9e8ce4b96b
5022 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Rafael J. Wysocki
|
9e8ce4b96b |
Revert "x86/PCI: Refine the way to release PCI IRQ resources"
Commit |
||
Quentin Casasnovas
|
06c8173eb9 |
x86/fpu/xsaves: Fix improper uses of __ex_table
Commit: |
||
Linus Torvalds
|
f9677375b0 |
Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull Intel Quark SoC support from Ingo Molnar: "This adds support for Intel Quark X1000 SoC boards, used in the low power 32-bit x86 Intel Galileo microcontroller board intended for the Arduino space. There's been some preparatory core x86 patches for Quark CPU quirks merged already, but this rounds it all up and adds Kconfig enablement. It's a clean hardware enablement addition tree at this point" * 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/intel/quark: Fix simple_return.cocci warnings x86/intel/quark: Fix ptr_ret.cocci warnings x86/intel/quark: Add Intel Quark platform support x86/intel/quark: Add Isolated Memory Regions for Quark X1000 |
||
Linus Torvalds
|
10436cf881 |
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Ingo Molnar: "Two fixes: the paravirt spin_unlock() corruption/crash fix, and an rtmutex NULL dereference crash fix" * 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/spinlocks/paravirt: Fix memory corruption on unlock locking/rtmutex: Avoid a NULL pointer dereference on deadlock |
||
Linus Torvalds
|
5fbe4c224c |
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 fixes from Ingo Molnar: "This contains: - EFI fixes - a boot printout fix - ASLR/kASLR fixes - intel microcode driver fixes - other misc fixes Most of the linecount comes from an EFI revert" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch x86/microcode/intel: Handle truncated microcode images more robustly x86/microcode/intel: Guard against stack overflow in the loader x86, mm/ASLR: Fix stack randomization on 64-bit systems x86/mm/init: Fix incorrect page size in init_memory_mapping() printks x86/mm/ASLR: Propagate base load address calculation Documentation/x86: Fix path in zero-page.txt x86/apic: Fix the devicetree build in certain configs Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes" x86/efi: Avoid triple faults during EFI mixed mode calls |
||
Jiri Kosina
|
570e1aa84c |
x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch
Commit
|
||
David Vrabel
|
e3a1f6cac1 |
x86: pte_protnone() and pmd_protnone() must check entry is not present
Since _PAGE_PROTNONE aliases _PAGE_GLOBAL it is only valid if
_PAGE_PRESENT is clear. Make pte_protnone() and pmd_protnone() check
for this.
This fixes a 64-bit Xen PV guest regression introduced by
|
||
Ingo Molnar
|
a267b0a349 |
Merge branch 'tip-x86-kaslr' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp into x86/urgent
Pull ASLR and kASLR fixes from Borislav Petkov: - Add a global flag announcing KASLR state so that relevant code can do informed decisions based on its setting. (Jiri Kosina) - Fix a stack randomization entropy decrease bug. (Hector Marco-Gisbert) Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Jiri Kosina
|
f47233c2d3 |
x86/mm/ASLR: Propagate base load address calculation
Commit:
|
||
Bryan O'Donoghue
|
28a375df16 |
x86/intel/quark: Add Isolated Memory Regions for Quark X1000
Intel's Quark X1000 SoC contains a set of registers called Isolated Memory Regions. IMRs are accessed over the IOSF mailbox interface. IMRs are areas carved out of memory that define read/write access rights to the various system agents within the Quark system. For a given agent in the system it is possible to specify if that agent may read or write an area of memory defined by an IMR with a granularity of 1 KiB. Quark_SecureBootPRM_330234_001.pdf section 4.5 details the concept of IMRs quark-x1000-datasheet.pdf section 12.7.4 details the implementation of IMRs in silicon. eSRAM flush, CPU Snoop write-only, CPU SMM Mode, CPU non-SMM mode, RMU and PCIe Virtual Channels (VC0 and VC1) can have individual read/write access masks applied to them for a given memory region in Quark X1000. This enables IMRs to treat each memory transaction type listed above on an individual basis and to filter appropriately based on the IMR access mask for the memory region. Quark supports eight IMRs. Since all of the DMA capable SoC components in the X1000 are mapped to VC0 it is possible to define sections of memory as invalid for DMA write operations originating from Ethernet, USB, SD and any other DMA capable south-cluster component on VC0. Similarly it is possible to mark kernel memory as non-SMM mode read/write only or to mark BIOS runtime memory as SMM mode accessible only depending on the particular memory footprint on a given system. On an IMR violation Quark SoC X1000 systems are configured to reset the system, so ensuring that the IMR memory map is consistent with the EFI provided memory map is critical to ensure no IMR violations reset the system. The API for accessing IMRs is based on MTRR code but doesn't provide a /proc or /sys interface to manipulate IMRs. Defining the size and extent of IMRs is exclusively the domain of in-kernel code. Quark firmware sets up a series of locked IMRs around pieces of memory that firmware owns such as ACPI runtime data. During boot a series of unlocked IMRs are placed around items in memory to guarantee no DMA modification of those items can take place. Grub also places an unlocked IMR around the kernel boot params data structure and compressed kernel image. It is necessary for the kernel to tear down all unlocked IMRs in order to ensure that the kernel's view of memory passed via the EFI memory map is consistent with the IMR memory map. Without tearing down all unlocked IMRs on boot transitory IMRs such as those used to protect the compressed kernel image will cause IMR violations and system reboots. The IMR init code tears down all unlocked IMRs and sets a protective IMR around the kernel .text and .rodata as one contiguous block. This sanitizes the IMR memory map with respect to the EFI memory map and protects the read-only portions of the kernel from unwarranted DMA access. Tested-by: Ong, Boon Leong <boon.leong.ong@intel.com> Signed-off-by: Bryan O'Donoghue <pure.logic@nexus-software.ie> Reviewed-by: Andy Shevchenko <andy.schevchenko@gmail.com> Reviewed-by: Darren Hart <dvhart@linux.intel.com> Reviewed-by: Ong, Boon Leong <boon.leong.ong@intel.com> Cc: andy.shevchenko@gmail.com Cc: dvhart@infradead.org Link: http://lkml.kernel.org/r/1422635379-12476-2-git-send-email-pure.logic@nexus-software.ie Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ricardo Ribalda Delgado
|
b273c2c2f2 |
x86/apic: Fix the devicetree build in certain configs
Without this patch: LD init/built-in.o arch/x86/built-in.o: In function `dtb_lapic_setup': kernel/devicetree.c:155: undefined reference to `apic_force_enable' Makefile:923: recipe for target 'vmlinux' failed make: *** [vmlinux] Error 1 Signed-off-by: Ricardo Ribalda Delgado <ricardo.ribalda@gmail.com> Reviewed-by: Maciej W. Rozycki <macro@linux-mips.org> Cc: David Rientjes <rientjes@google.com> Cc: Jan Beulich <JBeulich@suse.com> Link: http://lkml.kernel.org/r/1422905231-16067-1-git-send-email-ricardo.ribalda@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
eaa0eda562 |
asm-generic: uaccess.h cleanup
Like in 3.19, I once more have a multi-stage cleanup for one asm-generic header file, this time the work was done by Michael Tsirkin and cleans up the uaccess.h file in asm-generic, as well as all architectures for which the respective maintainers did not pick up his patches directly. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iQIVAwUAVONFpmCrR//JCVInAQIoYRAA1T3ID1bQLqdi8TU1X+vzutXzGFRhRFii u18GYeN6sGTcfqQD0GsNSaH7G8XehF3cgJ9eo4h9YkRPIG/0T0FO+dqdB0uRh8iy GKcUqVhgvCFpOBDUJC6FgMvgWWyVrgSUBqG6qSXck/PDcMSsUa/m/GcLhR/sHWGn EGEAzYNvJgdOaJ1z0vfPFK6mPwFwmYzIss5XFuoBAKKN856fBlxofkQqdpKjGDFH n0UziaJ5tbCdlZ9M9Y5JN9RU8yBCcOmGHnHUAQHz3BXOt9sD7o5jDuzsUbj+vUGJ gzNc8kee9Pyy8ZA1F959gspaxe5Oumq7NLgs3HDjK6ZDRKpJvZb6iXi56f15chlZ dItTbFSxCHOFs0d8XJKNbmPt44pJ/qKO+03lMIGttMkIm7hXfvyMWSPZV9G0Pu1y zbWEDgW2Mdrdt0saNSD46IEp+c7E5P3D9JSctQRdQjReoCbOHwqrSHi1Zeg97XL4 I1E0KwDqFUw3P1dXr5ahXmR50ZigBGjN5Fz3N7GmJt2x4PRSS2Sw92hyCrL0YM8J 56FdRA7UJ0V/SzmAko3F5wWmhabc6L+qrVA42R6U3SNSjU8hwppOkYKDINNhPZfL SGy1oQS6Jj10WxLOVp66NC7XxXzBybDcQnatz4XtNN8P5sfekUGSGBeMyMsHl7IJ 9MT3xym+DWU= =LROx -----END PGP SIGNATURE----- Merge tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull asm-generic uaccess.h cleanup from Arnd Bergmann: "Like in 3.19, I once more have a multi-stage cleanup for one asm-generic header file, this time the work was done by Michael Tsirkin and cleans up the uaccess.h file in asm-generic, as well as all architectures for which the respective maintainers did not pick up his patches directly" * tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (37 commits) sparc32: nocheck uaccess coding style tweaks sparc64: nocheck uaccess coding style tweaks xtensa: macro whitespace fixes sh: macro whitespace fixes parisc: macro whitespace fixes m68k: macro whitespace fixes m32r: macro whitespace fixes frv: macro whitespace fixes cris: macro whitespace fixes avr32: macro whitespace fixes arm64: macro whitespace fixes arm: macro whitespace fixes alpha: macro whitespace fixes blackfin: macro whitespace fixes sparc64: uaccess_64 macro whitespace fixes sparc32: uaccess_32 macro whitespace fixes avr32: whitespace fix sh: fix put_user sparse errors metag: fix put_user sparse errors ia64: fix put_user sparse errors ... |
||
Linus Torvalds
|
53861af9a1 |
OK, this has the big virtio 1.0 implementation, as specified by OASIS.
On top of tht is the major rework of lguest, to use PCI and virtio 1.0, to double-check the implementation. Then comes the inevitable fixes and cleanups from that work. Thanks, Rusty. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJU5B9cAAoJENkgDmzRrbjxPacP/jajliXX353JJ/g/hkZ6oDN5 o7FhELBKiUMr7enVZYwj2BBYk5OM36nB9pQkiqHMSbjJGoS5IK70enxb4YRxSHBn YCLblZMNqutGS0kclZ9DDysztjAhxH7CvLM6pMZ7eHP0f3+FM/QhbxHfbG9DTBUH 2U/nybvd3M/+YBe7ptwQdrH8aOCAD6RTIsXellfm99dNMK6K/5lqnWQ98WSXmNXq vyvdaAQsqqUkmxtajjcBumaCH4/SehOJJjUqojCMsR3aBkgOBWDZJURMek+KA5Dt X996fBsTAlvTtCUKRrmLTb2ScDH7fu+jwbWRqMYDk8zpEr3XqiLTTPV4/TiHGmi7 Wiw3g1wIY1YbETlZyongB5MIoVyUfmDAd+bT8nBsj3KIITD84gOUQFDMl6d63c0I z6A9Pu/UzpJGsXZT3WoFLi6TO67QyhOseqZnhS4wBgLabjxffNM7yov9RVKUVH/n JHunnpUk2iTtSgscBarOBz5867dstuurnaUIspZthVBo6y6N0z+GrU+agJ8Y4DXx mvwzeYLhQH2208PjxPFiah/kA/gHNm1m678TbpS+CUsgmpQiJ4gTwtazDSi4TwZY Hs9T9GulkzpZIzEyKL3qG2TsfyDhW5Avn+GvKInAT9+Fkig4BnP3DUONBxcwGZ78 eI3FDUWsE36NqE5ECWmz =ivCe -----END PGP SIGNATURE----- Merge tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux Pull virtio updates from Rusty Russell: "OK, this has the big virtio 1.0 implementation, as specified by OASIS. On top of tht is the major rework of lguest, to use PCI and virtio 1.0, to double-check the implementation. Then comes the inevitable fixes and cleanups from that work" * tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (80 commits) virtio: don't set VIRTIO_CONFIG_S_DRIVER_OK twice. virtio_net: unconditionally define struct virtio_net_hdr_v1. tools/lguest: don't use legacy definitions for net device in example launcher. virtio: Don't expose legacy net features when VIRTIO_NET_NO_LEGACY defined. tools/lguest: use common error macros in the example launcher. tools/lguest: give virtqueues names for better error messages tools/lguest: more documentation and checking of virtio 1.0 compliance. lguest: don't look in console features to find emerg_wr. tools/lguest: don't start devices until DRIVER_OK status set. tools/lguest: handle indirect partway through chain. tools/lguest: insert driver references from the 1.0 spec (4.1 Virtio Over PCI) tools/lguest: insert device references from the 1.0 spec (4.1 Virtio Over PCI) tools/lguest: rename virtio_pci_cfg_cap field to match spec. tools/lguest: fix features_accepted logic in example launcher. tools/lguest: handle device reset correctly in example launcher. virtual: Documentation: simplify and generalize paravirt_ops.txt lguest: remove NOTIFY call and eventfd facility. lguest: remove NOTIFY facility from demonstration launcher. lguest: use the PCI console device's emerg_wr for early boot messages. lguest: always put console in PCI slot #1. ... |
||
Raghavendra K T
|
d6abfdb202 |
x86/spinlocks/paravirt: Fix memory corruption on unlock
Paravirt spinlock clears slowpath flag after doing unlock. As explained by Linus currently it does: prev = *lock; add_smp(&lock->tickets.head, TICKET_LOCK_INC); /* add_smp() is a full mb() */ if (unlikely(lock->tickets.tail & TICKET_SLOWPATH_FLAG)) __ticket_unlock_slowpath(lock, prev); which is *exactly* the kind of things you cannot do with spinlocks, because after you've done the "add_smp()" and released the spinlock for the fast-path, you can't access the spinlock any more. Exactly because a fast-path lock might come in, and release the whole data structure. Linus suggested that we should not do any writes to lock after unlock(), and we can move slowpath clearing to fastpath lock. So this patch implements the fix with: 1. Moving slowpath flag to head (Oleg): Unlocked locks don't care about the slowpath flag; therefore we can keep it set after the last unlock, and clear it again on the first (try)lock. -- this removes the write after unlock. note that keeping slowpath flag would result in unnecessary kicks. By moving the slowpath flag from the tail to the head ticket we also avoid the need to access both the head and tail tickets on unlock. 2. use xadd to avoid read/write after unlock that checks the need for unlock_kick (Linus): We further avoid the need for a read-after-release by using xadd; the prev head value will include the slowpath flag and indicate if we need to do PV kicking of suspended spinners -- on modern chips xadd isn't (much) more expensive than an add + load. Result: setup: 16core (32 cpu +ht sandy bridge 8GB 16vcpu guest) benchmark overcommit %improve kernbench 1x -0.13 kernbench 2x 0.02 dbench 1x -1.77 dbench 2x -0.63 [Jeremy: Hinted missing TICKET_LOCK_INC for kick] [Oleg: Moved slowpath flag to head, ticket_equals idea] [PeterZ: Added detailed changelog] Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Jones <drjones@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Fernando Luis Vázquez Cao <fernando_b1@lab.ntt.co.jp> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Waiman Long <Waiman.Long@hp.com> Cc: a.ryabinin@samsung.com Cc: dave@stgolabs.net Cc: hpa@zytor.com Cc: jasowang@redhat.com Cc: jeremy@goop.org Cc: paul.gortmaker@windriver.com Cc: riel@redhat.com Cc: tglx@linutronix.de Cc: waiman.long@hp.com Cc: xen-devel@lists.xenproject.org Link: http://lkml.kernel.org/r/20150215173043.GA7471@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
37507717de |
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 perf updates from Ingo Molnar: "This series tightens up RDPMC permissions: currently even highly sandboxed x86 execution environments (such as seccomp) have permission to execute RDPMC, which may leak various perf events / PMU state such as timing information and other CPU execution details. This 'all is allowed' RDPMC mode is still preserved as the (non-default) /sys/devices/cpu/rdpmc=2 setting. The new default is that RDPMC access is only allowed if a perf event is mmap-ed (which is needed to correctly interpret RDPMC counter values in any case). As a side effect of these changes CR4 handling is cleaned up in the x86 code and a shadow copy of the CR4 value is added. The extra CR4 manipulation adds ~ <50ns to the context switch cost between rdpmc-capable and rdpmc-non-capable mms" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86: Add /sys/devices/cpu/rdpmc=2 to allow rdpmc for all tasks perf/x86: Only allow rdpmc if a perf_event is mapped perf: Pass the event to arch_perf_update_userpage() perf: Add pmu callbacks to track event mapping and unmapping x86: Add a comment clarifying LDT context switching x86: Store a per-cpu shadow copy of CR4 x86: Clean up cr4 manipulation |
||
Linus Torvalds
|
a9724125ad |
TTY/Serial driver patches for 3.20-rc1
Here's the big tty/serial driver update for 3.20-rc1. Nothing huge here, just lots of driver updates and some core tty layer fixes as well. All have been in linux-next with no reported issues. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iEYEABECAAYFAlTgtgkACgkQMUfUDdst+ykXbACg14oFAmeYjO9RsdIHPXBvKseO 47QAn0foy91bpNQ5UFOxWS5L6Fzj2ZND =syx2 -----END PGP SIGNATURE----- Merge tag 'tty-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty Pull tty/serial driver patches from Greg KH: "Here's the big tty/serial driver update for 3.20-rc1. Nothing huge here, just lots of driver updates and some core tty layer fixes as well. All have been in linux-next with no reported issues" * tag 'tty-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (119 commits) serial: 8250: Fix UART_BUG_TXEN workaround serial: driver for ETRAX FS UART tty: remove unused variable sprop serial: of-serial: fetch line number from DT serial: samsung: earlycon support depends on CONFIG_SERIAL_SAMSUNG_CONSOLE tty/serial: serial8250_set_divisor() can be static tty/serial: Add Spreadtrum sc9836-uart driver support Documentation: DT: Add bindings for Spreadtrum SoC Platform serial: samsung: remove redundant interrupt enabling tty: Remove external interface for tty_set_termios() serial: omap: Fix RTS handling serial: 8250_omap: Use UPSTAT_AUTORTS for RTS handling serial: core: Rework hw-assisted flow control support tty/serial: 8250_early: Add support for PXA UARTs tty/serial: of_serial: add support for PXA/MMP uarts tty/serial: of_serial: add DT alias ID handling serial: 8250: Prevent concurrent updates to shadow registers serial: 8250: Use canary to restart console after suspend serial: 8250: Refactor XR17V35X divisor calculation serial: 8250: Refactor divisor programming ... |
||
Linus Torvalds
|
4ba63072b9 |
Char / Misc patches for 3.20-rc1
Here's the big char/misc driver update for 3.20-rc1. Lots of little things in here, all described in the changelog. Nothing major or unusual, except maybe the binder selinux stuff, which was all acked by the proper selinux people and they thought it best to come through this tree. All of this has been in linux-next with no reported issues for a while. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iEYEABECAAYFAlTgs80ACgkQMUfUDdst+yn86gCeMLbxANGExVLd+PR46GNsAUQb SJ4AmgIqrkIz+5LCwZWM02ldbYhPeBVf =lfmM -----END PGP SIGNATURE----- Merge tag 'char-misc-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc Pull char / misc patches from Greg KH: "Here's the big char/misc driver update for 3.20-rc1. Lots of little things in here, all described in the changelog. Nothing major or unusual, except maybe the binder selinux stuff, which was all acked by the proper selinux people and they thought it best to come through this tree. All of this has been in linux-next with no reported issues for a while" * tag 'char-misc-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (90 commits) coresight: fix function etm_writel_cp14() parameter order coresight-etm: remove check for unknown Kconfig macro coresight: fixing CPU hwid lookup in device tree coresight: remove the unnecessary function coresight_is_bit_set() coresight: fix the debug AMBA bus name coresight: remove the extra spaces coresight: fix the link between orphan connection and newly added device coresight: remove the unnecessary replicator property coresight: fix the replicator subtype value pdfdocs: Fix 'make pdfdocs' failure for 'uio-howto.tmpl' mcb: Fix error path of mcb_pci_probe virtio/console: verify device has config space ti-st: clean up data types (fix harmless memory corruption) mei: me: release hw from reset only during the reset flow mei: mask interrupt set bit on clean reset bit extcon: max77693: Constify struct regmap_config extcon: adc-jack: Release IIO channel on driver remove extcon: Remove duplicated include from extcon-class.c Drivers: hv: vmbus: hv_process_timer_expiration() can be static Drivers: hv: vmbus: serialize Offer and Rescind offer ... |
||
Linus Torvalds
|
c833e17e27 |
Tighten rules for ACCESS_ONCE
This series tightens the rules for ACCESS_ONCE to only work on scalar types. It also contains the necessary fixups as indicated by build bots of linux-next. Now everything is in place to prevent new non-scalar users of ACCESS_ONCE and we can continue to convert code to READ_ONCE/WRITE_ONCE. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.14 (GNU/Linux) iQIcBAABAgAGBQJU2H5MAAoJEBF7vIC1phx8Jm4QALPqKOMDSUBCrqJFWJeujtv2 ILxJKsnjrAlt3dxnlVI3q6e5wi896hSce75PcvZ/vs/K3GdgMxOjrakBJGTJ2Qjg 5njW9aGJDDr/SYFX33MLWfqy222TLtpxgSz379UgXjEzB0ymMWbJJ3FnGjVqQJdp RXDutpncRySc/rGHh9UPREIRR5GvimONsWE2zxgXjUzB8vIr2fCGvHTXfIb6RKbQ yaFoihzn0m+eisc5Gy4tQ1qhhnaYyWEGrINjHTjMFTQOWTlH80BZAyQeLdbyj2K5 qloBPS/VhBTr/5TxV5onM+nVhu0LiblVNrdMHVeb7jyST4LeFOCaWK98lB3axSB5 v/2D1YKNb3g1U1x3In/oNGQvs36zGiO1uEdMF1l8ZFXgCvHmATSFSTWBtqUhb5Ew JA3YyqMTG6dpRTMSnmu3/frr4wDqnxlB/ktQC1pf3tDp87mr1ZYEy/dQld+tltjh 9Z5GSdrw0nf91wNI3DJf+26ZDdz5B+EpDnPnOKG8anI1lc/mQneI21/K/xUteFXw UZ1XGPLV2vbv9/a13u44SdjenHvQs1egsGeebMxVPoj6WmDLVmcIqinyS6NawYzn IlDGy/b3bSnXWMBP0ZVBX94KWLxqDDc4a/ayxsmxsP1tPZ+jDXjVDa7E3zskcHxG Uj5ULCPyU087t8Sl76mv =Dj70 -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux Pull ACCESS_ONCE() rule tightening from Christian Borntraeger: "Tighten rules for ACCESS_ONCE This series tightens the rules for ACCESS_ONCE to only work on scalar types. It also contains the necessary fixups as indicated by build bots of linux-next. Now everything is in place to prevent new non-scalar users of ACCESS_ONCE and we can continue to convert code to READ_ONCE/WRITE_ONCE" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux: kernel: Fix sparse warning for ACCESS_ONCE next: sh: Fix compile error kernel: tighten rules for ACCESS ONCE mm/gup: Replace ACCESS_ONCE with READ_ONCE x86/spinlock: Leftover conversion ACCESS_ONCE->READ_ONCE x86/xen/p2m: Replace ACCESS_ONCE with READ_ONCE ppc/hugetlbfs: Replace ACCESS_ONCE with READ_ONCE ppc/kvm: Replace ACCESS_ONCE with READ_ONCE |
||
Andrey Ryabinin
|
c420f167db |
kasan: enable stack instrumentation
Stack instrumentation allows to detect out of bounds memory accesses for variables allocated on stack. Compiler adds redzones around every variable on stack and poisons redzones in function's prologue. Such approach significantly increases stack usage, so all in-kernel stacks size were doubled. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
393f203f5f |
x86_64: kasan: add interceptors for memset/memmove/memcpy functions
Recently instrumentation of builtin functions calls was removed from GCC 5.0. To check the memory accessed by such functions, userspace asan always uses interceptors for them. So now we should do this as well. This patch declares memset/memmove/memcpy as weak symbols. In mm/kasan/kasan.c we have our own implementation of those functions which checks memory before accessing it. Default memset/memmove/memcpy now now always have aliases with '__' prefix. For files that built without kasan instrumentation (e.g. mm/slub.c) original mem* replaced (via #define) with prefixed variants, cause we don't want to check memory accesses there. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
ef7f0d6a6c |
x86_64: add KASan support
This patch adds arch specific code for kernel address sanitizer. 16TB of virtual addressed used for shadow memory. It's located in range [ffffec0000000000 - fffffc0000000000] between vmemmap and %esp fixup stacks. At early stage we map whole shadow region with zero page. Latter, after pages mapped to direct mapping address range we unmap zero pages from corresponding shadow (see kasan_map_shadow()) and allocate and map a real shadow memory reusing vmemmap_populate() function. Also replace __pa with __pa_nodebug before shadow initialized. __pa with CONFIG_DEBUG_VIRTUAL=y make external function call (__phys_addr) __phys_addr is instrumented, so __asan_load could be called before shadow area initialized. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Jim Davis <jim.epost@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
b9085bcbf5 |
Fairly small update, but there are some interesting new features.
Common: Optional support for adding a small amount of polling on each HLT instruction executed in the guest (or equivalent for other architectures). This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This also has to be enabled manually for now, but the plan is to auto-tune this in the future. ARM/ARM64: the highlights are support for GICv3 emulation and dirty page tracking s390: several optimizations and bugfixes. Also a first: a feature exposed by KVM (UUID and long guest name in /proc/sysinfo) before it is available in IBM's hypervisor! :) MIPS: Bugfixes. x86: Support for PML (page modification logging, a new feature in Broadwell Xeons that speeds up dirty page tracking), nested virtualization improvements (nested APICv---a nice optimization), usual round of emulation fixes. There is also a new option to reduce latency of the TSC deadline timer in the guest; this needs to be tuned manually. Some commits are common between this pull and Catalin's; I see you have already included his tree. ARM has other conflicts where functions are added in the same place by 3.19-rc and 3.20 patches. These are not large though, and entirely within KVM. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQEcBAABAgAGBQJU28rkAAoJEL/70l94x66DXqQH/1TDOfJIjW7P2kb0Sw7Fy1wi cEX1KO/VFxAqc8R0E/0Wb55CXyPjQJM6xBXuFr5cUDaIjQ8ULSktL4pEwXyyv/s5 DBDkN65mriry2w5VuEaRLVcuX9Wy+tqLQXWNkEySfyb4uhZChWWHvKEcgw5SqCyg NlpeHurYESIoNyov3jWqvBjr4OmaQENyv7t2c6q5ErIgG02V+iCux5QGbphM2IC9 LFtPKxoqhfeB2xFxTOIt8HJiXrZNwflsTejIlCl/NSEiDVLLxxHCxK2tWK/tUXMn JfLD9ytXBWtNMwInvtFm4fPmDouv2VDyR0xnK2db+/axsJZnbxqjGu1um4Dqbak= =7gdx -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM update from Paolo Bonzini: "Fairly small update, but there are some interesting new features. Common: Optional support for adding a small amount of polling on each HLT instruction executed in the guest (or equivalent for other architectures). This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This also has to be enabled manually for now, but the plan is to auto-tune this in the future. ARM/ARM64: The highlights are support for GICv3 emulation and dirty page tracking s390: Several optimizations and bugfixes. Also a first: a feature exposed by KVM (UUID and long guest name in /proc/sysinfo) before it is available in IBM's hypervisor! :) MIPS: Bugfixes. x86: Support for PML (page modification logging, a new feature in Broadwell Xeons that speeds up dirty page tracking), nested virtualization improvements (nested APICv---a nice optimization), usual round of emulation fixes. There is also a new option to reduce latency of the TSC deadline timer in the guest; this needs to be tuned manually. Some commits are common between this pull and Catalin's; I see you have already included his tree. Powerpc: Nothing yet. The KVM/PPC changes will come in through the PPC maintainers, because I haven't received them yet and I might end up being offline for some part of next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits) KVM: ia64: drop kvm.h from installed user headers KVM: x86: fix build with !CONFIG_SMP KVM: x86: emulate: correct page fault error code for NoWrite instructions KVM: Disable compat ioctl for s390 KVM: s390: add cpu model support KVM: s390: use facilities and cpu_id per KVM KVM: s390/CPACF: Choose crypto control block format s390/kernel: Update /proc/sysinfo file with Extended Name and UUID KVM: s390: reenable LPP facility KVM: s390: floating irqs: fix user triggerable endless loop kvm: add halt_poll_ns module parameter kvm: remove KVM_MMIO_SIZE KVM: MIPS: Don't leak FPU/DSP to guest KVM: MIPS: Disable HTW while in guest KVM: nVMX: Enable nested posted interrupt processing KVM: nVMX: Enable nested virtual interrupt delivery KVM: nVMX: Enable nested apic register virtualization KVM: nVMX: Make nested control MSRs per-cpu KVM: nVMX: Enable nested virtualize x2apic mode KVM: nVMX: Prepare for using hardware MSR bitmap ... |
||
Andy Lutomirski
|
f56141e3e2 |
all arches, signal: move restart_block to struct task_struct
If an attacker can cause a controlled kernel stack overflow, overwriting the restart block is a very juicy exploit target. This is because the restart_block is held in the same memory allocation as the kernel stack. Moving the restart block to struct task_struct prevents this exploit by making the restart_block harder to locate. Note that there are other fields in thread_info that are also easy targets, at least on some architectures. It's also a decent simplification, since the restart code is more or less identical on all architectures. [james.hogan@imgtec.com: metag: align thread_info::supervisor_stack] Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: David Miller <davem@davemloft.net> Acked-by: Richard Weinberger <richard@nod.at> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Steven Miao <realmz6@gmail.com> Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Chris Zankel <chris@zankel.net> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c819f37e7e |
x86: mm: restore original pte_special check
Commit
|
||
Mel Gorman
|
21d9ee3eda |
mm: remove remaining references to NUMA hinting bits and helpers
This patch removes the NUMA PTE bits and associated helpers. As a side-effect it increases the maximum possible swap space on x86-64. One potential source of problems is races between the marking of PTEs PROT_NONE, NUMA hinting faults and migration. It must be guaranteed that a PTE being protected is not faulted in parallel, seen as a pte_none and corrupting memory. The base case is safe but transhuge has problems in the past due to an different migration mechanism and a dependance on page lock to serialise migrations and warrants a closer look. task_work hinting update parallel fault ------------------------ -------------- change_pmd_range change_huge_pmd __pmd_trans_huge_lock pmdp_get_and_clear __handle_mm_fault pmd_none do_huge_pmd_anonymous_page read? pmd_lock blocks until hinting complete, fail !pmd_none test write? __do_huge_pmd_anonymous_page acquires pmd_lock, checks pmd_none pmd_modify set_pmd_at task_work hinting update parallel migration ------------------------ ------------------ change_pmd_range change_huge_pmd __pmd_trans_huge_lock pmdp_get_and_clear __handle_mm_fault do_huge_pmd_numa_page migrate_misplaced_transhuge_page pmd_lock waits for updates to complete, recheck pmd_same pmd_modify set_pmd_at Both of those are safe and the case where a transhuge page is inserted during a protection update is unchanged. The case where two processes try migrating at the same time is unchanged by this series so should still be ok. I could not find a case where we are accidentally depending on the PTE not being cleared and flushed. If one is missed, it'll manifest as corruption problems that start triggering shortly after this series is merged and only happen when NUMA balancing is enabled. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mark Brown <broonie@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e7bb4b6d16 |
mm: add p[te|md] protnone helpers for use by NUMA balancing
This is a preparatory patch that introduces protnone helpers for automatic NUMA balancing. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
d016bf7ece |
mm: make FIRST_USER_ADDRESS unsigned long on all archs
LKP has triggered a compiler warning after my recent patch "mm: account pmd page tables to the process": mm/mmap.c: In function 'exit_mmap': >> mm/mmap.c:2857:2: warning: right shift count >= width of type [enabled by default] The code: > 2857 WARN_ON(mm_nr_pmds(mm) > 2858 round_up(FIRST_USER_ADDRESS, PUD_SIZE) >> PUD_SHIFT); In this, on tile, we have FIRST_USER_ADDRESS defined as 0. round_up() has the same type -- int. PUD_SHIFT. I think the best way to fix it is to define FIRST_USER_ADDRESS as unsigned long. On every arch for consistency. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rusty Russell
|
d9bab50aa4 |
lguest: remove NOTIFY call and eventfd facility.
Disappointing, as this was kind of neat (especially getting to use RCU to manage the address -> eventfd mapping). But now the devices are PCI handled in userspace, we get rid of both the NOTIFY hypercall and the interface to connect an eventfd. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> |
||
Linus Torvalds
|
1d9c5d79e6 |
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching
Pull live patching infrastructure from Jiri Kosina: "Let me provide a bit of history first, before describing what is in this pile. Originally, there was kSplice as a standalone project that implemented stop_machine()-based patching for the linux kernel. This project got later acquired, and the current owner is providing live patching as a proprietary service, without any intentions to have their implementation merged. Then, due to rising user/customer demand, both Red Hat and SUSE started working on their own implementation (not knowing about each other), and announced first versions roughly at the same time [1] [2]. The principle difference between the two solutions is how they are making sure that the patching is performed in a consistent way when it comes to different execution threads with respect to the semantic nature of the change that is being introduced. In a nutshell, kPatch is issuing stop_machine(), then looking at stacks of all existing processess, and if it decides that the system is in a state that can be patched safely, it proceeds insterting code redirection machinery to the patched functions. On the other hand, kGraft provides a per-thread consistency during one single pass of a process through the kernel and performs a lazy contignuous migration of threads from "unpatched" universe to the "patched" one at safe checkpoints. If interested in a more detailed discussion about the consistency models and its possible combinations, please see the thread that evolved around [3]. It pretty quickly became obvious to the interested parties that it's absolutely impractical in this case to have several isolated solutions for one task to co-exist in the kernel. During a dedicated Live Kernel Patching track at LPC in Dusseldorf, all the interested parties sat together and came up with a joint aproach that would work for both distro vendors. Steven Rostedt took notes [4] from this meeting. And the foundation for that aproach is what's present in this pull request. It provides a basic infrastructure for function "live patching" (i.e. code redirection), including API for kernel modules containing the actual patches, and API/ABI for userspace to be able to operate on the patches (look up what patches are applied, enable/disable them, etc). It's relatively simple and minimalistic, as it's making use of existing kernel infrastructure (namely ftrace) as much as possible. It's also self-contained, in a sense that it doesn't hook itself in any other kernel subsystem (it doesn't even touch any other code). It's now implemented for x86 only as a reference architecture, but support for powerpc, s390 and arm is already in the works (adding arch-specific support basically boils down to teaching ftrace about regs-saving). Once this common infrastructure gets merged, both Red Hat and SUSE have agreed to immediately start porting their current solutions on top of this, abandoning their out-of-tree code. The plan basically is that each patch will be marked by flag(s) that would indicate which consistency model it is willing to use (again, the details have been sketched out already in the thread at [3]). Before this happens, the current codebase can be used to patch a large group of secruity/stability problems the patches for which are not too complex (in a sense that they don't introduce non-trivial change of function's return value semantics, they don't change layout of data structures, etc) -- this corresponds to LEAVE_FUNCTION && SWITCH_FUNCTION semantics described at [3]. This tree has been in linux-next since December. [1] https://lkml.org/lkml/2014/4/30/477 [2] https://lkml.org/lkml/2014/7/14/857 [3] https://lkml.org/lkml/2014/11/7/354 [4] http://linuxplumbersconf.org/2014/wp-content/uploads/2014/10/LPC2014_LivePatching.txt [ The core code is introduced by the three commits authored by Seth Jennings, which got a lot of changes incorporated during numerous respins and reviews of the initial implementation. All the followup commits have materialized only after public tree has been created, so they were not folded into initial three commits so that the public tree doesn't get rebased ]" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching: livepatch: add missing newline to error message livepatch: rename config to CONFIG_LIVEPATCH livepatch: fix uninitialized return value livepatch: support for repatching a function livepatch: enforce patch stacking semantics livepatch: change ARCH_HAVE_LIVE_PATCHING to HAVE_LIVE_PATCHING livepatch: fix deferred module patching order livepatch: handle ancient compilers with more grace livepatch: kconfig: use bool instead of boolean livepatch: samples: fix usage example comments livepatch: MAINTAINERS: add git tree location livepatch: use FTRACE_OPS_FL_IPMODIFY livepatch: move x86 specific ftrace handler code to arch/x86 livepatch: samples: add sample live patching module livepatch: kernel: add support for live patching livepatch: kernel: add TAINT_LIVEPATCH |
||
Linus Torvalds
|
992de5a8ec |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "Bite-sized chunks this time, to avoid the MTA ratelimiting woes. - fs/notify updates - ocfs2 - some of MM" That laconic "some MM" is mainly the removal of remap_file_pages(), which is a big simplification of the VM, and which gets rid of a *lot* of random cruft and special cases because we no longer support the non-linear mappings that it used. From a user interface perspective, nothing has changed, because the remap_file_pages() syscall still exists, it's just done by emulating the old behavior by creating a lot of individual small mappings instead of one non-linear one. The emulation is slower than the old "native" non-linear mappings, but nobody really uses or cares about remap_file_pages(), and simplifying the VM is a big advantage. * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (78 commits) memcg: zap memcg_slab_caches and memcg_slab_mutex memcg: zap memcg_name argument of memcg_create_kmem_cache memcg: zap __memcg_{charge,uncharge}_slab mm/page_alloc.c: place zone_id check before VM_BUG_ON_PAGE check mm: hugetlb: fix type of hugetlb_treat_as_movable variable mm, hugetlb: remove unnecessary lower bound on sysctl handlers"? mm: memory: merge shared-writable dirtying branches in do_wp_page() mm: memory: remove ->vm_file check on shared writable vmas xtensa: drop _PAGE_FILE and pte_file()-related helpers x86: drop _PAGE_FILE and pte_file()-related helpers unicore32: drop pte_file()-related helpers um: drop _PAGE_FILE and pte_file()-related helpers tile: drop pte_file()-related helpers sparc: drop pte_file()-related helpers sh: drop _PAGE_FILE and pte_file()-related helpers score: drop _PAGE_FILE and pte_file()-related helpers s390: drop pte_file()-related helpers parisc: drop _PAGE_FILE and pte_file()-related helpers openrisc: drop _PAGE_FILE and pte_file()-related helpers nios2: drop _PAGE_FILE and pte_file()-related helpers ... |
||
Linus Torvalds
|
872912352c |
ACPI and power management updates for v3.20-rc1
- Rework of the core ACPI resources parsing code to fix issues in it and make using resource offsets more convenient and consolidation of some resource-handing code in a couple of places that have grown analagous data structures and code to cover the the same gap in the core (Jiang Liu, Thomas Gleixner, Lv Zheng). - ACPI-based IOAPIC hotplug support on top of the resources handling rework (Jiang Liu, Yinghai Lu). - ACPICA update to upstream release 20150204 including an interrupt handling rework that allows drivers to install raw handlers for ACPI GPEs which then become entirely responsible for the given GPE and the ACPICA core code won't touch it (Lv Zheng, David E Box, Octavian Purdila). - ACPI EC driver rework to fix several concurrency issues and other problems related to events handling on top of the ACPICA's new support for raw GPE handlers (Lv Zheng). - New ACPI driver for AMD SoCs analogous to the LPSS (Low-Power Subsystem) driver for Intel chips (Ken Xue). - Two minor fixes of the ACPI LPSS driver (Heikki Krogerus, Jarkko Nikula). - Two new blacklist entries for machines (Samsung 730U3E/740U3E and 510R) where the native backlight interface doesn't work correctly while the ACPI one does (Hans de Goede). - Rework of the ACPI processor driver's handling of idle states to make the code more straightforward and less bloated overall (Rafael J Wysocki). - Assorted minor fixes related to ACPI and SFI (Andreas Ruprecht, Andy Shevchenko, Hanjun Guo, Jan Beulich, Rafael J Wysocki, Yaowei Bai). - PCI core power management modification to avoid resuming (some) runtime-suspended devices during system suspend if they are in the right states already (Rafael J Wysocki). - New SFI-based cpufreq driver for Intel platforms using SFI (Srinidhi Kasagar). - cpufreq core fixes, cleanups and simplifications (Viresh Kumar, Doug Anderson, Wolfram Sang). - SkyLake CPU support and other updates for the intel_pstate driver (Kristen Carlson Accardi, Srinivas Pandruvada). - cpufreq-dt driver cleanup (Markus Elfring). - Init fix for the ARM big.LITTLE cpuidle driver (Sudeep Holla). - Generic power domains core code fixes and cleanups (Ulf Hansson). - Operating Performance Points (OPP) core code cleanups and kernel documentation update (Nishanth Menon). - New dabugfs interface to make the list of PM QoS constraints available to user space (Nishanth Menon). - New devfreq driver for Tegra Activity Monitor (Tomeu Vizoso). - New devfreq class (devfreq_event) to provide raw utilization data to devfreq governors (Chanwoo Choi). - Assorted minor fixes and cleanups related to power management (Andreas Ruprecht, Krzysztof Kozlowski, Rickard Strandqvist, Pavel Machek, Todd E Brandt, Wonhong Kwon). - turbostat updates (Len Brown) and cpupower Makefile improvement (Sriram Raghunathan). / -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABCAAGBQJU2neOAAoJEILEb/54YlRx51QP/jrv1Wb5eMaemzMksPIWI5Zn I8IbxzToxu7wDDsrTBRv+LuyllMPrnppFOHHvB35gUYu7Y6I066s3ErwuqeFlbmy +VicmyGMahv3yN74qg49MXzWtaJZa8hrFXn8ItujiUIcs08yELi0vBQFlZImIbTB PdQngO88VfiOVjDvmKkYUU//9Sc9LCU0ZcdUQXSnA1oNOxuUHjiARz98R03hhSqu BWR+7M0uaFbu6XeK+BExMXJTpKicIBZ1GAF6hWrS8V4aYg+hH1cwjf2neDAzZkcU UkXieJlLJrCq+ZBNcy7WEhkWQkqJNWei5WYiy6eoQeQpNoliY2V+2OtSMJaKqDye PIiMwXstyDc5rgyULN0d1UUzY6mbcUt2rOL0VN2bsFVIJ1HWCq8mr8qq689pQUYv tcH18VQ2/6r2zW28sTO/ByWLYomklD/Y6bw2onMhGx3Knl0D8xYJKapVnTGhr5eY d4k41ybHSWNKfXsZxdJc+RxndhPwj9rFLfvY/CZEhLcW+2pAiMarRDOPXDoUI7/l aJpmPzy/6mPXGBnTfr6jKDSY3gXNazRIvfPbAdiGayKcHcdRM4glbSbNH0/h1Iq6 HKa8v9Fx87k1X5r4ZbhiPdABWlxuKDiM7725rfGpvjlWC3GNFOq7YTVMOuuBA225 Mu9PRZbOsZsnyNkixBpX =zZER -----END PGP SIGNATURE----- Merge tag 'pm+acpi-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI and power management updates from Rafael Wysocki: "We have a few new features this time, including a new SFI-based cpufreq driver, a new devfreq driver for Tegra Activity Monitor, a new devfreq class for providing its governors with raw utilization data and a new ACPI driver for AMD SoCs. Still, the majority of changes here are reworks of existing code to make it more straightforward or to prepare it for implementing new features on top of it. The primary example is the rework of ACPI resources handling from Jiang Liu, Thomas Gleixner and Lv Zheng with support for IOAPIC hotplug implemented on top of it, but there is quite a number of changes of this kind in the cpufreq core, ACPICA, ACPI EC driver, ACPI processor driver and the generic power domains core code too. The most active developer is Viresh Kumar with his cpufreq changes. Specifics: - Rework of the core ACPI resources parsing code to fix issues in it and make using resource offsets more convenient and consolidation of some resource-handing code in a couple of places that have grown analagous data structures and code to cover the the same gap in the core (Jiang Liu, Thomas Gleixner, Lv Zheng). - ACPI-based IOAPIC hotplug support on top of the resources handling rework (Jiang Liu, Yinghai Lu). - ACPICA update to upstream release 20150204 including an interrupt handling rework that allows drivers to install raw handlers for ACPI GPEs which then become entirely responsible for the given GPE and the ACPICA core code won't touch it (Lv Zheng, David E Box, Octavian Purdila). - ACPI EC driver rework to fix several concurrency issues and other problems related to events handling on top of the ACPICA's new support for raw GPE handlers (Lv Zheng). - New ACPI driver for AMD SoCs analogous to the LPSS (Low-Power Subsystem) driver for Intel chips (Ken Xue). - Two minor fixes of the ACPI LPSS driver (Heikki Krogerus, Jarkko Nikula). - Two new blacklist entries for machines (Samsung 730U3E/740U3E and 510R) where the native backlight interface doesn't work correctly while the ACPI one does (Hans de Goede). - Rework of the ACPI processor driver's handling of idle states to make the code more straightforward and less bloated overall (Rafael J Wysocki). - Assorted minor fixes related to ACPI and SFI (Andreas Ruprecht, Andy Shevchenko, Hanjun Guo, Jan Beulich, Rafael J Wysocki, Yaowei Bai). - PCI core power management modification to avoid resuming (some) runtime-suspended devices during system suspend if they are in the right states already (Rafael J Wysocki). - New SFI-based cpufreq driver for Intel platforms using SFI (Srinidhi Kasagar). - cpufreq core fixes, cleanups and simplifications (Viresh Kumar, Doug Anderson, Wolfram Sang). - SkyLake CPU support and other updates for the intel_pstate driver (Kristen Carlson Accardi, Srinivas Pandruvada). - cpufreq-dt driver cleanup (Markus Elfring). - Init fix for the ARM big.LITTLE cpuidle driver (Sudeep Holla). - Generic power domains core code fixes and cleanups (Ulf Hansson). - Operating Performance Points (OPP) core code cleanups and kernel documentation update (Nishanth Menon). - New dabugfs interface to make the list of PM QoS constraints available to user space (Nishanth Menon). - New devfreq driver for Tegra Activity Monitor (Tomeu Vizoso). - New devfreq class (devfreq_event) to provide raw utilization data to devfreq governors (Chanwoo Choi). - Assorted minor fixes and cleanups related to power management (Andreas Ruprecht, Krzysztof Kozlowski, Rickard Strandqvist, Pavel Machek, Todd E Brandt, Wonhong Kwon). - turbostat updates (Len Brown) and cpupower Makefile improvement (Sriram Raghunathan)" * tag 'pm+acpi-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (151 commits) tools/power turbostat: relax dependency on APERF_MSR tools/power turbostat: relax dependency on invariant TSC Merge branch 'pci/host-generic' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci into acpi-resources tools/power turbostat: decode MSR_*_PERF_LIMIT_REASONS tools/power turbostat: relax dependency on root permission ACPI / video: Add disable_native_backlight quirk for Samsung 510R ACPI / PM: Remove unneeded nested #ifdef USB / PM: Remove unneeded #ifdef and associated dead code intel_pstate: provide option to only use intel_pstate with HWP ACPI / EC: Add GPE reference counting debugging messages ACPI / EC: Add query flushing support ACPI / EC: Refine command storm prevention support ACPI / EC: Add command flushing support. ACPI / EC: Introduce STARTED/STOPPED flags to replace BLOCKED flag ACPI: add AMD ACPI2Platform device support for x86 system ACPI / table: remove duplicate NULL check for the handler of acpi_table_parse() ACPI / EC: Update revision due to raw handler mode. ACPI / EC: Reduce ec_poll() by referencing the last register access timestamp. ACPI / EC: Fix several GPE handling issues by deploying ACPI_GPE_DISPATCH_RAW_HANDLER mode. ACPICA: Events: Enable APIs to allow interrupt/polling adaptive request based GPE handling model ... |
||
Kirill A. Shutemov
|
0a19136205 |
x86: drop _PAGE_FILE and pte_file()-related helpers
We've replaced remap_file_pages(2) implementation with emulation. Nobody creates non-linear mapping anymore. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
bdccc4edeb |
xen: features and fixes for 3.20-rc0
- Reworked handling for foreign (grant mapped) pages to simplify the code, enable a number of additional use cases and fix a number of long-standing bugs. - Prefer the TSC over the Xen PV clock when dom0 (and the TSC is stable). - Assorted other cleanup and minor bug fixes. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iQEcBAABAgAGBQJU2JC+AAoJEFxbo/MsZsTRIvAH/1lgQ0EQlxaZtEFWY8cJBzxY dXaTMfyGQOddGYDCW0r42hhXJHeX7DWXSERSD3aW9DZOn/eYdneHq9gWRD4uPrGn hEFQ26J4jZWR5riGXaja0LqI2gJKLZ6BhHIQciLEbY+jw4ynkNBLNRPFehuwrCsZ WdBwJkyvXC3RErekncRl/aNhxdi4p1P6qeiaW/mo3UcSO/CFSKybOLwT65iePazg XuY9UiTn2+qcRkm/tjx8K9heHK8SBEGNWuoTcWYF1to8mwwUfKIAc4NO2UBDXJI+ rp7Z2lVFdII15JsQ08ATh3t7xDrMWLzCX/y4jCzmF3DBXLbSWdHCQMgI7TWt5pE= =PyJK -----END PGP SIGNATURE----- Merge tag 'stable/for-linus-3.20-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip Pull xen features and fixes from David Vrabel: - Reworked handling for foreign (grant mapped) pages to simplify the code, enable a number of additional use cases and fix a number of long-standing bugs. - Prefer the TSC over the Xen PV clock when dom0 (and the TSC is stable). - Assorted other cleanup and minor bug fixes. * tag 'stable/for-linus-3.20-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (25 commits) xen/manage: Fix USB interaction issues when resuming xenbus: Add proper handling of XS_ERROR from Xenbus for transactions. xen/gntdev: provide find_special_page VMA operation xen/gntdev: mark userspace PTEs as special on x86 PV guests xen-blkback: safely unmap grants in case they are still in use xen/gntdev: safely unmap grants in case they are still in use xen/gntdev: convert priv->lock to a mutex xen/grant-table: add a mechanism to safely unmap pages that are in use xen-netback: use foreign page information from the pages themselves xen: mark grant mapped pages as foreign xen/grant-table: add helpers for allocating pages x86/xen: require ballooned pages for grant maps xen: remove scratch frames for ballooned pages and m2p override xen/grant-table: pre-populate kernel unmap ops for xen_gnttab_unmap_refs() mm: add 'foreign' alias for the 'pinned' page flag mm: provide a find_special_page vma operation x86/xen: cleanup arch/x86/xen/mmu.c x86/xen: add some __init annotations in arch/x86/xen/mmu.c x86/xen: add some __init and static annotations in arch/x86/xen/setup.c x86/xen: use correct types for addresses in arch/x86/xen/setup.c ... |
||
Rafael J. Wysocki
|
b5e82233ca |
Merge branch 'pm-tools'
* pm-tools: tools/power turbostat: relax dependency on APERF_MSR tools/power turbostat: relax dependency on invariant TSC tools/power turbostat: decode MSR_*_PERF_LIMIT_REASONS tools/power turbostat: relax dependency on root permission cpupower Makefile change to help run the tool without 'make install' |
||
Rafael J. Wysocki
|
7bc95d4ef1 |
Merge branch 'pm-cpufreq'
* pm-cpufreq: (46 commits) intel_pstate: provide option to only use intel_pstate with HWP cpufreq-dt: Drop unnecessary check before cpufreq_cooling_unregister() invocation cpufreq: Create for_each_governor() cpufreq: Create for_each_policy() cpufreq: Drop cpufreq_disabled() check from cpufreq_cpu_{get|put}() cpufreq: Set cpufreq_cpu_data to NULL before putting kobject intel_pstate: honor user space min_perf_pct override on resume intel_pstate: respect cpufreq policy request intel_pstate: Add num_pstates to sysfs intel_pstate: expose turbo range to sysfs intel_pstate: Add support for SkyLake cpufreq: stats: drop unnecessary locking cpufreq: stats: don't update stats on false notifiers cpufreq: stats: don't update stats from show_trans_table() cpufreq: stats: time_in_state can't be NULL in cpufreq_stats_update() cpufreq: stats: create sysfs group once we are ready cpufreq: remove CPUFREQ_UPDATE_POLICY_CPU notifications cpufreq: stats: drop 'cpu' field of struct cpufreq_stats cpufreq: Remove (now) unused 'last_cpu' from struct cpufreq_policy cpufreq: stats: rename 'struct cpufreq_stats' objects as 'stats' ... |
||
Linus Torvalds
|
a8f7684214 |
Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SoC updates from Ingo Molnar: "Various Intel Atom SoC updates (mostly to enhance debuggability), plus an apb_timer cleanup" * 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86: pmc_atom: Expose contents of PSS x86: pmc_atom: Clean up init function x86: pmc-atom: Remove unused macro x86: pmc_atom: don%27t check for NULL twice x86: pmc-atom: Assign debugfs node as soon as possible x86/platform: Remove unused function from apb_timer.c |
||
Linus Torvalds
|
c93ecedab3 |
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Ingo Molnar: "Initial round of kernel_fpu_begin/end cleanups from Oleg Nesterov, plus a cleanup from Borislav Petkov" * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, fpu: Fix math_state_restore() race with kernel_fpu_begin() x86, fpu: Don't abuse has_fpu in __kernel_fpu_begin/end() x86, fpu: Introduce per-cpu in_kernel_fpu state x86/fpu: Use a symbolic name for asm operand |
||
Linus Torvalds
|
7453311d68 |
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm changes from Ingo Molnar: "The main changes in this cycle were the x86/entry and sysret enhancements from Andy Lutomirski, see merge commits |
||
Linus Torvalds
|
9d43bade34 |
Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 APIC updates from Ingo Molnar: "Continued fallout of the conversion of the x86 IRQ code to the hierarchical irqdomain framework: more cleanups, simplifications, memory allocation behavior enhancements, mainly in the interrupt remapping and APIC code" * 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits) x86, init: Fix UP boot regression on x86_64 iommu/amd: Fix irq remapping detection logic x86/acpi: Make acpi_[un]register_gsi_ioapic() depend on CONFIG_X86_LOCAL_APIC x86: Consolidate boot cpu timer setup x86/apic: Reuse apic_bsp_setup() for UP APIC setup x86/smpboot: Sanitize uniprocessor init x86/smpboot: Move apic init code to apic.c init: Get rid of x86isms x86/apic: Move apic_init_uniprocessor code x86/smpboot: Cleanup ioapic handling x86/apic: Sanitize ioapic handling x86/ioapic: Add proper checks to setp/enable_IO_APIC() x86/ioapic: Provide stub functions for IOAPIC%3Dn x86/smpboot: Move smpboot inlines to code x86/x2apic: Use state information for disable x86/x2apic: Split enable and setup function x86/x2apic: Disable x2apic from nox2apic setup x86/x2apic: Add proper state tracking x86/x2apic: Clarify remapping mode for x2apic enablement x86/x2apic: Move code in conditional region ... |
||
Rafael J. Wysocki
|
c488ea4613 |
Merge branch 'sfi' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux into pm-cpufreq
Pull SFI-based cpufreq driver for v3.20 from Len Brown. * 'sfi' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux: cpufreq: Add SFI based cpufreq driver support SFI: fix compiler warnings |
||
Len Brown
|
3a9a941d0b |
tools/power turbostat: decode MSR_*_PERF_LIMIT_REASONS
The Processor generation code-named Haswell added MSR_{CORE | GFX | RING}_PERF_LIMIT_REASONS to explain when and how the processor limits frequency. turbostat -v will now decode these bits. Each MSR has an "Active" set of bits which describe current conditions, and a "Logged" set of bits, which describe what has happened since last cleared. Turbostat currently doesn't clear the log bits. Signed-off-by: Len Brown <len.brown@intel.com> |
||
Paolo Bonzini
|
f781951299 |
kvm: add halt_poll_ns module parameter
This patch introduces a new module parameter for the KVM module; when it is present, KVM attempts a bit of polling on every HLT before scheduling itself out via kvm_vcpu_block. This parameter helps a lot for latency-bound workloads---in particular I tested it with O_DSYNC writes with a battery-backed disk in the host. In this case, writes are fast (because the data doesn't have to go all the way to the platters) but they cannot be merged by either the host or the guest. KVM's performance here is usually around 30% of bare metal, or 50% if you use cache=directsync or cache=writethrough (these parameters avoid that the guest sends pointless flush requests, and at the same time they are not slow because of the battery-backed cache). The bad performance happens because on every halt the host CPU decides to halt itself too. When the interrupt comes, the vCPU thread is then migrated to a new physical CPU, and in general the latency is horrible because the vCPU thread has to be scheduled back in. With this patch performance reaches 60-65% of bare metal and, more important, 99% of what you get if you use idle=poll in the guest. This means that the tunable gets rid of this particular bottleneck, and more work can be done to improve performance in the kernel or QEMU. Of course there is some price to pay; every time an otherwise idle vCPUs is interrupted by an interrupt, it will poll unnecessarily and thus impose a little load on the host. The above results were obtained with a mostly random value of the parameter (500000), and the load was around 1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU. The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll, that can be used to tune the parameter. It counts how many HLT instructions received an interrupt during the polling period; each successful poll avoids that Linux schedules the VCPU thread out and back in, and may also avoid a likely trip to C1 and back for the physical CPU. While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second. Of these halts, almost all are failed polls. During the benchmark, instead, basically all halts end within the polling period, except a more or less constant stream of 50 per second coming from vCPUs that are not running the benchmark. The wasted time is thus very low. Things may be slightly different for Windows VMs, which have a ~10 ms timer tick. The effect is also visible on Marcelo's recently-introduced latency test for the TSC deadline timer. Though of course a non-RT kernel has awful latency bounds, the latency of the timer is around 8000-10000 clock cycles compared to 20000-120000 without setting halt_poll_ns. For the TSC deadline timer, thus, the effect is both a smaller average latency and a smaller variance. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Jiang Liu
|
b4b55cda58 |
x86/PCI: Refine the way to release PCI IRQ resources
Some PCI device drivers assume that pci_dev->irq won't change after calling pci_disable_device() and pci_enable_device() during suspend and resume. Commit |
||
Tiejun Chen
|
1c2b364b22 |
kvm: remove KVM_MMIO_SIZE
After |
||
Andy Lutomirski
|
a66734297f |
perf/x86: Add /sys/devices/cpu/rdpmc=2 to allow rdpmc for all tasks
While perfmon2 is a sufficiently evil library (it pokes MSRs directly) that breaking it is fair game, it's still useful, so we might as well try to support it. This allows users to write 2 to /sys/devices/cpu/rdpmc to disable all rdpmc protection so that hack like perfmon2 can continue to work. At some point, if perf_event becomes fast enough to replace perfmon2, then this can go. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Vince Weaver <vince@deater.net> Cc: "hillf.zj" <hillf.zj@alibaba-inc.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/caac3c1c707dcca48ecbc35f4def21495856f479.1414190806.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
7911d3f7af |
perf/x86: Only allow rdpmc if a perf_event is mapped
We currently allow any process to use rdpmc. This significantly weakens the protection offered by PR_TSC_DISABLED, and it could be helpful to users attempting to exploit timing attacks. Since we can't enable access to individual counters, use a very coarse heuristic to limit access to rdpmc: allow access only when a perf_event is mmapped. This protects seccomp sandboxes. There is plenty of room to further tighen these restrictions. For example, this allows rdpmc for any x86_pmu event, but it's only useful for self-monitoring tasks. As a side effect, cap_user_rdpmc will now be false for AMD uncore events. This isn't a real regression, since .event_idx is disabled for these events anyway for the time being. Whenever that gets re-added, the cap_user_rdpmc code can be adjusted or refactored accordingly. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Vince Weaver <vince@deater.net> Cc: "hillf.zj" <hillf.zj@alibaba-inc.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/a2bdb3cf3a1d70c26980d7c6dddfbaa69f3182bf.1414190806.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
22c4bd9fa9 |
x86: Add a comment clarifying LDT context switching
The code is correct, but only for a rather subtle reason. This confused me for quite a while when I read switch_mm, so clarify the code to avoid confusing other people, too. TBH, I wouldn't be surprised if this code was only correct by accident. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Kees Cook <keescook@chromium.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Vince Weaver <vince@deater.net> Cc: "hillf.zj" <hillf.zj@alibaba-inc.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/0db86397f968996fb772c443c251415b0b430ddd.1414190806.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
1e02ce4ccc |
x86: Store a per-cpu shadow copy of CR4
Context switches and TLB flushes can change individual bits of CR4. CR4 reads take several cycles, so store a shadow copy of CR4 in a per-cpu variable. To avoid wasting a cache line, I added the CR4 shadow to cpu_tlbstate, which is already touched in switch_mm. The heaviest users of the cr4 shadow will be switch_mm and __switch_to_xtra, and __switch_to_xtra is called shortly after switch_mm during context switch, so the cacheline is likely to be hot. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Kees Cook <keescook@chromium.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Vince Weaver <vince@deater.net> Cc: "hillf.zj" <hillf.zj@alibaba-inc.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/3a54dd3353fffbf84804398e00dfdc5b7c1afd7d.1414190806.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
375074cc73 |
x86: Clean up cr4 manipulation
CR4 manipulation was split, seemingly at random, between direct (write_cr4) and using a helper (set/clear_in_cr4). Unfortunately, the set_in_cr4 and clear_in_cr4 helpers also poke at the boot code, which only a small subset of users actually wanted. This patch replaces all cr4 access in functions that don't leave cr4 exactly the way they found it with new helpers cr4_set_bits, cr4_clear_bits, and cr4_set_bits_and_update_boot. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Vince Weaver <vince@deater.net> Cc: "hillf.zj" <hillf.zj@alibaba-inc.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/495a10bdc9e67016b8fd3945700d46cfd5c12c2f.1414190806.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Josh Poimboeuf
|
12cf89b550 |
livepatch: rename config to CONFIG_LIVEPATCH
Rename CONFIG_LIVE_PATCHING to CONFIG_LIVEPATCH to make the naming of the config and the code more consistent. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Jingoo Han <jg1.han@samsung.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |