion problem because we avoid reclaiming a newer page just because it's in the wrong zone o pgdat_balanced disappears because we now only care about one zone being balanced. o Some anomalies related to writeback and congestion tracking being based on zones disappear. o kswapd no longer has to take care to reclaim zones in the reverse order that the page allocator uses. o Most importantly of all, reclaim from node 0 with multiple zones will have similar aging and reclaiming characteristics as every other node. Link: http://lkml.kernel.org/r/1467970510-21195-8-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
f7b60926eb |
mm, vmscan: have kswapd only scan based on the highest requested zone
kswapd checks all eligible zones to see if they need balancing even if it was woken for a lower zone. This made sense when we reclaimed on a per-zone basis because we wanted to shrink zones fairly so avoid age-inversion problems. Ideally this is completely unnecessary when reclaiming on a per-node basis. In theory, there may still be anomalies when all requests are for lower zones and very old pages are preserved in higher zones but this should be the exceptional case. Link: http://lkml.kernel.org/r/1467970510-21195-7-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
b2e18757f2 |
mm, vmscan: begin reclaiming pages on a per-node basis
This patch makes reclaim decisions on a per-node basis. A reclaimer knows what zone is required by the allocation request and skips pages from higher zones. In many cases this will be ok because it's a GFP_HIGHMEM request of some description. On 64-bit, ZONE_DMA32 requests will cause some problems but 32-bit devices on 64-bit platforms are increasingly rare. Historically it would have been a major problem on 32-bit with big Highmem:Lowmem ratios but such configurations are also now rare and even where they exist, they are not encouraged. If it really becomes a problem, it'll manifest as very low reclaim efficiencies. Link: http://lkml.kernel.org/r/1467970510-21195-6-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a52633d8e9 |
mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
7751b2da6b |
vmscan: split file huge pages before paging them out
This is preparation of vmscan for file huge pages. We cannot write out huge pages, so we need to split them on the way out. Link: http://lkml.kernel.org/r/1466021202-61880-22-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
b1123ea6d3 |
mm: balloon: use general non-lru movable page feature
Now, VM has a feature to migrate non-lru movable pages so balloon doesn't need custom migration hooks in migrate.c and compaction.c. Instead, this patch implements the page->mapping->a_ops-> {isolate|migrate|putback} functions. With that, we could remove hooks for ballooning in general migration functions and make balloon compaction simple. [akpm@linux-foundation.org: compaction.h requires that the includer first include node.h] Link: http://lkml.kernel.org/r/1464736881-24886-4-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rafael Aquini <aquini@redhat.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
0a0337e0d1 |
mm, oom: rework oom detection
__alloc_pages_slowpath has traditionally relied on the direct reclaim and did_some_progress as an indicator that it makes sense to retry allocation rather than declaring OOM. shrink_zones had to rely on zone_reclaimable if shrink_zone didn't make any progress to prevent from a premature OOM killer invocation - the LRU might be full of dirty or writeback pages and direct reclaim cannot clean those up. zone_reclaimable allows to rescan the reclaimable lists several times and restart if a page is freed. This is really subtle behavior and it might lead to a livelock when a single freed page keeps allocator looping but the current task will not be able to allocate that single page. OOM killer would be more appropriate than looping without any progress for unbounded amount of time. This patch changes OOM detection logic and pulls it out from shrink_zone which is too low to be appropriate for any high level decisions such as OOM which is per zonelist property. It is __alloc_pages_slowpath which knows how many attempts have been done and what was the progress so far therefore it is more appropriate to implement this logic. The new heuristic is implemented in should_reclaim_retry helper called from __alloc_pages_slowpath. It tries to be more deterministic and easier to follow. It builds on an assumption that retrying makes sense only if the currently reclaimable memory + free pages would allow the current allocation request to succeed (as per __zone_watermark_ok) at least for one zone in the usable zonelist. This alone wouldn't be sufficient, though, because the writeback might get stuck and reclaimable pages might be pinned for a really long time or even depend on the current allocation context. Therefore there is a backoff mechanism implemented which reduces the reclaim target after each reclaim round without any progress. This means that we should eventually converge to only NR_FREE_PAGES as the target and fail on the wmark check and proceed to OOM. The backoff is simple and linear with 1/16 of the reclaimable pages for each round without any progress. We are optimistic and reset counter for successful reclaim rounds. Costly high order pages mostly preserve their semantic and those without __GFP_REPEAT fail right away while those which have the flag set will back off after the amount of reclaimable pages reaches equivalent of the requested order. The only difference is that if there was no progress during the reclaim we rely on zone watermark check. This is more logical thing to do than previous 1<<order attempts which were a result of zone_reclaimable faking the progress. [vdavydov@virtuozzo.com: check classzone_idx for shrink_zone] [hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry] [rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES] [rientjes@google.com: shrink_zones doesn't need to return anything] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
b6459cc154 |
vmscan: consider classzone_idx in compaction_ready
Motivation: As pointed out by Linus [2][3] relying on zone_reclaimable as a way to communicate the reclaim progress is rater dubious. I tend to agree, not only it is really obscure, it is not hard to imagine cases where a single page freed in the loop keeps all the reclaimers looping without getting any progress because their gfp_mask wouldn't allow to get that page anyway (e.g. single GFP_ATOMIC alloc and free loop). This is rather rare so it doesn't happen in the practice but the current logic which we have is rather obscure and hard to follow a also non-deterministic. This is an attempt to make the OOM detection more deterministic and easier to follow because each reclaimer basically tracks its own progress which is implemented at the page allocator layer rather spread out between the allocator and the reclaim. The more on the implementation is described in the first patch. I have tested several different scenarios but it should be clear that testing OOM killer is quite hard to be representative. There is usually a tiny gap between almost OOM and full blown OOM which is often time sensitive. Anyway, I have tested the following 2 scenarios and I would appreciate if there are more to test. Testing environment: a virtual machine with 2G of RAM and 2CPUs without any swap to make the OOM more deterministic. 1) 2 writers (each doing dd with 4M blocks to an xfs partition with 1G file size, removes the files and starts over again) running in parallel for 10s to build up a lot of dirty pages when 100 parallel mem_eaters (anon private populated mmap which waits until it gets signal) with 80M each. This causes an OOM flood of course and I have compared both patched and unpatched kernels. The test is considered finished after there are no OOM conditions detected. This should tell us whether there are any excessive kills or some of them premature (e.g. due to dirty pages): I have performed two runs this time each after a fresh boot. * base kernel $ grep "Out of memory:" base-oom-run1.log | wc -l 78 $ grep "Out of memory:" base-oom-run2.log | wc -l 78 $ grep "Kill process" base-oom-run1.log | tail -n1 [ 91.391203] Out of memory: Kill process 3061 (mem_eater) score 39 or sacrifice child $ grep "Kill process" base-oom-run2.log | tail -n1 [ 82.141919] Out of memory: Kill process 3086 (mem_eater) score 39 or sacrifice child $ grep "DMA32 free:" base-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5376.00 max: 6776.00 avg: 5530.75 std: 166.50 nr: 61 $ grep "DMA32 free:" base-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5416.00 max: 5608.00 avg: 5514.15 std: 42.94 nr: 52 $ grep "DMA32.*all_unreclaimable? no" base-oom-run1.log | wc -l 1 $ grep "DMA32.*all_unreclaimable? no" base-oom-run2.log | wc -l 3 * patched kernel $ grep "Out of memory:" patched-oom-run1.log | wc -l 78 miso@tiehlicka /mnt/share/devel/miso/kvm $ grep "Out of memory:" patched-oom-run2.log | wc -l 77 e grep "Kill process" patched-oom-run1.log | tail -n1 [ 497.317732] Out of memory: Kill process 3108 (mem_eater) score 39 or sacrifice child $ grep "Kill process" patched-oom-run2.log | tail -n1 [ 316.169920] Out of memory: Kill process 3093 (mem_eater) score 39 or sacrifice child $ grep "DMA32 free:" patched-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5420.00 max: 5808.00 avg: 5513.90 std: 60.45 nr: 78 $ grep "DMA32 free:" patched-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5380.00 max: 6384.00 avg: 5520.94 std: 136.84 nr: 77 e grep "DMA32.*all_unreclaimable? no" patched-oom-run1.log | wc -l 2 $ grep "DMA32.*all_unreclaimable? no" patched-oom-run2.log | wc -l 3 The patched kernel run noticeably longer while invoking OOM killer same number of times. This means that the original implementation is much more aggressive and triggers the OOM killer sooner. free pages stats show that neither kernels went OOM too early most of the time, though. I guess the difference is in the backoff when retries without any progress do sleep for a while if there is memory under writeback or dirty which is highly likely considering the parallel IO. Both kernels have seen races where zone wasn't marked unreclaimable and we still hit the OOM killer. This is most likely a race where a task managed to exit between the last allocation attempt and the oom killer invocation. 2) 2 writers again with 10s of run and then 10 mem_eaters to consume as much memory as possible without triggering the OOM killer. This required a lot of tuning but I've considered 3 consecutive runs in three different boots without OOM as a success. * base kernel size=$(awk '/MemFree/{printf "%dK", ($2/10)-(16*1024)}' /proc/meminfo) * patched kernel size=$(awk '/MemFree/{printf "%dK", ($2/10)-(12*1024)}' /proc/meminfo) That means 40M more memory was usable without triggering OOM killer. The base kernel sometimes managed to handle the same as patched but it wasn't consistent and failed in at least on of the 3 runs. This seems like a minor improvement. I was testing also GPF_REPEAT costly requests (hughetlb) with fragmented memory and under memory pressure. The results are in patch 11 where the logic is implemented. In short I can see huge improvement there. I am certainly interested in other usecases as well as well as any feedback. Especially those which require higher order requests. This patch (of 14): While playing with the oom detection rework [1] I have noticed that my heavy order-9 (hugetlb) load close to OOM ended up in an endless loop where the reclaim hasn't made any progress but did_some_progress didn't reflect that and compaction_suitable was backing off because no zone is above low wmark + 1 << order. It turned out that this is in fact an old standing bug in compaction_ready which ignores the requested_highidx and did the watermark check for 0 classzone_idx. This succeeds for zone DMA most of the time as the zone is mostly unused because of lowmem protection. As a result costly high order allocatios always report a successfull progress even when there was none. This wasn't a problem so far because these allocations usually fail quite early or retry only few times with __GFP_REPEAT but this will change after later patch in this series so make sure to not lie about the progress and propagate requested_highidx down to compaction_ready and use it for both the watermak check and compaction_suitable to fix this issue. [1] http://lkml.kernel.org/r/1459855533-4600-1-git-send-email-mhocko@kernel.org [2] https://lkml.org/lkml/2015/10/12/808 [3] https://lkml.org/lkml/2015/10/13/597 Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |