Pull parsic updates from Helge Deller:
"This patchset includes two major fixes which are both scheduled for
stable:
First, __ARCH_SI_PREAMBLE_SIZE was defined with a wrong value.
Second, huge page pte and TLB changes needed protection with a
spinlock. Other than that there are just some trivial optimizations
and cleanups"
* 'parisc-4.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Protect huge page pte changes with spinlocks
parisc: Imporove debug info about space registers and TLB configuration
parisc: Drop parisc-specific NSIGTRAP define
parisc: Fix __ARCH_SI_PREAMBLE_SIZE
parisc: Reduce overhead of parisc_requires_coherency()
parisc: Initialize PCI bridge cache line and default latency
Pull livepatching updates from Jiri Kosina:
- RO/NX attribute fixes for patch module relocations from Josh
Poimboeuf. As part of this effort, module.c has been cleaned up as
well and livepatching is piggy-backing on this cleanup. Rusty is OK
with this whole lot going through livepatching tree.
- symbol disambiguation support from Chris J Arges. That series is
also
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
but this came in only after I've alredy pushed out. Didn't want to
rebase because of that, hence I am mentioning it here.
- symbol lookup fix from Miroslav Benes
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: Cleanup module page permission changes
module: keep percpu symbols in module's symtab
module: clean up RO/NX handling.
module: use a structure to encapsulate layout.
gcov: use within_module() helper.
module: Use the same logic for setting and unsetting RO/NX
livepatch: function,sympos scheme in livepatch sysfs directory
livepatch: add sympos as disambiguator field to klp_reloc
livepatch: add old_sympos as disambiguator field to klp_func
PCI controllers and pci-pci bridges may have not been fully initialized
regarding cache line and defaul latency.
This partly reverts
commit 5f0e9b4 ("parisc: Remove unused pcibios_init_bus()")
Signed-off-by: Helge Deller <deller@gmx.de>
On parisc syscalls which are interrupted by signals sometimes failed to
restart and instead returned -ENOSYS which in the worst case lead to
userspace crashes.
A similiar problem existed on MIPS and was fixed by commit e967ef02
("MIPS: Fix restart of indirect syscalls").
On parisc the current syscall restart code assumes that all syscall
callers load the syscall number in the delay slot of the ble
instruction. That's how it is e.g. done in the unistd.h header file:
ble 0x100(%sr2, %r0)
ldi #syscall_nr, %r20
Because of that assumption the current code never restored %r20 before
returning to userspace.
This assumption is at least not true for code which uses the glibc
syscall() function, which instead uses this syntax:
ble 0x100(%sr2, %r0)
copy regX, %r20
where regX depend on how the compiler optimizes the code and register
usage.
This patch fixes this problem by adding code to analyze how the syscall
number is loaded in the delay branch and - if needed - copy the syscall
number to regX prior returning to userspace for the syscall restart.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
There are no callers of pcibios_init_bus(), so remove it.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Helge Deller <deller@gmx.de>
Makes it easier to handle init vs core cleanly, though the change is
fairly invasive across random architectures.
It simplifies the rbtree code immediately, however, while keeping the
core data together in the same cachline (now iff the rbtree code is
enabled).
Acked-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Pull parisc update from Helge Deller:
"This patchset adds Huge Page and HUGETLBFS support for parisc"
Honestly, the hugepage support should have gone through in the merge
window, and is not really an rc-time fix. But it only touches
arch/parisc, and I cannot find it in myself to care. If one of the
three parisc users notices a breakage, I will point at Helge and make
rude farting noises.
* 'parisc-4.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Map kernel text and data on huge pages
parisc: Add Huge Page and HUGETLBFS support
parisc: Use long branch to do_syscall_trace_exit
parisc: Increase initial kernel mapping to 32MB on 64bit kernel
parisc: Initialize the fault vector earlier in the boot process.
parisc: Add defines for Huge page support
parisc: Drop unused MADV_xxxK_PAGES flags from asm/mman.h
parisc: Drop definition of start_thread_som for HP-UX SOM binaries
parisc: Fix wrong comment regarding first pmd entry flags
This patch adds huge page support to allow userspace to allocate huge
pages and to use hugetlbfs filesystem on 32- and 64-bit Linux kernels.
A later patch will add kernel support to map kernel text and data on
huge pages.
The only requirement is, that the kernel needs to be compiled for a
PA8X00 CPU (PA2.0 architecture). Older PA1.X CPUs do not support
variable page sizes. 64bit Kernels are compiled for PA2.0 by default.
Technically on parisc multiple physical huge pages may be needed to
emulate standard 2MB huge pages.
Signed-off-by: Helge Deller <deller@gmx.de>
Use the 22bit instead of the 17bit branch instruction on a 64bit kernel
to reach the do_syscall_trace_exit function from the gateway page.
A huge page enabled kernel may need the additional branch distance bits.
Signed-off-by: Helge Deller <deller@gmx.de>
For the 64bit kernel the initially 16 MB kernel memory might become too
small if you build a kernel with many modules built-in and with kernel
text and data areas mapped on huge pages.
This patch increases the initial mapping to 32MB for 64bit kernels and
keeps 16MB for 32bit kernels.
Signed-off-by: Helge Deller <deller@gmx.de>
A fault vector on parisc needs to be 2K aligned. Furthermore the
checksum of the fault vector needs to sum up to 0 which is being
calculated and written at runtime.
Up to now we aligned both PA20 and PA11 fault vectors on the same 4K
page in order to easily write the checksum after having mapped the
kernel read-only (by mapping this page only as read-write).
But when we want to map the kernel text and data on huge pages this
makes things harder.
So, simplify it by aligning both fault vectors on 2K boundries and write
the checksum before we map the page read-only.
Signed-off-by: Helge Deller <deller@gmx.de>
No need to use CONFIG_SMP around update_cr16_clocksource(). It checks for
num_online_cpus() beeing greater than 1, which is always 1 in UP builds.
Signed-off-by: Helge Deller <deller@gmx.de>
The attached change fixes the condition used in the "sub" instruction.
A double word comparison is needed. This fixes the 64-bit LWS CAS
operation on 64-bit kernels.
I can now enable 64-bit atomic support in GCC.
Cc: <stable@vger.kernel.org>
Signed-off-by: John David Anglin <dave.anglin>
Signed-off-by: Helge Deller <deller@gmx.de>
When detecting a serial port on newer PA-RISC machines (with iosapic) we have a
long way to go to find the right IRQ line, registering it, then registering the
serial port and the irq handler for the serial port. During this phase spurious
interrupts for the serial port may happen which then crashes the kernel because
the action handler might not have been set up yet.
So, basically it's a race condition between the serial port hardware and the
CPU which sets up the necessary fields in the irq sructs. The main reason for
this race is, that we unmask the serial port irqs too early without having set
up everything properly before (which isn't easily possible because we need the
IRQ number to register the serial ports).
This patch is a work-around for this problem. It adds checks to the CPU irq
handler to verify if the IRQ action field has been initialized already. If not,
we just skip this interrupt (which isn't critical for a serial port at bootup).
The real fix would probably involve rewriting all PA-RISC specific IRQ code
(for CPU, IOSAPIC, GSC and EISA) to use IRQ domains with proper parenting of
the irq chips and proper irq enabling along this line.
This bug has been in the PA-RISC port since the beginning, but the crashes
happened very rarely with currently used hardware. But on the latest machine
which I bought (a C8000 workstation), which uses the fastest CPUs (4 x PA8900,
1GHz) and which has the largest possible L1 cache size (64MB each), the kernel
crashed at every boot because of this race. So, without this patch the machine
would currently be unuseable.
For the record, here is the flow logic:
1. serial_init_chip() in 8250_gsc.c calls iosapic_serial_irq().
2. iosapic_serial_irq() calls txn_alloc_irq() to find the irq.
3. iosapic_serial_irq() calls cpu_claim_irq() to register the CPU irq
4. cpu_claim_irq() unmasks the CPU irq (which it shouldn't!)
5. serial_init_chip() then registers the 8250 port.
Problems:
- In step 4 the CPU irq shouldn't have been registered yet, but after step 5
- If serial irq happens between 4 and 5 have finished, the kernel will crash
Signed-off-by: Helge Deller <deller@gmx.de>
The increased use of pdtlb/pitlb instructions seemed to increase the
frequency of random segmentation faults building packages. Further, we
had a number of cases where TLB inserts would repeatedly fail and all
forward progress would stop. The Haskell ghc package caused a lot of
trouble in this area. The final indication of a race in pte handling was
this syslog entry on sibaris (C8000):
swap_free: Unused swap offset entry 00000004
BUG: Bad page map in process mysqld pte:00000100 pmd:019bbec5
addr:00000000ec464000 vm_flags:00100073 anon_vma:0000000221023828 mapping: (null) index:ec464
CPU: 1 PID: 9176 Comm: mysqld Not tainted 4.0.0-2-parisc64-smp #1 Debian 4.0.5-1
Backtrace:
[<0000000040173eb0>] show_stack+0x20/0x38
[<0000000040444424>] dump_stack+0x9c/0x110
[<00000000402a0d38>] print_bad_pte+0x1a8/0x278
[<00000000402a28b8>] unmap_single_vma+0x3d8/0x770
[<00000000402a4090>] zap_page_range+0xf0/0x198
[<00000000402ba2a4>] SyS_madvise+0x404/0x8c0
Note that the pte value is 0 except for the accessed bit 0x100. This bit
shouldn't be set without the present bit.
It should be noted that the madvise system call is probably a trigger for many
of the random segmentation faults.
In looking at the kernel code, I found the following problems:
1) The pte_clear define didn't take TLB lock when clearing a pte.
2) We didn't test pte present bit inside lock in exception support.
3) The pte and tlb locks needed to merged in order to ensure consistency
between page table and TLB. This also has the effect of serializing TLB
broadcasts on SMP systems.
The attached change implements the above and a few other tweaks to try
to improve performance. Based on the timing code, TLB purges are very
slow (e.g., ~ 209 cycles per page on rp3440). Thus, I think it
beneficial to test the split_tlb variable to avoid duplicate purges.
Probably, all PA 2.0 machines have combined TLBs.
I dropped using __flush_tlb_range in flush_tlb_mm as I realized all
applications and most threads have a stack size that is too large to
make this useful. I added some comments to this effect.
Since implementing 1 through 3, I haven't had any random segmentation
faults on mx3210 (rp3440) in about one week of building code and running
as a Debian buildd.
Signed-off-by: John David Anglin <dave.anglin@bell.net>
Cc: stable@vger.kernel.org # v3.18+
Signed-off-by: Helge Deller <deller@gmx.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkO5XAAoJEOvOhAQsB9HWe4cQAJcsmSXIDN2O6oxvgH8Wilof
EIEMvT13uwBdsjQdYUY6A6B3iUV9wzEEgoosg/JRgpz5/b1FTDMIO4arUPD3Lcak
5bmyVO2qAT+yaLAWSgn6I8DMplXrKiEuK+TkH/mW3p9TdvElLdG3Vg6UI407hSWv
W0QbVwkNtv8XmzshV9F2YdmflT8j1PgYxIu/tEkVOWn37DNW+Fp2OVBrdTIYp3AJ
X6bYZPEcQDCrWWW/s2GmIDrNgryiebasns+CAgGY21262jAYaRcFOJmR47AsTqW7
DSZXIlLc/gJca++hfxqV15RZ4NRHxrebCypTsPtZUV7ZiYHI726eeUZzxsp/9itu
mvhmi+aQUTTUP3dDhiv05f4syAKEb4zslT6SLwcna6oi09M97HfCeQsHqhcFq/MG
KnS2JJoJQToQtJvMUXMQzp5hyHjNlOclIvCxEiL32EZU54PeJOKasy/mptNGEctk
TxACWvoXBQglRaVN+1wIjjr0BaHJSuJa9CUnIfM4WZdSHiMQMx00XLTkZcTnSM6R
12pE54vVolrXswGPJhy4W/Sf1yPSW1tkWSVBbkKLyCIrlAWJtu68rXhvwhG/nz6E
3g6QrDEQGlk6bzUH4CJCEqXLPRN1bNS0XjdkEFh60Lury3Ns5yHKZXPW5vCQ5csr
FQNUyBs595CWbJNfbn1n
=0BDx
-----END PGP SIGNATURE-----
Merge tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_init replacement part one from Paul Gortmaker:
"Replace module_init with equivalent device_initcall in non modules.
This series of commits converts non-modular code that is using the
module_init() call to hook itself into the system to instead use
device_initcall().
The conversion is a runtime no-op, since module_init actually becomes
__initcall in the non-modular case, and that in turn gets mapped onto
device_initcall. A couple files show a larger negative diffstat,
representing ones that had a module_exit function that we remove here
vs previously relying on the linker to dispose of it.
We make this conversion now, so that we can relocate module_init from
init.h into module.h in the future.
The files changed here are just limited to those that would otherwise
have to add module.h to obviously non-modular code, in order to avoid
a compile fail, as testing has shown"
* tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
MIPS: don't use module_init in non-modular cobalt/mtd.c file
drivers/leds: don't use module_init in non-modular leds-cobalt-raq.c
cris: don't use module_init for non-modular core eeprom.c code
tty/metag_da: Avoid module_init/module_exit in non-modular code
drivers/clk: don't use module_init in clk-nomadik.c which is non-modular
xtensa: don't use module_init for non-modular core network.c code
sh: don't use module_init in non-modular psw.c code
mn10300: don't use module_init in non-modular flash.c code
parisc64: don't use module_init for non-modular core perf code
parisc: don't use module_init for non-modular core pdc_cons code
cris: don't use module_init for non-modular core intmem.c code
ia64: don't use module_init in non-modular sim/simscsi.c code
ia64: don't use module_init for non-modular core kernel/mca.c code
arm: don't use module_init in non-modular mach-vexpress/spc.c code
powerpc: don't use module_init in non-modular 83xx suspend code
powerpc: use device_initcall for registering rtc devices
x86: don't use module_init in non-modular devicetree.c code
x86: don't use module_init in non-modular intel_mid_vrtc.c
This replaces the plain loop over the sglist array with for_each_sg()
macro which consists of sg_next() function calls. Since parisc doesn't
select ARCH_HAS_SG_CHAIN, it is not necessary to use for_each_sg() in
order to loop over each sg element. But this can help find problems with
drivers that do not properly initialize their sg tables when
CONFIG_DEBUG_SG is enabled.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The perf.c code depends on CONFIG_64BIT, so it is either built-in
or absent. It will never be modular, so using module_init as an
alias for __initcall is rather misleading.
Fix this up now, so that we can relocate module_init from
init.h into module.h in the future. If we don't do this, we'd
have to add module.h to obviously non-modular code, and that
would be a worse thing. Aside from it not making sense, it also
causes a ~10% increase in CPP overhead due to module.h having a
large list of headers itself -- for example compare line counts:
device_initcall() and <linux/init.h>
20238 arch/parisc/kernel/perf.i
module_init() and <linux/module.h>
22194 arch/parisc/kernel/perf.i
Direct use of __initcall is discouraged, vs prioritized ones.
Use of device_initcall is consistent with what __initcall
maps onto, and hence does not change the init order, making the
impact of this change zero. Should someone with real hardware
for boot testing want to change it later to arch_initcall or
something different, they can do that at a later date.
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: linux-parisc@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
The pdc_cons.c code is always built in. It will never be modular,
so using module_init as an alias for __initcall is rather
misleading.
Fix this up now, so that we can relocate module_init from
init.h into module.h in the future. If we don't do this, we'd
have to add module.h to obviously non-modular code, and that
would be a worse thing.
Direct use of __initcall is discouraged, vs prioritized ones.
Use of device_initcall is consistent with what __initcall
maps onto, and hence does not change the init order, making the
impact of this change zero. Should someone with real hardware
for boot testing want to change it later to arch_initcall or
something different, they can do that at a later date.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: linux-parisc@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Introduce faulthandler_disabled() and use it to check for irq context and
disabled pagefaults (via pagefault_disable()) in the pagefault handlers.
Please note that we keep the in_atomic() checks in place - to detect
whether in irq context (in which case preemption is always properly
disabled).
In contrast, preempt_disable() should never be used to disable pagefaults.
With !CONFIG_PREEMPT_COUNT, preempt_disable() doesn't modify the preempt
counter, and therefore the result of in_atomic() differs.
We validate that condition by using might_fault() checks when calling
might_sleep().
Therefore, add a comment to faulthandler_disabled(), describing why this
is needed.
faulthandler_disabled() and pagefault_disable() are defined in
linux/uaccess.h, so let's properly add that include to all relevant files.
This patch is based on a patch from Thomas Gleixner.
Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David.Laight@ACULAB.COM
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: airlied@linux.ie
Cc: akpm@linux-foundation.org
Cc: benh@kernel.crashing.org
Cc: bigeasy@linutronix.de
Cc: borntraeger@de.ibm.com
Cc: daniel.vetter@intel.com
Cc: heiko.carstens@de.ibm.com
Cc: herbert@gondor.apana.org.au
Cc: hocko@suse.cz
Cc: hughd@google.com
Cc: mst@redhat.com
Cc: paulus@samba.org
Cc: ralf@linux-mips.org
Cc: schwidefsky@de.ibm.com
Cc: yang.shi@windriver.com
Link: http://lkml.kernel.org/r/1431359540-32227-7-git-send-email-dahi@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On architectures where the stack grows upwards (CONFIG_STACK_GROWSUP=y,
currently parisc and metag only) stack randomization sometimes leads to crashes
when the stack ulimit is set to lower values than STACK_RND_MASK (which is 8 MB
by default if not defined in arch-specific headers).
The problem is, that when the stack vm_area_struct is set up in fs/exec.c, the
additional space needed for the stack randomization (as defined by the value of
STACK_RND_MASK) was not taken into account yet and as such, when the stack
randomization code added a random offset to the stack start, the stack
effectively got smaller than what the user defined via rlimit_max(RLIMIT_STACK)
which then sometimes leads to out-of-stack situations and crashes.
This patch fixes it by adding the maximum possible amount of memory (based on
STACK_RND_MASK) which theoretically could be added by the stack randomization
code to the initial stack size. That way, the user-defined stack size is always
guaranteed to be at minimum what is defined via rlimit_max(RLIMIT_STACK).
This bug is currently not visible on the metag architecture, because on metag
STACK_RND_MASK is defined to 0 which effectively disables stack randomization.
The changes to fs/exec.c are inside an "#ifdef CONFIG_STACK_GROWSUP"
section, so it does not affect other platformws beside those where the
stack grows upwards (parisc and metag).
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: linux-parisc@vger.kernel.org
Cc: James Hogan <james.hogan@imgtec.com>
Cc: linux-metag@vger.kernel.org
Cc: stable@vger.kernel.org # v3.16+
The 'arg' argument to copy_thread() is only ever used when forking a new
kernel thread. Hence, rename it to 'kthread_arg' for clarity (and
consistency with do_fork() and other arch-specific implementations of
copy_thread()).
Signed-off-by: Alex Dowad <alexinbeijing@gmail.com>
Signed-off-by: Helge Deller <deller@gmx.de>
The only reason to keep parisc's private asm/scatterlist.h was that it
had the macro sg_virt_addr(). Convert all callers to use something else
(sometimes just sg->offset was enough, others should use sg_virt()), and
we can just use the asm-generic scatterlist.h instead.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Dave Anglin <dave.anglin@bell.net>
Signed-off-by: Helge Deller <deller@gmx.de>
functions, prompted by their mis-use in staging.
With these function removed, all cpu functions should only iterate to
nr_cpu_ids, so we finally only allocate that many bits when cpumasks
are allocated offstack.
Thanks,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVNPMuAAoJENkgDmzRrbjx7ZIP/j65e6xs1jEyXR3WOYSdTU1x
bMo6JcII6O1oEZLgyKXgx9KiBg6uIIDta1NG/H/XIe354dwfHVsHvj5HHHQR5Xof
iRrjLOaHj4XglI3hvsk0eEEl3/OBBLgyo9bUwDvMF1fmr/9tW4caMs3Op6n7Evzm
YIvoAyeJ0A8BfEtOU5lXhcVIGmnHtSw0x6mdGXpXIBmWYQPCtdQP868s4lnl44w0
bSNpAYdzEqg64Ph3SK0prgWPrn5+5EiaAhV7HZzENZ5+o0DAdIXWq/W7uHyCWPKH
536cJDojec+nSUQkPYngngGprxrKO02aBcMw/3JGJ0tdCDj8yw3XAyVAFzz4hmMb
Lkmyv4QHHIILLvJ4ZRH5KHWCjjVBg41LNCs2H3HnoxFACdm0lZYKHsUAh2ucBVtU
Wb/eHmLxOG43UIkpX4yrhy3SfE1ZdnOVzEzOzPXtr51t8ojqk+bLFe/hJ6EkzrQX
X+90qHfBq+PMJlAnc3zdXHjxoJrL6KPWVwVvFrNeibgEKtVvy/BiwZkS6QceC1Ea
TatOYA5r6awFVHHQCooN1DGAxN5Juvu2SmdnTUA9ymsCNDghj1YUoAKRNP81u8Sa
pe3hco/63iCuPna+vlwNDU6SgsaMk9m0p+1n1BiDIfVJIkWYCNeG+u2gQkzbDKlQ
AJuKKQv1QuZiF0ylZ0wq
=VAgA
-----END PGP SIGNATURE-----
Merge tag 'cpumask-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull final removal of deprecated cpus_* cpumask functions from Rusty Russell:
"This is the final removal (after several years!) of the obsolete
cpus_* functions, prompted by their mis-use in staging.
With these function removed, all cpu functions should only iterate to
nr_cpu_ids, so we finally only allocate that many bits when cpumasks
are allocated offstack"
* tag 'cpumask-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (25 commits)
cpumask: remove __first_cpu / __next_cpu
cpumask: resurrect CPU_MASK_CPU0
linux/cpumask.h: add typechecking to cpumask_test_cpu
cpumask: only allocate nr_cpumask_bits.
Fix weird uses of num_online_cpus().
cpumask: remove deprecated functions.
mips: fix obsolete cpumask_of_cpu usage.
x86: fix more deprecated cpu function usage.
ia64: remove deprecated cpus_ usage.
powerpc: fix deprecated CPU_MASK_CPU0 usage.
CPU_MASK_ALL/CPU_MASK_NONE: remove from deprecated region.
staging/lustre/o2iblnd: Don't use cpus_weight
staging/lustre/libcfs: replace deprecated cpus_ calls with cpumask_
staging/lustre/ptlrpc: Do not use deprecated cpus_* functions
blackfin: fix up obsolete cpu function usage.
parisc: fix up obsolete cpu function usage.
tile: fix up obsolete cpu function usage.
arm64: fix up obsolete cpu function usage.
mips: fix up obsolete cpu function usage.
x86: fix up obsolete cpu function usage.
...
Pull exec domain removal from Richard Weinberger:
"This series removes execution domain support from Linux.
The idea behind exec domains was to support different ABIs. The
feature was never complete nor stable. Let's rip it out and make the
kernel signal handling code less complicated"
* 'exec_domain_rip_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/misc: (27 commits)
arm64: Removed unused variable
sparc: Fix execution domain removal
Remove rest of exec domains.
arch: Remove exec_domain from remaining archs
arc: Remove signal translation and exec_domain
xtensa: Remove signal translation and exec_domain
xtensa: Autogenerate offsets in struct thread_info
x86: Remove signal translation and exec_domain
unicore32: Remove signal translation and exec_domain
um: Remove signal translation and exec_domain
tile: Remove signal translation and exec_domain
sparc: Remove signal translation and exec_domain
sh: Remove signal translation and exec_domain
s390: Remove signal translation and exec_domain
mn10300: Remove signal translation and exec_domain
microblaze: Remove signal translation and exec_domain
m68k: Remove signal translation and exec_domain
m32r: Remove signal translation and exec_domain
m32r: Autogenerate offsets in struct thread_info
frv: Remove signal translation and exec_domain
...
We would want to use number of page table level to define mm_struct.
Let's expose it as CONFIG_PGTABLE_LEVELS.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the function smp_send_start() that is not used anywhere.
This was partially found by using a static code analysis program called cppcheck.
Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Helge Deller <deller@gmx.de>
Add checks if the userspace trampoline code was correctly generated by the
signal trampoline generation code. In addition only flush caches as needed and
fix the old flushing code which didn't flushed all generated instructions.
Signed-off-by: Helge Deller <deller@gmx.de>
For instrumenting global variables KASan will shadow memory backing memory
for modules. So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().
__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area. Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole. So we could fail to allocate shadow
for module_alloc().
Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into
__vmalloc_node_range(). Add new parameter 'vm_flags' to
__vmalloc_node_range() function.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If an attacker can cause a controlled kernel stack overflow, overwriting
the restart block is a very juicy exploit target. This is because the
restart_block is held in the same memory allocation as the kernel stack.
Moving the restart block to struct task_struct prevents this exploit by
making the restart_block harder to locate.
Note that there are other fields in thread_info that are also easy
targets, at least on some architectures.
It's also a decent simplification, since the restart code is more or less
identical on all architectures.
[james.hogan@imgtec.com: metag: align thread_info::supervisor_stack]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: David Miller <davem@davemloft.net>
Acked-by: Richard Weinberger <richard@nod.at>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Archs have been abusing module_free() to clean up their arch-specific
allocations. Since module_free() is also (ab)used by BPF and trace code,
let's keep it to simple allocations, and provide a hook called before
that.
This means that avr32, ia64, parisc and s390 no longer need to implement
their own module_free() at all. avr32 doesn't need module_finalize()
either.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-kernel@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Switch over the msgctl, shmat, shmctl and semtimedop syscalls to use the compat
layer. The problem was found with the debian procenv package, which called
shmctl(0, SHM_INFO, &info);
in which the shmctl syscall then overwrote parts of the surrounding areas on
the stack on which the info variable was stored and thus lead to a segfault
later on.
Additionally fix the definition of struct shminfo64 to use unsigned longs like
the other architectures. This has no impact on userspace since we only have a
32bit userspace up to now.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: John David Anglin <dave.anglin@bell.net>
Cc: <stable@vger.kernel.org> # v3.10+
Pull audit updates from Eric Paris:
"So this change across a whole bunch of arches really solves one basic
problem. We want to audit when seccomp is killing a process. seccomp
hooks in before the audit syscall entry code. audit_syscall_entry
took as an argument the arch of the given syscall. Since the arch is
part of what makes a syscall number meaningful it's an important part
of the record, but it isn't available when seccomp shoots the
syscall...
For most arch's we have a better way to get the arch (syscall_get_arch)
So the solution was two fold: Implement syscall_get_arch() everywhere
there is audit which didn't have it. Use syscall_get_arch() in the
seccomp audit code. Having syscall_get_arch() everywhere meant it was
a useless flag on the stack and we could get rid of it for the typical
syscall entry.
The other changes inside the audit system aren't grand, fixed some
records that had invalid spaces. Better locking around the task comm
field. Removing some dead functions and structs. Make some things
static. Really minor stuff"
* git://git.infradead.org/users/eparis/audit: (31 commits)
audit: rename audit_log_remove_rule to disambiguate for trees
audit: cull redundancy in audit_rule_change
audit: WARN if audit_rule_change called illegally
audit: put rule existence check in canonical order
next: openrisc: Fix build
audit: get comm using lock to avoid race in string printing
audit: remove open_arg() function that is never used
audit: correct AUDIT_GET_FEATURE return message type
audit: set nlmsg_len for multicast messages.
audit: use union for audit_field values since they are mutually exclusive
audit: invalid op= values for rules
audit: use atomic_t to simplify audit_serial()
kernel/audit.c: use ARRAY_SIZE instead of sizeof/sizeof[0]
audit: reduce scope of audit_log_fcaps
audit: reduce scope of audit_net_id
audit: arm64: Remove the audit arch argument to audit_syscall_entry
arm64: audit: Add audit hook in syscall_trace_enter/exit()
audit: x86: drop arch from __audit_syscall_entry() interface
sparc: implement is_32bit_task
sparc: properly conditionalize use of TIF_32BIT
...
The current LWS cas only works correctly for 32bit. The new LWS allows
for CAS operations of variable size.
Signed-off-by: Guy Martin <gmsoft@tuxicoman.be>
Cc: <stable@vger.kernel.org> # 3.13+
Signed-off-by: Helge Deller <deller@gmx.de>