forked from Minki/linux
a23867f1d2
262 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Mike Rapoport
|
5a5d1a7708 |
docs/vm: update 00-INDEX
Several files were added to Documentation/vm without updates to 00-INDEX. Fill in the missing documents Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Linus Torvalds
|
255442c938 |
Documentation updates for 4.16. New stuff includes refcount_t
documentation, errseq documentation, kernel-doc support for nested structure definitions, the removal of lots of crufty kernel-doc support for unused formats, SPDX tag documentation, the beginnings of a manual for subsystem maintainers, and lots of fixes and updates. As usual, some of the changesets reach outside of Documentation/ to effect kerneldoc comment fixes. It also adds the new LICENSES directory, of which Thomas promises I do not need to be the maintainer. -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJab11TAAoJEI3ONVYwIuV6i1UP/1LgGPHW9Ygq5qaLFbReZd/u Mx/orrhHX0PdkbCCE+CbL8Vm1m4UKFDTBdlpk3s542zxeeG0ZBXuTnvq4Kyk+cTN p4/vsIEzk/Ih13/glGE5MlV+EjiEK+8hK69TIUj7bAyuHmpzofjRz9/1M6RLDGDC HY6UI58AXG0yOQWMWCGRMYpQAFUGij2equ7Doe1ugXRq14dx7V4RsOhI140iRk7t bquAq1rS2fXniiuPFmLBUe4dWW28isVa/Vl/aXcaWQDKMyT0OLhjOMW36wWKqtPi WdVCpHv1NLZNyZZr9S3kvfOwW+BUqpEzfVwssyBLW4h0tsnIx0U0HVhSTY8/TvFZ QD9yCSana4LB/e5CHXIX5lBHbjHxf+rETXqVV4MgwDaMvM3mCo4X6WUTJDmZADo6 vQISEKeb4su5uWAbc9T9xwRSLhZnFVdJ/QuYdNQ5+EpFJYLhzQ9eBvEz6JstSIXL p9ASBiPNY3ulpVZ8q0JOHJRBhq5mHJH6Dy8achzbILy2l/ZI4b8lJ53mw9II04cp puF96E6HpvuZ8Tgjjrg9U3ZdxXNrUgc/tjk2ZDkyTglk1XF2jKSq2tiNSZ3oLrJm XqJPnpCeyJM5UDvwkIBzgC41WEHwe8uvoNbUnc4X7UJSZegFzcSLQXf5qaprHS5k XeQ7sbd+S+jzVVjFi0W5 =Z15Z -----END PGP SIGNATURE----- Merge tag 'docs-4.16' of git://git.lwn.net/linux Pull documentation updates from Jonathan Corbet: "Documentation updates for 4.16. New stuff includes refcount_t documentation, errseq documentation, kernel-doc support for nested structure definitions, the removal of lots of crufty kernel-doc support for unused formats, SPDX tag documentation, the beginnings of a manual for subsystem maintainers, and lots of fixes and updates. As usual, some of the changesets reach outside of Documentation/ to effect kerneldoc comment fixes. It also adds the new LICENSES directory, of which Thomas promises I do not need to be the maintainer" * tag 'docs-4.16' of git://git.lwn.net/linux: (65 commits) linux-next: docs-rst: Fix typos in kfigure.py linux-next: DOC: HWPOISON: Fix path to debugfs in hwpoison.txt Documentation: Fix misconversion of #if docs: add index entry for networking/msg_zerocopy Documentation: security/credentials.rst: explain need to sort group_list LICENSES: Add MPL-1.1 license LICENSES: Add the GPL 1.0 license LICENSES: Add Linux syscall note exception LICENSES: Add the MIT license LICENSES: Add the BSD-3-clause "Clear" license LICENSES: Add the BSD 3-clause "New" or "Revised" License LICENSES: Add the BSD 2-clause "Simplified" license LICENSES: Add the LGPL-2.1 license LICENSES: Add the LGPL 2.0 license LICENSES: Add the GPL 2.0 license Documentation: Add license-rules.rst to describe how to properly identify file licenses scripts: kernel_doc: better handle show warnings logic fs/*/Kconfig: drop links to 404-compliant http://acl.bestbits.at doc: md: Fix a file name to md-fault.c in fault-injection.txt errseq: Add to documentation tree ... |
||
Roman Gushchin
|
fcb2b0c577 |
mm: show total hugetlb memory consumption in /proc/meminfo
Currently we display some hugepage statistics (total, free, etc) in /proc/meminfo, but only for default hugepage size (e.g. 2Mb). If hugepages of different sizes are used (like 2Mb and 1Gb on x86-64), /proc/meminfo output can be confusing, as non-default sized hugepages are not reflected at all, and there are no signs that they are existing and consuming system memory. To solve this problem, let's display the total amount of memory, consumed by hugetlb pages of all sized (both free and used). Let's call it "Hugetlb", and display size in kB to match generic /proc/meminfo style. For example, (1024 2Mb pages and 2 1Gb pages are pre-allocated): $ cat /proc/meminfo MemTotal: 8168984 kB MemFree: 3789276 kB <...> CmaFree: 0 kB HugePages_Total: 1024 HugePages_Free: 1024 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB Hugetlb: 4194304 kB DirectMap4k: 32632 kB DirectMap2M: 4161536 kB DirectMap1G: 6291456 kB Also, this patch updates corresponding docs to reflect Hugetlb entry meaning and difference between Hugetlb and HugePages_Total * Hugepagesize. Link: http://lkml.kernel.org/r/20171115231409.12131-1-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Masanari Iida
|
5d87a33782 |
linux-next: DOC: HWPOISON: Fix path to debugfs in hwpoison.txt
This patch fixes an incorrect path for debugfs in hwpoison.txt Signed-off-by: Masanari Iida <standby24x7@gmail.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Srividya Desireddy
|
51f73fffbf |
Documentation/vm/zswap.txt: update with same-value filled page feature
Update zswap document with details on same-value filled pages identification feature. The usage of zswap.same_filled_pages_enabled module parameter is explained. Link: http://lkml.kernel.org/r/20171206114852epcms5p6973b02a9f455d5d3c765eafda0fe2631@epcms5p6 Signed-off-by: Srividya Desireddy <srividya.dr@samsung.com> Acked-by: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
0f10851ea4 |
mm/mmu_notifier: avoid double notification when it is useless
This patch only affects users of mmu_notifier->invalidate_range callback which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ... and it is an optimization for those users. Everyone else is unaffected by it. When clearing a pte/pmd we are given a choice to notify the event under the page table lock (notify version of *_clear_flush helpers do call the mmu_notifier_invalidate_range). But that notification is not necessary in all cases. This patch removes almost all cases where it is useless to have a call to mmu_notifier_invalidate_range before mmu_notifier_invalidate_range_end. It also adds documentation in all those cases explaining why. Below is a more in depth analysis of why this is fine to do this: For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when device use thing like ATS/PASID to get the IOMMU to walk the CPU page table to access a process virtual address space). There is only 2 cases when you need to notify those secondary TLB while holding page table lock when clearing a pte/pmd: A) page backing address is free before mmu_notifier_invalidate_range_end B) a page table entry is updated to point to a new page (COW, write fault on zero page, __replace_page(), ...) Case A is obvious you do not want to take the risk for the device to write to a page that might now be used by something completely different. Case B is more subtle. For correctness it requires the following sequence to happen: - take page table lock - clear page table entry and notify (pmd/pte_huge_clear_flush_notify()) - set page table entry to point to new page If clearing the page table entry is not followed by a notify before setting the new pte/pmd value then you can break memory model like C11 or C++11 for the device. Consider the following scenario (device use a feature similar to ATS/ PASID): Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we assume they are write protected for COW (other case of B apply too). [Time N] ----------------------------------------------------------------- CPU-thread-0 {try to write to addrA} CPU-thread-1 {try to write to addrB} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA and populate device TLB} DEV-thread-2 {read addrB and populate device TLB} [Time N+1] --------------------------------------------------------------- CPU-thread-0 {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}} CPU-thread-1 {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+2] --------------------------------------------------------------- CPU-thread-0 {COW_step1: {update page table point to new page for addrA}} CPU-thread-1 {COW_step1: {update page table point to new page for addrB}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {write to addrA which is a write to new page} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+3] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {preempted} CPU-thread-2 {} CPU-thread-3 {write to addrB which is a write to new page} DEV-thread-0 {} DEV-thread-2 {} [Time N+4] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {} DEV-thread-2 {} [Time N+5] --------------------------------------------------------------- CPU-thread-0 {preempted} CPU-thread-1 {} CPU-thread-2 {} CPU-thread-3 {} DEV-thread-0 {read addrA from old page} DEV-thread-2 {read addrB from new page} So here because at time N+2 the clear page table entry was not pair with a notification to invalidate the secondary TLB, the device see the new value for addrB before seing the new value for addrA. This break total memory ordering for the device. When changing a pte to write protect or to point to a new write protected page with same content (KSM) it is ok to delay invalidate_range callback to mmu_notifier_invalidate_range_end() outside the page table lock. This is true even if the thread doing page table update is preempted right after releasing page table lock before calling mmu_notifier_invalidate_range_end Thanks to Andrea for thinking of a problematic scenario for COW. [jglisse@redhat.com: v2] Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
bffc33ec53 |
hmm: heterogeneous memory management documentation
Patch series "HMM (Heterogeneous Memory Management)", v25. Heterogeneous Memory Management (HMM) (description and justification) Today device driver expose dedicated memory allocation API through their device file, often relying on a combination of IOCTL and mmap calls. The device can only access and use memory allocated through this API. This effectively split the program address space into object allocated for the device and useable by the device and other regular memory (malloc, mmap of a file, share memory, â) only accessible by CPU (or in a very limited way by a device by pinning memory). Allowing different isolated component of a program to use a device thus require duplication of the input data structure using device memory allocator. This is reasonable for simple data structure (array, grid, image, â) but this get extremely complex with advance data structure (list, tree, graph, â) that rely on a web of memory pointers. This is becoming a serious limitation on the kind of work load that can be offloaded to device like GPU. New industry standard like C++, OpenCL or CUDA are pushing to remove this barrier. This require a shared address space between GPU device and CPU so that GPU can access any memory of a process (while still obeying memory protection like read only). This kind of feature is also appearing in various other operating systems. HMM is a set of helpers to facilitate several aspects of address space sharing and device memory management. Unlike existing sharing mechanism that rely on pining pages use by a device, HMM relies on mmu_notifier to propagate CPU page table update to device page table. Duplicating CPU page table is only one aspect necessary for efficiently using device like GPU. GPU local memory have bandwidth in the TeraBytes/ second range but they are connected to main memory through a system bus like PCIE that is limited to 32GigaBytes/second (PCIE 4.0 16x). Thus it is necessary to allow migration of process memory from main system memory to device memory. Issue is that on platform that only have PCIE the device memory is not accessible by the CPU with the same properties as main memory (cache coherency, atomic operations, ...). To allow migration from main memory to device memory HMM provides a set of helper to hotplug device memory as a new type of ZONE_DEVICE memory which is un-addressable by CPU but still has struct page representing it. This allow most of the core kernel logic that deals with a process memory to stay oblivious of the peculiarity of device memory. When page backing an address of a process is migrated to device memory the CPU page table entry is set to a new specific swap entry. CPU access to such address triggers a migration back to system memory, just like if the page was swap on disk. HMM also blocks any one from pinning a ZONE_DEVICE page so that it can always be migrated back to system memory if CPU access it. Conversely HMM does not migrate to device memory any page that is pin in system memory. To allow efficient migration between device memory and main memory a new migrate_vma() helpers is added with this patchset. It allows to leverage device DMA engine to perform the copy operation. This feature will be use by upstream driver like nouveau mlx5 and probably other in the future (amdgpu is next suspect in line). We are actively working on nouveau and mlx5 support. To test this patchset we also worked with NVidia close source driver team, they have more resources than us to test this kind of infrastructure and also a bigger and better userspace eco-system with various real industry workload they can be use to test and profile HMM. The expected workload is a program builds a data set on the CPU (from disk, from network, from sensors, â). Program uses GPU API (OpenCL, CUDA, ...) to give hint on memory placement for the input data and also for the output buffer. Program call GPU API to schedule a GPU job, this happens using device driver specific ioctl. All this is hidden from programmer point of view in case of C++ compiler that transparently offload some part of a program to GPU. Program can keep doing other stuff on the CPU while the GPU is crunching numbers. It is expected that CPU will not access the same data set as the GPU while GPU is working on it, but this is not mandatory. In fact we expect some small memory object to be actively access by both GPU and CPU concurrently as synchronization channel and/or for monitoring purposes. Such object will stay in system memory and should not be bottlenecked by system bus bandwidth (rare write and read access from both CPU and GPU). As we are relying on device driver API, HMM does not introduce any new syscall nor does it modify any existing ones. It does not change any POSIX semantics or behaviors. For instance the child after a fork of a process that is using HMM will not be impacted in anyway, nor is there any data hazard between child COW or parent COW of memory that was migrated to device prior to fork. HMM assume a numbers of hardware features. Device must allow device page table to be updated at any time (ie device job must be preemptable). Device page table must provides memory protection such as read only. Device must track write access (dirty bit). Device must have a minimum granularity that match PAGE_SIZE (ie 4k). Reviewer (just hint): Patch 1 HMM documentation Patch 2 introduce core infrastructure and definition of HMM, pretty small patch and easy to review Patch 3 introduce the mirror functionality of HMM, it relies on mmu_notifier and thus someone familiar with that part would be in better position to review Patch 4 is an helper to snapshot CPU page table while synchronizing with concurrent page table update. Understanding mmu_notifier makes review easier. Patch 5 is mostly a wrapper around handle_mm_fault() Patch 6 add new add_pages() helper to avoid modifying each arch memory hot plug function Patch 7 add a new memory type for ZONE_DEVICE and also add all the logic in various core mm to support this new type. Dan Williams and any core mm contributor are best people to review each half of this patchset Patch 8 special case HMM ZONE_DEVICE pages inside put_page() Kirill and Dan Williams are best person to review this Patch 9 allow to uncharge a page from memory group without using the lru list field of struct page (best reviewer: Johannes Weiner or Vladimir Davydov or Michal Hocko) Patch 10 Add support to uncharge ZONE_DEVICE page from a memory cgroup (best reviewer: Johannes Weiner or Vladimir Davydov or Michal Hocko) Patch 11 add helper to hotplug un-addressable device memory as new type of ZONE_DEVICE memory (new type introducted in patch 3 of this serie). This is boiler plate code around memory hotplug and it also pick a free range of physical address for the device memory. Note that the physical address do not point to anything (at least as far as the kernel knows). Patch 12 introduce a new hmm_device class as an helper for device driver that want to expose multiple device memory under a common fake device driver. This is usefull for multi-gpu configuration. Anyone familiar with device driver infrastructure can review this. Boiler plate code really. Patch 13 add a new migrate mode. Any one familiar with page migration is welcome to review. Patch 14 introduce a new migration helper (migrate_vma()) that allow to migrate a range of virtual address of a process using device DMA engine to perform the copy. It is not limited to do copy from and to device but can also do copy between any kind of source and destination memory. Again anyone familiar with migration code should be able to verify the logic. Patch 15 optimize the new migrate_vma() by unmapping pages while we are collecting them. This can be review by any mm folks. Patch 16 add unaddressable memory migration to helper introduced in patch 7, this can be review by anyone familiar with migration code Patch 17 add a feature that allow device to allocate non-present page on the GPU when migrating a range of address to device memory. This is an helper for device driver to avoid having to first allocate system memory before migration to device memory Patch 18 add a new kind of ZONE_DEVICE memory for cache coherent device memory (CDM) Patch 19 add an helper to hotplug CDM memory Previous patchset posting : v1 http://lwn.net/Articles/597289/ v2 https://lkml.org/lkml/2014/6/12/559 v3 https://lkml.org/lkml/2014/6/13/633 v4 https://lkml.org/lkml/2014/8/29/423 v5 https://lkml.org/lkml/2014/11/3/759 v6 http://lwn.net/Articles/619737/ v7 http://lwn.net/Articles/627316/ v8 https://lwn.net/Articles/645515/ v9 https://lwn.net/Articles/651553/ v10 https://lwn.net/Articles/654430/ v11 http://www.gossamer-threads.com/lists/linux/kernel/2286424 v12 http://www.kernelhub.org/?msg=972982&p=2 v13 https://lwn.net/Articles/706856/ v14 https://lkml.org/lkml/2016/12/8/344 v15 http://www.mail-archive.com/linux-kernel@xxxxxxxxxxxxxxx/msg1304107.html v16 http://www.spinics.net/lists/linux-mm/msg119814.html v17 https://lkml.org/lkml/2017/1/27/847 v18 https://lkml.org/lkml/2017/3/16/596 v19 https://lkml.org/lkml/2017/4/5/831 v20 https://lwn.net/Articles/720715/ v21 https://lkml.org/lkml/2017/4/24/747 v22 http://lkml.iu.edu/hypermail/linux/kernel/1705.2/05176.html v23 https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1404788.html v24 https://lwn.net/Articles/726691/ This patch (of 19): This adds documentation for HMM (Heterogeneous Memory Management). It presents the motivation behind it, the features necessary for it to be useful and and gives an overview of how this is implemented. Link: http://lkml.kernel.org/r/20170817000548.32038-2-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aaron Lu
|
a2468cc9bf |
swap: choose swap device according to numa node
If the system has more than one swap device and swap device has the node information, we can make use of this information to decide which swap device to use in get_swap_pages() to get better performance. The current code uses a priority based list, swap_avail_list, to decide which swap device to use and if multiple swap devices share the same priority, they are used round robin. This patch changes the previous single global swap_avail_list into a per-numa-node list, i.e. for each numa node, it sees its own priority based list of available swap devices. Swap device's priority can be promoted on its matching node's swap_avail_list. The current swap device's priority is set as: user can set a >=0 value, or the system will pick one starting from -1 then downwards. The priority value in the swap_avail_list is the negated value of the swap device's due to plist being sorted from low to high. The new policy doesn't change the semantics for priority >=0 cases, the previous starting from -1 then downwards now becomes starting from -2 then downwards and -1 is reserved as the promoted value. Take 4-node EX machine as an example, suppose 4 swap devices are available, each sit on a different node: swapA on node 0 swapB on node 1 swapC on node 2 swapD on node 3 After they are all swapped on in the sequence of ABCD. Current behaviour: their priorities will be: swapA: -1 swapB: -2 swapC: -3 swapD: -4 And their position in the global swap_avail_list will be: swapA -> swapB -> swapC -> swapD prio:1 prio:2 prio:3 prio:4 New behaviour: their priorities will be(note that -1 is skipped): swapA: -2 swapB: -3 swapC: -4 swapD: -5 And their positions in the 4 swap_avail_lists[nid] will be: swap_avail_lists[0]: /* node 0's available swap device list */ swapA -> swapB -> swapC -> swapD prio:1 prio:3 prio:4 prio:5 swap_avali_lists[1]: /* node 1's available swap device list */ swapB -> swapA -> swapC -> swapD prio:1 prio:2 prio:4 prio:5 swap_avail_lists[2]: /* node 2's available swap device list */ swapC -> swapA -> swapB -> swapD prio:1 prio:2 prio:3 prio:5 swap_avail_lists[3]: /* node 3's available swap device list */ swapD -> swapA -> swapB -> swapC prio:1 prio:2 prio:3 prio:4 To see the effect of the patch, a test that starts N process, each mmap a region of anonymous memory and then continually write to it at random position to trigger both swap in and out is used. On a 2 node Skylake EP machine with 64GiB memory, two 170GB SSD drives are used as swap devices with each attached to a different node, the result is: runtime=30m/processes=32/total test size=128G/each process mmap region=4G kernel throughput vanilla 13306 auto-binding 15169 +14% runtime=30m/processes=64/total test size=128G/each process mmap region=2G kernel throughput vanilla 11885 auto-binding 14879 +25% [aaron.lu@intel.com: v2] Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com [akpm@linux-foundation.org: use kmalloc_array()] Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: "Chen, Tim C" <tim.c.chen@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
c9bff3eebc |
mm, page_alloc: rip out ZONELIST_ORDER_ZONE
Patch series "cleanup zonelists initialization", v1. This is aimed at cleaning up the zonelists initialization code we have but the primary motivation was bug report [2] which got resolved but the usage of stop_machine is just too ugly to live. Most patches are straightforward but 3 of them need a special consideration. Patch 1 removes zone ordered zonelists completely. I am CCing linux-api because this is a user visible change. As I argue in the patch description I do not think we have a strong usecase for it these days. I have kept sysctl in place and warn into the log if somebody tries to configure zone lists ordering. If somebody has a real usecase for it we can revert this patch but I do not expect anybody will actually notice runtime differences. This patch is not strictly needed for the rest but it made patch 6 easier to implement. Patch 7 removes stop_machine from build_all_zonelists without adding any special synchronization between iterators and updater which I _believe_ is acceptable as explained in the changelog. I hope I am not missing anything. Patch 8 then removes zonelists_mutex which is kind of ugly as well and not really needed AFAICS but a care should be taken when double checking my thinking. This patch (of 9): Supporting zone ordered zonelists costs us just a lot of code while the usefulness is arguable if existent at all. Mel has already made node ordering default on 64b systems. 32b systems are still using ZONELIST_ORDER_ZONE because it is considered better to fallback to a different NUMA node rather than consume precious lowmem zones. This argument is, however, weaken by the fact that the memory reclaim has been reworked to be node rather than zone oriented. This means that lowmem requests have to skip over all highmem pages on LRUs already and so zone ordering doesn't save the reclaim time much. So the only advantage of the zone ordering is under a light memory pressure when highmem requests do not ever hit into lowmem zones and the lowmem pressure doesn't need to reclaim. Considering that 32b NUMA systems are rather suboptimal already and it is generally advisable to use 64b kernel on such a HW I believe we should rather care about the code maintainability and just get rid of ZONELIST_ORDER_ZONE altogether. Keep systcl in place and warn if somebody tries to set zone ordering either from kernel command line or the sysctl. [mhocko@suse.com: reading vm.numa_zonelist_order will never terminate] Link: http://lkml.kernel.org/r/20170721143915.14161-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
2c653d0ee2 |
ksm: introduce ksm_max_page_sharing per page deduplication limit
Without a max deduplication limit for each KSM page, the list of the rmap_items associated to each stable_node can grow infinitely large. During the rmap walk each entry can take up to ~10usec to process because of IPIs for the TLB flushing (both for the primary MMU and the secondary MMUs with the MMU notifier). With only 16GB of address space shared in the same KSM page, that would amount to dozens of seconds of kernel runtime. A ~256 max deduplication factor will reduce the latencies of the rmap walks on KSM pages to order of a few msec. Just doing the cond_resched() during the rmap walks is not enough, the list size must have a limit too, otherwise the caller could get blocked in (schedule friendly) kernel computations for seconds, unexpectedly. There's room for optimization to significantly reduce the IPI delivery cost during the page_referenced(), but at least for page_migration in the KSM case (used by hard NUMA bindings, compaction and NUMA balancing) it may be inevitable to send lots of IPIs if each rmap_item->mm is active on a different CPU and there are lots of CPUs. Even if we ignore the IPI delivery cost, we've still to walk the whole KSM rmap list, so we can't allow millions or billions (ulimited) number of entries in the KSM stable_node rmap_item lists. The limit is enforced efficiently by adding a second dimension to the stable rbtree. So there are three types of stable_nodes: the regular ones (identical as before, living in the first flat dimension of the stable rbtree), the "chains" and the "dups". Every "chain" and all "dups" linked into a "chain" enforce the invariant that they represent the same write protected memory content, even if each "dup" will be pointed by a different KSM page copy of that content. This way the stable rbtree lookup computational complexity is unaffected if compared to an unlimited max_sharing_limit. It is still enforced that there cannot be KSM page content duplicates in the stable rbtree itself. Adding the second dimension to the stable rbtree only after the max_page_sharing limit hits, provides for a zero memory footprint increase on 64bit archs. The memory overhead of the per-KSM page stable_tree and per virtual mapping rmap_item is unchanged. Only after the max_page_sharing limit hits, we need to allocate a stable_tree "chain" and rb_replace() the "regular" stable_node with the newly allocated stable_node "chain". After that we simply add the "regular" stable_node to the chain as a stable_node "dup" by linking hlist_dup in the stable_node_chain->hlist. This way the "regular" (flat) stable_node is converted to a stable_node "dup" living in the second dimension of the stable rbtree. During stable rbtree lookups the stable_node "chain" is identified as stable_node->rmap_hlist_len == STABLE_NODE_CHAIN (aka is_stable_node_chain()). When dropping stable_nodes, the stable_node "dup" is identified as stable_node->head == STABLE_NODE_DUP_HEAD (aka is_stable_node_dup()). The STABLE_NODE_DUP_HEAD must be an unique valid pointer never used elsewhere in any stable_node->head/node to avoid a clashes with the stable_node->node.rb_parent_color pointer, and different from &migrate_nodes. So the second field of &migrate_nodes is picked and verified as always safe with a BUILD_BUG_ON in case the list_head implementation changes in the future. The STABLE_NODE_DUP is picked as a random negative value in stable_node->rmap_hlist_len. rmap_hlist_len cannot become negative when it's a "regular" stable_node or a stable_node "dup". The stable_node_chain->nid is irrelevant. The stable_node_chain->kpfn is aliased in a union with a time field used to rate limit the stable_node_chain->hlist prunes. The garbage collection of the stable_node_chain happens lazily during stable rbtree lookups (as for all other kind of stable_nodes), or while disabling KSM with "echo 2 >/sys/kernel/mm/ksm/run" while collecting the entire stable rbtree. While the "regular" stable_nodes and the stable_node "dups" must wait for their underlying tree_page to be freed before they can be freed themselves, the stable_node "chains" can be freed immediately if the stable_node->hlist turns empty. This is because the "chains" are never pointed by any page->mapping and they're effectively stable rbtree KSM self contained metadata. [akpm@linux-foundation.org: fix non-NUMA build] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Petr Holasek <pholasek@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Evgheni Dereveanchin <ederevea@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Gavin Guo <gavin.guo@canonical.com> Cc: Jay Vosburgh <jay.vosburgh@canonical.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
SeongJae Park
|
929f9d285a |
Documentation/vm/transhuge.txt: fix trivial typos
[akpm@linux-foundation.org: fixes per Randy] Link: http://lkml.kernel.org/r/20170405210259.2067-1-sj38.park@gmail.com Signed-off-by: SeongJae Park <sj38.park@gmail.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
70bc0dc578 |
Documentation: vm, add hugetlbfs reservation overview
Adding a brief overview of hugetlbfs reservation design and implementation as an aid to those making code modifications in this area. Link: http://lkml.kernel.org/r/1491586995-13085-1-git-send-email-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
dd0db88d80 |
userfaultfd: non-cooperative: rollback userfaultfd_exit
Patch series "userfaultfd non-cooperative further update for 4.11 merge window". Unfortunately I noticed one relevant bug in userfaultfd_exit while doing more testing. I've been doing testing before and this was also tested by kbuild bot and exercised by the selftest, but this bug never reproduced before. I dropped userfaultfd_exit as result. I dropped it because of implementation difficulty in receiving signals in __mmput and because I think -ENOSPC as result from the background UFFDIO_COPY should be enough already. Before I decided to remove userfaultfd_exit, I noticed userfaultfd_exit wasn't exercised by the selftest and when I tried to exercise it, after moving it to a more correct place in __mmput where it would make more sense and where the vma list is stable, it resulted in the event_wait_completion in D state. So then I added the second patch to be sure even if we call userfaultfd_event_wait_completion too late during task exit(), we won't risk to generate tasks in D state. The same check exists in handle_userfault() for the same reason, except it makes a difference there, while here is just a robustness check and it's run under WARN_ON_ONCE. While looking at the userfaultfd_event_wait_completion() function I looked back at its callers too while at it and I think it's not ok to stop executing dup_fctx on the fcs list because we relay on userfaultfd_event_wait_completion to execute userfaultfd_ctx_put(fctx->orig) which is paired against userfaultfd_ctx_get(fctx->orig) in dup_userfault just before list_add(fcs). This change only takes care of fctx->orig but this area also needs further review looking for similar problems in fctx->new. The only patch that is urgent is the first because it's an use after free during a SMP race condition that affects all processes if CONFIG_USERFAULTFD=y. Very hard to reproduce though and probably impossible without SLUB poisoning enabled. This patch (of 3): I once reproduced this oops with the userfaultfd selftest, it's not easily reproducible and it requires SLUB poisoning to reproduce. general protection fault: 0000 [#1] SMP Modules linked in: CPU: 2 PID: 18421 Comm: userfaultfd Tainted: G ------------ T 3.10.0+ #15 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.1-0-g8891697-prebuilt.qemu-project.org 04/01/2014 task: ffff8801f83b9440 ti: ffff8801f833c000 task.ti: ffff8801f833c000 RIP: 0010:[<ffffffff81451299>] [<ffffffff81451299>] userfaultfd_exit+0x29/0xa0 RSP: 0018:ffff8801f833fe80 EFLAGS: 00010202 RAX: ffff8801f833ffd8 RBX: 6b6b6b6b6b6b6b6b RCX: ffff8801f83b9440 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8800baf18600 RBP: ffff8801f833fee8 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: ffffffff8127ceb3 R12: 0000000000000000 R13: ffff8800baf186b0 R14: ffff8801f83b99f8 R15: 00007faed746c700 FS: 0000000000000000(0000) GS:ffff88023fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007faf0966f028 CR3: 0000000001bc6000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Call Trace: do_exit+0x297/0xd10 SyS_exit+0x17/0x20 tracesys+0xdd/0xe2 Code: 00 00 66 66 66 66 90 55 48 89 e5 41 54 53 48 83 ec 58 48 8b 1f 48 85 db 75 11 eb 73 66 0f 1f 44 00 00 48 8b 5b 10 48 85 db 74 64 <4c> 8b a3 b8 00 00 00 4d 85 e4 74 eb 41 f6 84 24 2c 01 00 00 80 RIP [<ffffffff81451299>] userfaultfd_exit+0x29/0xa0 RSP <ffff8801f833fe80> ---[ end trace 9fecd6dcb442846a ]--- In the debugger I located the "mm" pointer in the stack and walking mm->mmap->vm_next through the end shows the vma->vm_next list is fully consistent and it is null terminated list as expected. So this has to be an SMP race condition where userfaultfd_exit was running while the vma list was being modified by another CPU. When userfaultfd_exit() run one of the ->vm_next pointers pointed to SLAB_POISON (RBX is the vma pointer and is 0x6b6b..). The reason is that it's not running in __mmput but while there are still other threads running and it's not holding the mmap_sem (it can't as it has to wait the even to be received by the manager). So this is an use after free that was happening for all processes. One more implementation problem aside from the race condition: userfaultfd_exit has really to check a flag in mm->flags before walking the vma or it's going to slowdown the exit() path for regular tasks. One more implementation problem: at that point signals can't be delivered so it would also create a task in D state if the manager doesn't read the event. The major design issue: it overall looks superfluous as the manager can check for -ENOSPC in the background transfer: if (mmget_not_zero(ctx->mm)) { [..] } else { return -ENOSPC; } It's safer to roll it back and re-introduce it later if at all. [rppt@linux.vnet.ibm.com: documentation fixup after removal of UFFD_EVENT_EXIT] Link: http://lkml.kernel.org/r/1488345437-4364-1-git-send-email-rppt@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/20170224181957.19736-2-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Masahiro Yamada
|
9332ef9dbd |
scripts/spelling.txt: add "an user" pattern and fix typo instances
Fix typos and add the following to the scripts/spelling.txt: an user||a user an userspace||a userspace I also added "userspace" to the list since it is a common word in Linux. I found some instances for "an userfaultfd", but I did not add it to the list. I felt it is endless to find words that start with "user" such as "userland" etc., so must draw a line somewhere. Link: http://lkml.kernel.org/r/1481573103-11329-4-git-send-email-yamada.masahiro@socionext.com Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
def5efe037 |
mm, madvise: fail with ENOMEM when splitting vma will hit max_map_count
If madvise(2) advice will result in the underlying vma being split and the number of areas mapped by the process will exceed /proc/sys/vm/max_map_count as a result, return ENOMEM instead of EAGAIN. EAGAIN is returned by madvise(2) when a kernel resource, such as slab, is temporarily unavailable. It indicates that userspace should retry the advice in the near future. This is important for advice such as MADV_DONTNEED which is often used by malloc implementations to free memory back to the system: we really do want to free memory back when madvise(2) returns EAGAIN because slab allocations (for vmas, anon_vmas, or mempolicies) cannot be allocated. Encountering /proc/sys/vm/max_map_count is not a temporary failure, however, so return ENOMEM to indicate this is a more serious issue. A followup patch to the man page will specify this behavior. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701241431120.42507@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
5a02026d39 |
userfaultfd: documentation update
Add documentation about new userfaultfd features and events Link: http://lkml.kernel.org/r/1487716431-5551-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Claudio Imbrenda
|
e86c59b1b1 |
mm/ksm: improve deduplication of zero pages with colouring
Some architectures have a set of zero pages (coloured zero pages) instead of only one zero page, in order to improve the cache performance. In those cases, the kernel samepage merger (KSM) would merge all the allocated pages that happen to be filled with zeroes to the same deduplicated page, thus losing all the advantages of coloured zero pages. This behaviour is noticeable when a process accesses large arrays of allocated pages containing zeroes. A test I conducted on s390 shows that there is a speed penalty when KSM merges such pages, compared to not merging them or using actual zero pages from the start without breaking the COW. This patch fixes this behaviour. When coloured zero pages are present, the checksum of a zero page is calculated during initialisation, and compared with the checksum of the current canditate during merging. In case of a match, the normal merging routine is used to merge the page with the correct coloured zero page, which ensures the candidate page is checked to be equal to the target zero page. A sysfs entry is also added to toggle this behaviour, since it can potentially introduce performance regressions, especially on architectures without coloured zero pages. The default value is disabled, for backwards compatibility. With this patch, the performance with KSM is the same as with non COW-broken actual zero pages, which is also the same as without KSM. [akpm@linux-foundation.org: make zero_checksum and ksm_use_zero_pages __read_mostly, per Andrea] [imbrenda@linux.vnet.ibm.com: documentation for coloured zero pages deduplication] Link: http://lkml.kernel.org/r/1484927522-1964-1-git-send-email-imbrenda@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/1484850953-23941-1-git-send-email-imbrenda@linux.vnet.ibm.com Signed-off-by: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
bc49a7831b |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: "142 patches: - DAX updates - various misc bits - OCFS2 updates - most of MM" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (142 commits) mm/z3fold.c: limit first_num to the actual range of possible buddy indexes mm: fix <linux/pagemap.h> stray kernel-doc notation zram: remove obsolete sysfs attrs mm/memblock.c: remove unnecessary log and clean up oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA mm: drop unused argument of zap_page_range() mm: drop zap_details::check_swap_entries mm: drop zap_details::ignore_dirty mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled mm: help __GFP_NOFAIL allocations which do not trigger OOM killer mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically mm: consolidate GFP_NOFAIL checks in the allocator slowpath lib/show_mem.c: teach show_mem to work with the given nodemask arch, mm: remove arch specific show_mem mm, page_alloc: warn_alloc print nodemask mm, page_alloc: do not report all nodes in show_mem Revert "mm: bail out in shrink_inactive_list()" mm, vmscan: consider eligible zones in get_scan_count mm, vmscan: cleanup lru size claculations mm, vmscan: do not count freed pages as PGDEACTIVATE ... |
||
Linus Torvalds
|
c1aac62f36 |
A slightly quieter cycle for documentation this time around.
Three more DocBook template files have been converted to RST; only 21 to go. There are various build improvements and the usual array of documentation improvements and fixes. -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJYriFXAAoJEI3ONVYwIuV6iTMP/iV7ownq9IK1f8askcXKM76i NoRdj4/JywAPQ73vLhOSDVELGdVJNRBjdyOdBRzxPgsqAhFmm79lVYV2eLIffQ2k 7LcVbEQR77I+4z9SwqIVbIWNCBry7Hu8aWh7moDL3I6yeuay408yr5YW2lIlsqHZ V/LZgkTWDe+iQPeXNA4Djzylx0lcRlAy4yMSLjN1+gb9/uBnXb9J0eGJzgfZfrL8 fiIhymg3bv8vB99l6LMR5vT343QLWXf1yS31A7rPQvwkDo6zFehUJA0XNfIsl2dw VQYsvl9vp9wy3e6Y0qKXPn1XhAhCrm64P3crBxK31MMvcKZVCfeRSZ78wrvpvewy MVLlXdqop1bHPHowtRfA5jwxr1NqcYp+Jg0+YGX3iXpPi1Jfk36DNUy9iWvtvIzr lWgQcIKsdCwwYUcvPR8Kt8T/3q/AHbYlI6mimWlkmbZwncQcgCrH5xSG+c2BIPfV fn3W6eLHBn8RyVsxlaXlA0Y9TNtI/Cm85b3Ri10pFvhl868ppWfJxXHi7UtcbU58 sQzahISCTXOH/NQwkkh7kFMtczbB43rAcChvF7EUYpazVBpJ4P4HxKFg3eIzIdc6 VlBSaMu1hxUGoYxNNYuKr/nYstuczLOKzK7q4j/JOExY3RgTWP+T3bF02wgubvoa D/9WfScewkgCJRoA7i17 =C5nd -----END PGP SIGNATURE----- Merge tag 'docs-4.11' of git://git.lwn.net/linux Pull documentation updates from Jonathan Corbet: "A slightly quieter cycle for documentation this time around. Three more DocBook template files have been converted to RST; only 21 to go. There are various build improvements and the usual array of documentation improvements and fixes" * tag 'docs-4.11' of git://git.lwn.net/linux: (44 commits) docs / driver-api: Fix structure references in device_link.rst PM / docs: Fix structure references in device.rst Add a target to check broken external links in the Documentation Documentation: Fix linux-api list typo Documentation: DocBook/Makefile comment typo Improve sparse documentation Documentation: make Makefile.sphinx no-ops quieter Documentation: DMA-ISA-LPC.txt Documentation: input: fix path to input code definitions docs: Remove the copyright year from conf.py docs: Fix a warning in the Korean HOWTO.rst translation PM / sleep / docs: Convert PM notifiers document to reST PM / core / docs: Convert sleep states API document to reST PM / core: Update kerneldoc comments in pm.h doc-rst: Fix recursive make invocation from macros doc-rst: Delete output of failed dot-SVG conversion doc-rst: Break shell command sequences on failure Documentation/sphinx: make targets independent of Sphinx work for HAVE_SPHINX=0 doc-rst: fixed cleandoc target when used with O=dir Documentation/sphinx: prevent generation of .pyc files in the source tree ... |
||
David Rientjes
|
21440d7eb9 |
mm, thp: add new defer+madvise defrag option
There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Masanari Iida
|
8da9704c8b |
Doc: Fix double words in Documentation
This patch fix some double words found in Documentation. Signed-off-by: Masanari Iida <standby24x7@gmail.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Alexander Duyck
|
4d09d0f45d |
mm: add documentation for page fragment APIs
This is a first pass at trying to add documentation for the page_frag APIs. They may still change over time but for now I thought I would try to get these documented so that as more network drivers and stack calls make use of them we have one central spot to document how they are meant to be used. Link: http://lkml.kernel.org/r/20170104024157.13451.6758.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
e7aa8c2eb1 |
These are the documentation changes for 4.10.
It's another busy cycle for the docs tree, as the sphinx conversion continues. Highlights include: - Further work on PDF output, which remains a bit of a pain but should be more solid now. - Five more DocBook template files converted to Sphinx. Only 27 to go... Lots of plain-text files have also been converted and integrated. - Images in binary formats have been replaced with more source-friendly versions. - Various bits of organizational work, including the renaming of various files discussed at the kernel summit. - New documentation for the device_link mechanism. ...and, of course, lots of typo fixes and small updates. -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJYTbl7AAoJEI3ONVYwIuV63NIP/REwzThnGWFJMRSuq8Ieq2r9 sFSQsaGTGlhyKiDoEooo+SO/Za3uTonjK+e7WZg8mhdiEdamta5aociU/71C1Yy/ T9ur0FhcGblrvZ1NidSDvCLwuECZOMMei7mgLZ9a+KCpc4ANqqTVZSUm1blKcqhF XelhVXxBa0ar35l/pVzyCxkdNXRWXv+MJZE8hp5XAdTdr11DS7UY9zrZdH31axtf BZlbYJrvB8WPydU6myTjRpirA17Hu7uU64MsL3bNIEiRQ+nVghEzQC8uxeUCvfVx r0H5AgGGQeir+e8GEv2T20SPZ+dumXs+y/HehKNb3jS3gV0mo+pKPeUhwLIxr+Zh QY64gf+jYf5ISHwAJRnU0Ima72ehObzSbx9Dko10nhq2OvbR5f83gjz9t9jKYFU7 RDowICA8lwqyRbHRoVfyoW8CpVhWFpMFu3yNeJMckeTish3m7ANqzaWslbsqIP5G zxgFMIrVVSbeae+sUeygtEJAnWI09aZ4tuaUXYtGWwu6ikC/3aV6DryP4bthG2LF A19uV4nMrLuuh8g2wiTHHjMfjYRwvSn+f9yaolwJhwyNDXQzRPy+ZJ3W/6olOkXC bAxTmVRCW5GA/fmSrfXmW1KbnxlWfP2C62hzZQ09UHxzTHdR97oFLDQdZhKo1uwf pmSJR0hVeRUmA4uw6+Su =A0EV -----END PGP SIGNATURE----- Merge tag 'docs-4.10' of git://git.lwn.net/linux Pull documentation update from Jonathan Corbet: "These are the documentation changes for 4.10. It's another busy cycle for the docs tree, as the sphinx conversion continues. Highlights include: - Further work on PDF output, which remains a bit of a pain but should be more solid now. - Five more DocBook template files converted to Sphinx. Only 27 to go... Lots of plain-text files have also been converted and integrated. - Images in binary formats have been replaced with more source-friendly versions. - Various bits of organizational work, including the renaming of various files discussed at the kernel summit. - New documentation for the device_link mechanism. ... and, of course, lots of typo fixes and small updates" * tag 'docs-4.10' of git://git.lwn.net/linux: (193 commits) dma-buf: Extract dma-buf.rst Update Documentation/00-INDEX docs: 00-INDEX: document directories/files with no docs docs: 00-INDEX: remove non-existing entries docs: 00-INDEX: add missing entries for documentation files/dirs docs: 00-INDEX: consolidate process/ and admin-guide/ description scripts: add a script to check if Documentation/00-INDEX is sane Docs: change sh -> awk in REPORTING-BUGS Documentation/core-api/device_link: Add initial documentation core-api: remove an unexpected unident ppc/idle: Add documentation for powersave=off Doc: Correct typo, "Introdution" => "Introduction" Documentation/atomic_ops.txt: convert to ReST markup Documentation/local_ops.txt: convert to ReST markup Documentation/assoc_array.txt: convert to ReST markup docs-rst: parse-headers.pl: cleanup the documentation docs-rst: fix media cleandocs target docs-rst: media/Makefile: reorganize the rules docs-rst: media: build SVG from graphviz files docs-rst: replace bayer.png by a SVG image ... |
||
Hugh Dickins
|
49920d2878 |
mm: make transparent hugepage size public
Test programs want to know the size of a transparent hugepage. While it is commonly the same as the size of a hugetlbfs page (shown as Hugepagesize in /proc/meminfo), that is not always so: powerpc implements transparent hugepages in a different way from hugetlbfs pages, so it's coincidence when their sizes are the same; and x86 and others can support more than one hugetlbfs page size. Add /sys/kernel/mm/transparent_hugepage/hpage_pmd_size to show the THP size in bytes - it's the same for Anonymous and Shmem hugepages. Call it hpage_pmd_size (after HPAGE_PMD_SIZE) rather than hpage_size, in case some transparent support for pud and pgd pages is added later. Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052200290.13021@eggly.anvils Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: David Rientjes <rientjes@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mauro Carvalho Chehab
|
8c27ceff36 |
docs: fix locations of several documents that got moved
The previous patch renamed several files that are cross-referenced along the Kernel documentation. Adjust the links to point to the right places. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> |
||
Linus Torvalds
|
52ddb7e9dd |
Three fixes for the docs build, including removing an annoying warning on
"make help" if sphinx isn't present. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJXo8sIAAoJEI3ONVYwIuV6po0P/0ZZo+YF0GrPvOHr7uuUqAND 0+4WRfSsT74z5Rn/W3apeX6CM7IGBMSR2zM89E2nWmbE2Uo7bIbrwj6C+Y6gMMfd aws0Xi9899Jr6hVkeFVZ9foze+M2yc3tE1vFBby035uW3Zwyz2XHzaU/9vyLOLkJ c7jhqCWebqFEqOSWtw2FZYegt2oHSjUsQgGCh3kk2pCU+DzLHntwbblJLeMuTy+h zPVxTTBcBkUZcIjpkSvhqc/oCLCiWKLElmwxPBwfpNU9UlE0rol2Lx1eLClxadFl QVlb1UAIjPcLnHQoM8dL9NR0tkfGopIDuNCL26GU5ie9N4zurOj5a6hj+G5mZKLB tsMqIw+N7ig5FnaQhaCx3oN/VMZ0djxURu9XvKsHBmOCd2Bp8SDoqpCkTwCqCxcN DVdUjpS1WUT9w2A1jhH32mx+23eRwJa5oaTFpM3Y0z7Bl9N40ScY2WJcgBKWqHgx LRROJAzNOPojbBkwTDNsRValwgtutCcqaRw5mNQTp3YjjmltmqylCvJH3AST+z5r CmMDO96O3rUGsCZYoBhxafC2FUUh5RkUwQq/Cy8nrioMookE3Yd5A9DN6wWQ2pTt tev/z6s3ov8dygeF6u3noOHCa8GPUpSHO62FyHUKYnn6Tl8xh3x7rmUkUqrJZi5a dnXOZzp34eVhev5xDeDN =iD7L -----END PGP SIGNATURE----- Merge tag 'doc-4.8-fixes' of git://git.lwn.net/linux Pull documentation fixes from Jonathan Corbet: "Three fixes for the docs build, including removing an annoying warning on 'make help' if sphinx isn't present" * tag 'doc-4.8-fixes' of git://git.lwn.net/linux: DocBook: use DOCBOOKS="" to ignore DocBooks instead of IGNORE_DOCBOOKS=1 Documenation: update cgroup's document path Documentation/sphinx: do not warn about missing tools in 'make help' |
||
seokhoon.yoon
|
09c3bcce7c |
Documenation: update cgroup's document path
cgroup's document path is changed to "cgroup-v1". update it. Signed-off-by: seokhoon.yoon <iamyooon@gmail.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Minchan Kim
|
dd4123f324 |
mm: fix build warnings in <linux/compaction.h>
Randy reported below build error. > In file included from ../include/linux/balloon_compaction.h:48:0, > from ../mm/balloon_compaction.c:11: > ../include/linux/compaction.h:237:51: warning: 'struct node' declared inside parameter list [enabled by default] > static inline int compaction_register_node(struct node *node) > ../include/linux/compaction.h:237:51: warning: its scope is only this definition or declaration, which is probably not what you want [enabled by default] > ../include/linux/compaction.h:242:54: warning: 'struct node' declared inside parameter list [enabled by default] > static inline void compaction_unregister_node(struct node *node) > It was caused by non-lru page migration which needs compaction.h but compaction.h doesn't include any header to be standalone. I think proper header for non-lru page migration is migrate.h rather than compaction.h because migrate.h has already headers needed to work non-lru page migration indirectly like isolate_mode_t, migrate_mode MIGRATEPAGE_SUCCESS. [akpm@linux-foundation.org: revert mm-balloon-use-general-non-lru-movable-page-feature-fix.patch temp fix] Link: http://lkml.kernel.org/r/20160610003304.GE29779@bbox Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Randy Dunlap <rdunlap@infradead.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Gioh Kim <gi-oh.kim@profitbricks.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
1b5946a84d |
thp: update Documentation/{vm/transhuge,filesystems/proc}.txt
Add info about tmpfs/shmem with huge pages. Link: http://lkml.kernel.org/r/1466021202-61880-38-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
6fb8ddfc45 |
thp, mlock: update unevictable-lru.txt
Add description of THP handling into unevictable-lru.txt. Link: http://lkml.kernel.org/r/1466021202-61880-7-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
bda807d444 |
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vitaly Wool
|
9a001fc19c |
z3fold: the 3-fold allocator for compressed pages
This patch introduces z3fold, a special purpose allocator for storing compressed pages. It is designed to store up to three compressed pages per physical page. It is a ZBUD derivative which allows for higher compression ratio keeping the simplicity and determinism of its predecessor. This patch comes as a follow-up to the discussions at the Embedded Linux Conference in San-Diego related to the talk [1]. The outcome of these discussions was that it would be good to have a compressed page allocator as stable and deterministic as zbud with with higher compression ratio. To keep the determinism and simplicity, z3fold, just like zbud, always stores an integral number of compressed pages per page, but it can store up to 3 pages unlike zbud which can store at most 2. Therefore the compression ratio goes to around 2.6x while zbud's one is around 1.7x. The patch is based on the latest linux.git tree. This version has been updated after testing on various simulators (e.g. ARM Versatile Express, MIPS Malta, x86_64/Haswell) and basing on comments from Dan Streetman [3]. [1] https://openiotelc2016.sched.org/event/6DAC/swapping-and-embedded-compression-relieves-the-pressure-vitaly-wool-softprise-consulting-ou [2] https://lkml.org/lkml/2016/4/21/799 [3] https://lkml.org/lkml/2016/5/4/852 Link: http://lkml.kernel.org/r/20160509151753.ec3f9fda3c9898d31ff52a32@gmail.com Signed-off-by: Vitaly Wool <vitalywool@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Eric Engestrom
|
89474d50a0 |
Documentation: vm: fix spelling mistakes
Signed-off-by: Eric Engestrom <eric@engestrom.ch> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
a05a70db34 |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: - fsnotify fix - poll() timeout fix - a few scripts/ tweaks - debugobjects updates - the (small) ocfs2 queue - Minor fixes to kernel/padata.c - Maybe half of the MM queue * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (117 commits) mm, page_alloc: restore the original nodemask if the fast path allocation failed mm, page_alloc: uninline the bad page part of check_new_page() mm, page_alloc: don't duplicate code in free_pcp_prepare mm, page_alloc: defer debugging checks of pages allocated from the PCP mm, page_alloc: defer debugging checks of freed pages until a PCP drain cpuset: use static key better and convert to new API mm, page_alloc: inline pageblock lookup in page free fast paths mm, page_alloc: remove unnecessary variable from free_pcppages_bulk mm, page_alloc: pull out side effects from free_pages_check mm, page_alloc: un-inline the bad part of free_pages_check mm, page_alloc: check multiple page fields with a single branch mm, page_alloc: remove field from alloc_context mm, page_alloc: avoid looking up the first zone in a zonelist twice mm, page_alloc: shortcut watermark checks for order-0 pages mm, page_alloc: reduce cost of fair zone allocation policy retry mm, page_alloc: shorten the page allocator fast path mm, page_alloc: check once if a zone has isolated pageblocks mm, page_alloc: move __GFP_HARDWALL modifications out of the fastpath mm, page_alloc: simplify last cpupid reset mm, page_alloc: remove unnecessary initialisation from __alloc_pages_nodemask() ... |
||
Joonsoo Kim
|
0139aa7b7f |
mm: rename _count, field of the struct page, to _refcount
Many developers already know that field for reference count of the struct page is _count and atomic type. They would try to handle it directly and this could break the purpose of page reference count tracepoint. To prevent direct _count modification, this patch rename it to _refcount and add warning message on the code. After that, developer who need to handle reference count will find that field should not be accessed directly. [akpm@linux-foundation.org: fix comments, per Vlastimil] [akpm@linux-foundation.org: Documentation/vm/transhuge.txt too] [sfr@canb.auug.org.au: sync ethernet driver changes] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Sunil Goutham <sgoutham@cavium.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Manish Chopra <manish.chopra@qlogic.com> Cc: Yuval Mintz <yuval.mintz@qlogic.com> Cc: Tariq Toukan <tariqt@mellanox.com> Cc: Saeed Mahameed <saeedm@mellanox.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Geert Uytterhoeven
|
30955e71fc |
Documentation: vm: Spelling s/paltform/platform/g
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Kees Cook
|
08559657b2 |
Documentation: fix common spelling mistakes
This fixes several spelling mistakes in the Documentation/ tree, which are caught by checkpatch.pl's spell checking. Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Doug Hoyte
|
63f8e8d2a5 |
Documentation typo: wrong page flag bit for KPF_HUGE
The correct value 17 can be found later in this document and in the kernel-page-flags.h header (KPF_HUGE). I noticed this while implementing vmprobe's kpageflags support. Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Mel Gorman
|
444eb2a449 |
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
THP defrag is enabled by default to direct reclaim/compact but not wake kswapd in the event of a THP allocation failure. The problem is that THP allocation requests potentially enter reclaim/compaction. This potentially incurs a severe stall that is not guaranteed to be offset by reduced TLB misses. While there has been considerable effort to reduce the impact of reclaim/compaction, it is still a high cost and workloads that should fit in memory fail to do so. Specifically, a simple anon/file streaming workload will enter direct reclaim on NUMA at least even though the working set size is 80% of RAM. It's been years and it's time to throw in the towel. First, this patch defines THP defrag as follows; madvise: A failed allocation will direct reclaim/compact if the application requests it never: Neither reclaim/compact nor wake kswapd defer: A failed allocation will wake kswapd/kcompactd always: A failed allocation will direct reclaim/compact (historical behaviour) khugepaged defrag will enter direct/reclaim but not wake kswapd. Next it sets the default defrag option to be "madvise" to only enter direct reclaim/compaction for applications that specifically requested it. Lastly, it removes a check from the page allocator slowpath that is related to __GFP_THISNODE to allow "defer" to work. The callers that really cares are slub/slab and they are updated accordingly. The slab one may be surprising because it also corrects a comment as kswapd was never woken up by that path. This means that a THP fault will no longer stall for most applications by default and the ideal for most users that get THP if they are immediately available. There are still options for users that prefer a stall at startup of a new application by either restoring historical behaviour with "always" or pick a half-way point with "defer" where kswapd does some of the work in the background and wakes kcompactd if necessary. THP defrag for khugepaged remains enabled and will enter direct/reclaim but no wakeup kswapd or kcompactd. After this patch a THP allocation failure will quickly fallback and rely on khugepaged to recover the situation at some time in the future. In some cases, this will reduce THP usage but the benefit of THP is hard to measure and not a universal win where as a stall to reclaim/compaction is definitely measurable and can be painful. The first test for this is using "usemem" to read a large file and write a large anonymous mapping (to avoid the zero page) multiple times. The total size of the mappings is 80% of RAM and the benchmark simply measures how long it takes to complete. It uses multiple threads to see if that is a factor. On UMA, the performance is almost identical so is not reported but on NUMA, we see this usemem 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%) Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%) Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%) Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%) Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%) Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%) Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%) Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%) Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%) Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%) Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%) Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%) Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%) Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%) For a single thread, the benchmark completes 43.23% faster with this patch applied with smaller benefits as the thread increases. Similar, notice the large reduction in most cases in system CPU usage. The overall CPU time is 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 User 10357.65 10438.33 System 3988.88 3543.94 Elapsed 2203.01 1634.41 Which is substantial. Now, the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 128458477 278352931 Major Faults 2174976 225 Swap Ins 16904701 0 Swap Outs 17359627 0 Allocation stalls 43611 0 DMA allocs 0 0 DMA32 allocs 19832646 19448017 Normal allocs 614488453 580941839 Movable allocs 0 0 Direct pages scanned 24163800 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 20691346 0 Compaction stalls 42263 0 Compaction success 938 0 Compaction failures 41325 0 This patch eliminates almost all swapping and direct reclaim activity. There is still overhead but it's from NUMA balancing which does not identify that it's pointless trying to do anything with this workload. I also tried the thpscale benchmark which forces a corner case where compaction can be used heavily and measures the latency of whether base or huge pages were used thpscale Fault Latencies 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%) Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%) Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%) Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%) Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%) Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%) Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%) Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%) Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%) Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%) Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%) Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%) Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%) Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%) Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%) Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%) Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%) Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%) The average time to fault pages is substantially reduced in the majority of caseds but with the obvious caveat that fewer THPs are actually used in this adverse workload 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%) Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%) Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%) Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%) Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%) Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%) Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%) Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%) Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%) 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 37429143 47564000 Major Faults 1916 1558 Swap Ins 1466 1079 Swap Outs 2936863 149626 Allocation stalls 62510 3 DMA allocs 0 0 DMA32 allocs 6566458 6401314 Normal allocs 216361697 216538171 Movable allocs 0 0 Direct pages scanned 25977580 17998 Kswapd pages scanned 0 3638931 Kswapd pages reclaimed 0 207236 Direct pages reclaimed 8833714 88 Compaction stalls 103349 5 Compaction success 270 4 Compaction failures 103079 1 Note again that while this does swap as it's an aggressive workload, the direct relcim activity and allocation stalls is substantially reduced. There is some kswapd activity but ftrace showed that the kswapd activity was due to normal wakeups from 4K pages being allocated. Compaction-related stalls and activity are almost eliminated. I also tried the stutter benchmark. For this, I do not have figures for NUMA but it's something that does impact UMA so I'll report what is available stutter 4.4.0 4.4.0 kcompactd-v1r1 nodefrag-v1r3 Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%) 1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%) 2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%) 3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%) Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%) Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%) Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%) Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%) Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%) Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%) This benchmark is trying to fault an anonymous mapping while there is a heavy IO load -- a scenario that desktop users used to complain about frequently. This shows a mix because the ideal case of mapping with THP is not hit as often. However, note that 99% of the mappings complete 13.79% faster. The CPU usage here is particularly interesting 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 User 67.50 0.99 System 1327.88 91.30 Elapsed 2079.00 2128.98 And once again we look at the reclaim figures 4.4.0 4.4.0 kcompactd-v1r1nodefrag-v1r3 Minor Faults 335241922 1314582827 Major Faults 715 819 Swap Ins 0 0 Swap Outs 0 0 Allocation stalls 532723 0 DMA allocs 0 0 DMA32 allocs 1822364341 1177950222 Normal allocs 1815640808 1517844854 Movable allocs 0 0 Direct pages scanned 21892772 0 Kswapd pages scanned 20015890 41879484 Kswapd pages reclaimed 19961986 41822072 Direct pages reclaimed 21892741 0 Compaction stalls 1065755 0 Compaction success 514 0 Compaction failures 1065241 0 Allocation stalls and all direct reclaim activity is eliminated as well as compaction-related stalls. THP gives impressive gains in some cases but only if they are quickly available. We're not going to reach the point where they are completely free so lets take the costs out of the fast paths finally and defer the cost to kswapd, kcompactd and khugepaged where it belongs. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
f9719a03de |
thp, vmstats: count deferred split events
Count how many times we put a THP in split queue. Currently, it happens on partial unmap of a THP. Rapidly growing value can indicate that an application behaves unfriendly wrt THP: often fault in huge page and then unmap part of it. This leads to unnecessary memory fragmentation and the application may require tuning. The event also can help with debugging kernel [mis-]behaviour. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
7dd80b8af0 |
mm, page_owner: convert page_owner_inited to static key
CONFIG_PAGE_OWNER attempts to impose negligible runtime overhead when enabled during compilation, but not actually enabled during runtime by boot param page_owner=on. This overhead can be further reduced using the static key mechanism, which this patch does. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Laura Abbott
|
becfda68ab |
slub: convert SLAB_DEBUG_FREE to SLAB_CONSISTENCY_CHECKS
SLAB_DEBUG_FREE allows expensive consistency checks at free to be turned on or off. Expand its use to be able to turn off all consistency checks. This gives a nice speed up if you only want features such as poisoning or tracing. Credit to Mathias Krause for the original work which inspired this series Signed-off-by: Laura Abbott <labbott@fedoraproject.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mathias Krause <minipli@googlemail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
0cbeafb245 |
Merge branch 'akpm' (patches from Andrew)
Merge second patch-bomb from Andrew Morton: - more MM stuff: - Kirill's page-flags rework - Kirill's now-allegedly-fixed THP rework - MADV_FREE implementation - DAX feature work (msync/fsync). This isn't quite complete but DAX is new and it's good enough and the guys have a handle on what needs to be done - I expect this to be wrapped in the next week or two. - some vsprintf maintenance work - various other misc bits * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (145 commits) printk: change recursion_bug type to bool lib/vsprintf: factor out %pN[F] handler as netdev_bits() lib/vsprintf: refactor duplicate code to special_hex_number() printk-formats.txt: remove unimplemented %pT printk: help pr_debug and pr_devel to optimize out arguments lib/test_printf.c: test dentry printing lib/test_printf.c: add test for large bitmaps lib/test_printf.c: account for kvasprintf tests lib/test_printf.c: add a few number() tests lib/test_printf.c: test precision quirks lib/test_printf.c: check for out-of-bound writes lib/test_printf.c: don't BUG lib/kasprintf.c: add sanity check to kvasprintf lib/vsprintf.c: warn about too large precisions and field widths lib/vsprintf.c: help gcc make number() smaller lib/vsprintf.c: expand field_width to 24 bits lib/vsprintf.c: eliminate potential race in string() lib/vsprintf.c: move string() below widen_string() lib/vsprintf.c: pull out padding code from dentry_name() printk: do cond_resched() between lines while outputting to consoles ... |
||
Kirill A. Shutemov
|
a46e63764e |
thp: update documentation
The patch updates Documentation/vm/transhuge.txt to reflect changes in THP design. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Masanari Iida
|
7acccdbc4d |
Doc: treewide: Fix grammar "a" to "an"
This patch fix some grammar mistake. Signed-off-by: Masanari Iida <standby24x7@gmail.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Kirill A. Shutemov
|
1d798ca3f1 |
mm: make compound_head() robust
Hugh has pointed that compound_head() call can be unsafe in some context. There's one example: CPU0 CPU1 isolate_migratepages_block() page_count() compound_head() !!PageTail() == true put_page() tail->first_page = NULL head = tail->first_page alloc_pages(__GFP_COMP) prep_compound_page() tail->first_page = head __SetPageTail(p); !!PageTail() == true <head == NULL dereferencing> The race is pure theoretical. I don't it's possible to trigger it in practice. But who knows. We can fix the race by changing how encode PageTail() and compound_head() within struct page to be able to update them in one shot. The patch introduces page->compound_head into third double word block in front of compound_dtor and compound_order. Bit 0 encodes PageTail() and the rest bits are pointer to head page if bit zero is set. The patch moves page->pmd_huge_pte out of word, just in case if an architecture defines pgtable_t into something what can have the bit 0 set. hugetlb_cgroup uses page->lru.next in the second tail page to store pointer struct hugetlb_cgroup. The patch switch it to use page->private in the second tail page instead. The space is free since ->first_page is removed from the union. The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER limitation, since there's now space in first tail page to store struct hugetlb_cgroup pointer. But that's out of scope of the patch. That means page->compound_head shares storage space with: - page->lru.next; - page->next; - page->rcu_head.next; That's too long list to be absolutely sure, but looks like nobody uses bit 0 of the word. page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future call_rcu_lazy() is not allowed as it makes use of the bit and we can get false positive PageTail(). [1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d0164adc89 |
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
cf4b769abb |
mm: page migration avoid touching newpage until no going back
We have had trouble in the past from the way in which page migration's
newpage is initialized in dribs and drabs - see commit
|
||
Hugh Dickins
|
b87537d9e2 |
mm: rmap use pte lock not mmap_sem to set PageMlocked
KernelThreadSanitizer (ktsan) has shown that the down_read_trylock() of
mmap_sem in try_to_unmap_one() (when going to set PageMlocked on a page
found mapped in a VM_LOCKED vma) is ineffective against races with
exit_mmap()'s munlock_vma_pages_all(), because mmap_sem is not held when
tearing down an mm.
But that's okay, those races are benign; and although we've believed for
years in that ugly down_read_trylock(), it's unsuitable for the job, and
frustrates the good intention of setting PageMlocked when it fails.
It just doesn't matter if here we read vm_flags an instant before or after
a racing mlock() or munlock() or exit_mmap() sets or clears VM_LOCKED: the
syscalls (or exit) work their way up the address space (taking pt locks
after updating vm_flags) to establish the final state.
We do still need to be careful never to mark a page Mlocked (hence
unevictable) by any race that will not be corrected shortly after. The
page lock protects from many of the races, but not all (a page is not
necessarily locked when it's unmapped). But the pte lock we just dropped
is good to cover the rest (and serializes even with
munlock_vma_pages_all(), so no special barriers required): now hold on to
the pte lock while calling mlock_vma_page(). Is that lock ordering safe?
Yes, that's how follow_page_pte() calls it, and how page_remove_rmap()
calls the complementary clear_page_mlock().
This fixes the following case (though not a case which anyone has
complained of), which mmap_sem did not: truncation's preliminary
unmap_mapping_range() is supposed to remove even the anonymous COWs of
filecache pages, and that might race with try_to_unmap_one() on a
VM_LOCKED vma, so that mlock_vma_page() sets PageMlocked just after
zap_pte_range() unmaps the page, causing "Bad page state (mlocked)" when
freed. The pte lock protects against this.
You could say that it also protects against the more ordinary case, racing
with the preliminary unmapping of a filecache page itself: but in our
current tree, that's independently protected by i_mmap_rwsem; and that
race would be why "Bad page state (mlocked)" was seen before commit
|
||
Hugh Dickins
|
7a14239a8f |
mm Documentation: undoc non-linear vmas
While updating some mm Documentation, I came across a few straggling references to the non-linear vmas which were happily removed in v4.0. Delete them. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |