The current tlb flush code on powerpc 64 bits has a subtle race since we
lost the page table lock due to the possible faulting in of new PTEs
after a previous one has been removed but before the corresponding hash
entry has been evicted, which can leads to all sort of fatal problems.
This patch reworks the batch code completely. It doesn't use the mmu_gather
stuff anymore. Instead, we use the lazy mmu hooks that were added by the
paravirt code. They have the nice property that the enter/leave lazy mmu
mode pair is always fully contained by the PTE lock for a given range
of PTEs. Thus we can guarantee that all batches are flushed on a given
CPU before it drops that lock.
We also generalize batching for any PTE update that require a flush.
Batching is now enabled on a CPU by arch_enter_lazy_mmu_mode() and
disabled by arch_leave_lazy_mmu_mode(). The code epects that this is
always contained within a PTE lock section so no preemption can happen
and no PTE insertion in that range from another CPU. When batching
is enabled on a CPU, every PTE updates that need a hash flush will
use the batch for that flush.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The SPU code doesn't properly invalidate SPUs SLBs when necessary,
for example when changing a segment size from the hugetlbfs code. In
addition, it saves and restores the SLB content on context switches
which makes it harder to properly handle those invalidations.
This patch removes the saving & restoring for now, something more
efficient might be found later on. It also adds a spu_flush_all_slbs(mm)
that can be used by the core mm code to flush the SLBs of all SPEs that
are running a given mm at the time of the flush.
In order to do that, it adds a spinlock to the list of all SPEs and move
some bits & pieces from spufs to spu_base.c
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch changes handling return value of ppc_md.hpte_insert() into
the same way as __hash_page_*().
Signed-off-by: Kou Ishizaki <kou.ishizaki@toshiba.co.jp>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The powerpc specific version of hugetlb_get_unmapped_area() makes some
unwarranted assumptions about what checks have been made to its
parameters by its callers. This will lead to a BUG_ON() if a 32-bit
process attempts to make a hugepage mapping which extends above
TASK_SIZE (4GB).
I'm not sure if these assumptions came about because they were valid
with earlier versions of the get_unmapped_area() path, or if it was
always broken. Nonetheless this patch fixes the logic, and removes
the crash.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Replace all uses of kmem_cache_t with struct kmem_cache.
The patch was generated using the following script:
#!/bin/sh
#
# Replace one string by another in all the kernel sources.
#
set -e
for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
quilt add $file
sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
mv /tmp/$$ $file
quilt refresh
done
The script was run like this
sh replace kmem_cache_t "struct kmem_cache"
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Following up with the work on shared page table done by Dave McCracken. This
set of patch target shared page table for hugetlb memory only.
The shared page table is particular useful in the situation of large number of
independent processes sharing large shared memory segments. In the normal
page case, the amount of memory saved from process' page table is quite
significant. For hugetlb, the saving on page table memory is not the primary
objective (as hugetlb itself already cuts down page table overhead
significantly), instead, the purpose of using shared page table on hugetlb is
to allow faster TLB refill and smaller cache pollution upon TLB miss.
With PT sharing, pte entries are shared among hundreds of processes, the cache
consumption used by all the page table is smaller and in return, application
gets much higher cache hit ratio. One other effect is that cache hit ratio
with hardware page walker hitting on pte in cache will be higher and this
helps to reduce tlb miss latency. These two effects contribute to higher
application performance.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Cc: Dave McCracken <dmccr@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
(David:)
If hugetlbfs_file_mmap() returns a failure to do_mmap_pgoff() - for example,
because the given file offset is not hugepage aligned - then do_mmap_pgoff
will go to the unmap_and_free_vma backout path.
But at this stage the vma hasn't been marked as hugepage, and the backout path
will call unmap_region() on it. That will eventually call down to the
non-hugepage version of unmap_page_range(). On ppc64, at least, that will
cause serious problems if there are any existing hugepage pagetable entries in
the vicinity - for example if there are any other hugepage mappings under the
same PUD. unmap_page_range() will trigger a bad_pud() on the hugepage pud
entries. I suspect this will also cause bad problems on ia64, though I don't
have a machine to test it on.
(Hugh:)
prepare_hugepage_range() should check file offset alignment when it checks
virtual address and length, to stop MAP_FIXED with a bad huge offset from
unmapping before it fails further down. PowerPC should apply the same
prepare_hugepage_range alignment checks as ia64 and all the others do.
Then none of the alignment checks in hugetlbfs_file_mmap are required (nor
is the check for too small a mapping); but even so, move up setting of
VM_HUGETLB and add a comment to warn of what David Gibson discovered - if
hugetlbfs_file_mmap fails before setting it, do_mmap_pgoff's unmap_region
when unwinding from error will go the non-huge way, which may cause bad
behaviour on architectures (powerpc and ia64) which segregate their huge
mappings into a separate region of the address space.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Checking source for other get_paca()->field preemption dangers found that
open_high_hpage_areas does a structure copy into its paca while preemption
is enabled: unsafe however gcc accomplishes it. Just remove that copy:
it's done safely afterwards by on_each_cpu, as in open_low_hpage_areas.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
On Tue, 2006-08-15 at 08:22 -0700, Dave Hansen wrote:
> kernel BUG in cache_free_debugcheck at mm/slab.c:2748!
Alright, this one is only triggered when slab debugging is enabled. The
slabs are assumed to be aligned on a HUGEPTE_TABLE_SIZE boundary. The free
path makes use of this assumption and uses the lowest nibble to pass around
an index into an array of kmem_cache pointers. With slab debugging turned
on, the slab is still aligned, but the "working" object pointer is not.
This would break the assumption above that a full nibble is available for
the PGF_CACHENUM_MASK.
The following patch reduces PGF_CACHENUM_MASK to cover only the two least
significant bits, which is enough to cover the current number of 4 pgtable
cache types. Then use this constant to mask out the appropriate part of
the huge pte pointer.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
At present, ARCH=powerpc kernels can waste considerable space in
pagetables when making large hugepage mappings. Hugepage PTEs go in
PMD pages, but each PMD page maps 256M and so contains only 16
hugepage PTEs (128 bytes of data), but takes up a 1024 byte
allocation. With CONFIG_PPC_64K_PAGES enabled (64k base page size),
the situation is worse. Now hugepage PTEs are at the PTE page level
(also mapping 256M), so we store 16 hugepage PTEs in a 64k allocation.
The PowerPC MMU already means that any 256M region is either all
hugepage, or all normal pages. Thus, with some care, we can use a
different allocation for the hugepage PTE tables and only allocate the
128 bytes necessary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Quite a long time back, prepare_hugepage_range() replaced
is_aligned_hugepage_range() as the callback from mm/mmap.c to arch code to
verify if an address range is suitable for a hugepage mapping.
is_aligned_hugepage_range() stuck around, but only to implement
prepare_hugepage_range() on archs which didn't implement their own.
Most archs (everything except ia64 and powerpc) used the same
implementation of is_aligned_hugepage_range(). On powerpc, which
implements its own prepare_hugepage_range(), the custom version was never
used.
In addition, "is_aligned_hugepage_range()" was a bad name, because it
suggests it returns true iff the given range is a good hugepage range,
whereas in fact it returns 0-or-error (so the sense is reversed).
This patch cleans up by abolishing is_aligned_hugepage_range(). Instead
prepare_hugepage_range() is defined directly. Most archs use the default
version, which simply checks the given region is aligned to the size of a
hugepage. ia64 and powerpc define custom versions. The ia64 one simply
checks that the range is in the correct address space region in addition to
being suitably aligned. The powerpc version (just as previously) checks
for suitable addresses, and if necessary performs low-level MMU frobbing to
set up new areas for use by hugepages.
No libhugetlbfs testsuite regressions on ppc64 (POWER5 LPAR).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Building the arch/powerpc tree currently gives me
two warnings with gcc-4.0:
arch/powerpc/mm/imalloc.c: In function '__im_get_area':
arch/powerpc/mm/imalloc.c:225: warning: 'tmp' may be used uninitialized in this function
arch/powerpc/mm/hugetlbpage.c: In function 'hugetlb_get_unmapped_area':
arch/powerpc/mm/hugetlbpage.c:608: warning: unused variable 'vma'
both fixes are trivial.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Currently, the powerpc version of hugetlb_get_unmapped_area() entirely
ignores the hint address. The only way to get a hugepage mapping at a
specified address is with MAP_FIXED, in which case there's no way
(short of parsing /proc/self/maps) for userspace to tell if it will
clobber an existing mapping. This is inconvenient, so the patch below
makes hugepage mappings use the given hint address if possible.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
On ppc64, when opening a new hugepage region, we need to make sure any
old normal-page SLBs for the area are flushed on all CPUs. There was
a bug in this logic - after putting the new hugepage area masks into
the thread structure, we copied it into the paca (read by the SLB miss
handler) only on one CPU, not on all. This could cause incorrect SLB
entries to be loaded when a multithreaded program was running
simultaneously on several CPUs. This patch corrects the error,
copying the context information into the PACA on all CPUs using the mm
in question before flushing any existing SLB entries.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
On most powerpc CPUs, the dcache and icache are not coherent so
between writing and executing a page, the caches must be flushed.
Userspace programs assume pages given to them by the kernel are icache
clean, so we must do this flush between the kernel clearing a page and
it being mapped into userspace for execute. We were not doing this
for hugepages, this patch corrects the situation.
We use the same lazy mechanism as we use for normal pages, delaying
the flush until userspace actually attempts to execute from the page
in question.
Tested on G5.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The 64k pages patch changed the meaning of one argument passed to the
low level hash functions (from "large" it became "psize" or page size
index), but one of the call sites wasn't properly updated, causing
potential random weird problems with huge pages. This fixes it.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Blah. The patch [0] I recently sent fixing errors with
in_hugepage_area() and prepare_hugepage_range() for powerpc itself has
an off-by-one bug. Furthermore, the related functions
touches_hugepage_*_range() and within_hugepage_*_range() are also
buggy. Some of the bugs, like those addressed in [0] originated with
commit 7d24f0b8a5 where we tweaked the
semantics of where hugepages are allowed. Other bugs have been there
essentially forever, and are due to the undefined behaviour of '<<'
with shift counts greater than the type width (LOW_ESID_MASK could
return non-zero for high ranges with the right congruences).
The good news is that I now have a testsuite which should pick up
things like this if they creep in again.
[0] "powerpc-fix-for-hugepage-areas-straddling-4gb-boundary"
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Commit 7d24f0b8a5 fixed bugs in the ppc64 SLB
miss handler with respect to hugepage handling, and in the process tweaked
the semantics of the hugepage address masks in mm_context_t.
Unfortunately, it left out a couple of necessary changes to go with that
change. First, the in_hugepage_area() macro was not updated to match,
second prepare_hugepage_range() was not updated to correctly handle
hugepages regions which straddled the 4GB point.
The latter appears only to cause process-hangs when attempting to map such
a region, but the former can cause oopses if a get_user_pages() is
triggered at the wrong point. This patch addresses both bugs.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Update comments (only) on page_table_lock and mmap_sem in arch/powerpc.
Removed the comment on page_table_lock from hash_huge_page: since it's no
longer taking page_table_lock itself, it's irrelevant whether others are; but
how it is safe (even against huge file truncation?) I can't say.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch, however, should be applied on top of the 64k-page-size patch to
fix some problems with hugepage (some pre-existing, another introduced by
this patch).
The patch fixes a bug in the SLB miss handler for hugepages on ppc64
introduced by the dynamic hugepage patch (commit id
c594adad56) due to a misunderstanding of the
srd instruction's behaviour (mea culpa). The problem arises when a 64-bit
process maps some hugepages in the low 4GB of the address space (unusual).
In this case, as well as the 256M segment in question being marked for
hugepages, other segments at 32G intervals will be incorrectly marked for
hugepages.
In the process, this patch tweaks the semantics of the hugepage bitmaps to
be more sensible. Previously, an address below 4G was marked for hugepages
if the appropriate segment bit in the "low areas" bitmask was set *or* if
the low bit in the "high areas" bitmap was set (which would mark all
addresses below 1TB for hugepage). With this patch, any given address is
governed by a single bitmap. Addresses below 4GB are marked for hugepage
if and only if their bit is set in the "low areas" bitmap (256M
granularity). Addresses between 4GB and 1TB are marked for hugepage iff
the low bit in the "high areas" bitmap is set. Higher addresses are marked
for hugepage iff their bit in the "high areas" bitmap is set (1TB
granularity).
To avoid conflicts, this patch must be applied on top of BenH's pending
patch for 64k base page size [0]. As such, this patch also addresses a
hugepage problem introduced by that patch. That patch allows hugepages of
1MB in size on hardware which supports it, however, that won't work when
using 4k pages (4 level pagetable), because in that case hugepage PTEs are
stored at the PMD level, and each PMD entry maps 2MB. This patch simply
disallows hugepages in that case (we can do something cleverer to re-enable
them some other day).
Built, booted, and a handful of hugepage related tests passed on POWER5
LPAR (both ARCH=powerpc and ARCH=ppc64).
[0] http://gate.crashing.org/~benh/ppc64-64k-pages.diff
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Adds a new CONFIG_PPC_64K_PAGES which, when enabled, changes the kernel
base page size to 64K. The resulting kernel still boots on any
hardware. On current machines with 4K pages support only, the kernel
will maintain 16 "subpages" for each 64K page transparently.
Note that while real 64K capable HW has been tested, the current patch
will not enable it yet as such hardware is not released yet, and I'm
still verifying with the firmware architects the proper to get the
information from the newer hypervisors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This moves the remaining files in arch/ppc64/mm to arch/powerpc/mm,
and arranges that we use them when compiling with ARCH=ppc64.
Signed-off-by: Paul Mackerras <paulus@samba.org>