We worked around some nasty KVM magic page hcall breakages:
1) NX bit not honored, so ignore NX when we detect it
2) LE guests swizzle hypercall instruction
Without these fixes in place, there's no way it would make sense to expose kvm
hypercalls to a guest. Chances are immensely high it would trip over and break.
So add a new CAP that gives user space a hint that we have workarounds for the
bugs above in place. It can use those as hint to disable PV hypercalls when
the guest CPU is anything POWER7 or higher and the host does not have fixes
in place.
Signed-off-by: Alexander Graf <agraf@suse.de>
Old guests try to use the magic page, but map their trampoline code inside
of an NX region.
Since we can't fix those old kernels, try to detect whether the guest is sane
or not. If not, just disable NX functionality in KVM so that old guests at
least work at all. For newer guests, add a bit that we can set to keep NX
functionality available.
Signed-off-by: Alexander Graf <agraf@suse.de>
The shared (magic) page is a data structure that contains often used
supervisor privileged SPRs accessible via memory to the user to reduce
the number of exits we have to take to read/write them.
When we actually share this structure with the guest we have to maintain
it in guest endianness, because some of the patch tricks only work with
native endian load/store operations.
Since we only share the structure with either host or guest in little
endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.
For booke, the shared struct stays big endian. For book3s_64 hv we maintain
the struct in host native endian, since it never gets shared with the guest.
For book3s_64 pr we introduce a variable that tells us which endianness the
shared struct is in and route every access to it through helper inline
functions that evaluate this variable.
Signed-off-by: Alexander Graf <agraf@suse.de>
We expose a blob of hypercall instructions to user space that it gives to
the guest via device tree again. That blob should contain a stream of
instructions necessary to do a hypercall in big endian, as it just gets
passed into the guest and old guests use them straight away.
Signed-off-by: Alexander Graf <agraf@suse.de>
Simplify the handling of lazy EE by going directly from fully-enabled
to hard-disabled. This replaces the lazy_irq_pending() check
(including its misplaced kvm_guest_exit() call).
As suggested by Tiejun Chen, move the interrupt disabling into
kvmppc_prepare_to_enter() rather than have each caller do it. Also
move the IRQ enabling on heavyweight exit into
kvmppc_prepare_to_enter().
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
MMIO emulation reads the last instruction executed by the guest
and then emulates. If the guest is running in Little Endian order,
or more generally in a different endian order of the host, the
instruction needs to be byte-swapped before being emulated.
This patch adds a helper routine which tests the endian order of
the host and the guest in order to decide whether a byteswap is
needed or not. It is then used to byteswap the last instruction
of the guest in the endian order of the host before MMIO emulation
is performed.
Finally, kvmppc_handle_load() of kvmppc_handle_store() are modified
to reverse the endianness of the MMIO if required.
Signed-off-by: Cédric Le Goater <clg@fr.ibm.com>
[agraf: add booke handling]
Signed-off-by: Alexander Graf <agraf@suse.de>
This uses struct thread_fp_state and struct thread_vr_state to store
the floating-point, VMX/Altivec and VSX state, rather than flat arrays.
This makes transferring the state to/from the thread_struct simpler
and allows us to unify the get/set_one_reg implementations for the
VSX registers.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
drop is_hv_enabled, because that should not be a callback property
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This moves the kvmppc_ops callbacks to be a per VM entity. This
enables us to select HV and PR mode when creating a VM. We also
allow both kvm-hv and kvm-pr kernel module to be loaded. To
achieve this we move /dev/kvm ownership to kvm.ko module. Depending on
which KVM mode we select during VM creation we take a reference
count on respective module
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: fix coding style]
Signed-off-by: Alexander Graf <agraf@suse.de>
We will use that in the later patch to find the kvm ops handler
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This help us to identify whether we are running with hypervisor mode KVM
enabled. The change is needed so that we can have both HV and PR kvm
enabled in the same kernel.
If both HV and PR KVM are included, interrupts come in to the HV version
of the kvmppc_interrupt code, which then jumps to the PR handler,
renamed to kvmppc_interrupt_pr, if the guest is a PR guest.
Allowing both PR and HV in the same kernel required some changes to
kvm_dev_ioctl_check_extension(), since the values returned now can't
be selected with #ifdefs as much as previously. We look at is_hv_enabled
to return the right value when checking for capabilities.For capabilities that
are only provided by HV KVM, we return the HV value only if
is_hv_enabled is true. For capabilities provided by PR KVM but not HV,
we return the PR value only if is_hv_enabled is false.
NOTE: in later patch we replace is_hv_enabled with a static inline
function comparing kvm_ppc_ops
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch add a new callback kvmppc_ops. This will help us in enabling
both HV and PR KVM together in the same kernel. The actual change to
enable them together is done in the later patch in the series.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in booke changes]
Signed-off-by: Alexander Graf <agraf@suse.de>
Pull vfs pile 1 from Al Viro:
"Unfortunately, this merge window it'll have a be a lot of small piles -
my fault, actually, for not keeping #for-next in anything that would
resemble a sane shape ;-/
This pile: assorted fixes (the first 3 are -stable fodder, IMO) and
cleanups + %pd/%pD formats (dentry/file pathname, up to 4 last
components) + several long-standing patches from various folks.
There definitely will be a lot more (starting with Miklos'
check_submount_and_drop() series)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits)
direct-io: Handle O_(D)SYNC AIO
direct-io: Implement generic deferred AIO completions
add formats for dentry/file pathnames
kvm eventfd: switch to fdget
powerpc kvm: use fdget
switch fchmod() to fdget
switch epoll_ctl() to fdget
switch copy_module_from_fd() to fdget
git simplify nilfs check for busy subtree
ibmasmfs: don't bother passing superblock when not needed
don't pass superblock to hypfs_{mkdir,create*}
don't pass superblock to hypfs_diag_create_files
don't pass superblock to hypfs_vm_create_files()
oprofile: get rid of pointless forward declarations of struct super_block
oprofilefs_create_...() do not need superblock argument
oprofilefs_mkdir() doesn't need superblock argument
don't bother with passing superblock to oprofile_create_stats_files()
oprofile: don't bother with passing superblock to ->create_files()
don't bother passing sb to oprofile_create_files()
coh901318: don't open-code simple_read_from_buffer()
...
This is called right after the memslots is updated, i.e. when the result
of update_memslots() gets installed in install_new_memslots(). Since
the memslots needs to be updated twice when we delete or move a memslot,
kvm_arch_commit_memory_region() does not correspond to this exactly.
In the following patch, x86 will use this new API to check if the mmio
generation has reached its maximum value, in which case mmio sptes need
to be flushed out.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Acked-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently this is only being done on 64-bit. Rather than just move it
out of the 64-bit ifdef, move it to kvm_lazy_ee_enable() so that it is
consistent with lazy ee state, and so that we don't track more host
code as interrupts-enabled than necessary.
Rename kvm_lazy_ee_enable() to kvm_fix_ee_before_entry() to reflect
that this function now has a role on 32-bit as well.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds the API for userspace to instantiate an XICS device in a VM
and connect VCPUs to it. The API consists of a new device type for
the KVM_CREATE_DEVICE ioctl, a new capability KVM_CAP_IRQ_XICS, which
functions similarly to KVM_CAP_IRQ_MPIC, and the KVM_IRQ_LINE ioctl,
which is used to assert and deassert interrupt inputs of the XICS.
The XICS device has one attribute group, KVM_DEV_XICS_GRP_SOURCES.
Each attribute within this group corresponds to the state of one
interrupt source. The attribute number is the same as the interrupt
source number.
This does not support irq routing or irqfd yet.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
These functions do an srcu_dereference without acquiring the srcu lock
themselves.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds in-kernel emulation of the XICS (eXternal Interrupt
Controller Specification) interrupt controller specified by PAPR, for
both HV and PR KVM guests.
The XICS emulation supports up to 1048560 interrupt sources.
Interrupt source numbers below 16 are reserved; 0 is used to mean no
interrupt and 2 is used for IPIs. Internally these are represented in
blocks of 1024, called ICS (interrupt controller source) entities, but
that is not visible to userspace.
Each vcpu gets one ICP (interrupt controller presentation) entity,
used to store the per-vcpu state such as vcpu priority, pending
interrupt state, IPI request, etc.
This does not include any API or any way to connect vcpus to their
ICP state; that will be added in later patches.
This is based on an initial implementation by Michael Ellerman
<michael@ellerman.id.au> reworked by Benjamin Herrenschmidt and
Paul Mackerras.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix typo, add dependency on !KVM_MPIC]
Signed-off-by: Alexander Graf <agraf@suse.de>
For pseries machine emulation, in order to move the interrupt
controller code to the kernel, we need to intercept some RTAS
calls in the kernel itself. This adds an infrastructure to allow
in-kernel handlers to be registered for RTAS services by name.
A new ioctl, KVM_PPC_RTAS_DEFINE_TOKEN, then allows userspace to
associate token values with those service names. Then, when the
guest requests an RTAS service with one of those token values, it
will be handled by the relevant in-kernel handler rather than being
passed up to userspace as at present.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix warning]
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that all pieces are in place for reusing generic irq infrastructure,
we can copy x86's implementation of KVM_IRQ_LINE irq injection and simply
reuse it for PPC, as it will work there just as well.
Signed-off-by: Alexander Graf <agraf@suse.de>
Enabling this capability connects the vcpu to the designated in-kernel
MPIC. Using explicit connections between vcpus and irqchips allows
for flexibility, but the main benefit at the moment is that it
simplifies the code -- KVM doesn't need vm-global state to remember
which MPIC object is associated with this vm, and it doesn't need to
care about ordering between irqchip creation and vcpu creation.
Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub functions for kvmppc_mpic_{dis,}connect_vcpu]
Signed-off-by: Alexander Graf <agraf@suse.de>
Hook the MPIC code up to the KVM interfaces, add locking, etc.
Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub function for kvmppc_mpic_set_epr, non-booke, 64bit]
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch defines the interface parameter for KVM_SET_GUEST_DEBUG
ioctl support. Follow up patches will use this for setting up
hardware breakpoints, watchpoints and software breakpoints.
Also kvm_arch_vcpu_ioctl_set_guest_debug() is brought one level below.
This is because I am not sure what is required for book3s. So this ioctl
behaviour will not change for book3s.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
complete_mmio_load writes back the mmio result into the
destination register. Doing this on a store results in
register corruption.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently kvmppc_core_dequeue_external() takes a struct kvm_interrupt *
argument and does nothing with it, in any of its implementations.
This removes it in order to make things easier for forthcoming
in-kernel interrupt controller emulation code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch makes the parameter old a const pointer to the old memory
slot and adds a new parameter named change to know the change being
requested: the former is for removing extra copying and the latter is
for cleaning up the code.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch drops the parameter old, a copy of the old memory slot, and
adds a new parameter named change to know the change being requested.
This not only cleans up the code but also removes extra copying of the
memory slot structure.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
X86 does not use this any more. The remaining user, s390's !user_alloc
check, can be simply removed since KVM_SET_MEMORY_REGION ioctl is no
longer supported.
Note: fixed powerpc's indentations with spaces to suppress checkpatch
errors.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The External Proxy Facility in FSL BookE chips allows the interrupt
controller to automatically acknowledge an interrupt as soon as a
core gets its pending external interrupt delivered.
Today, user space implements the interrupt controller, so we need to
check on it during such a cycle.
This patch implements logic for user space to enable EPR exiting,
disable EPR exiting and EPR exiting itself, so that user space can
acknowledge an interrupt when an external interrupt has successfully
been delivered into the guest vcpu.
Signed-off-by: Alexander Graf <agraf@suse.de>
When we hit an emulation result that we didn't expect, that is an error,
but it's nothing that warrants a BUG(), because it can be guest triggered.
So instead, let's only WARN() the user that this happened.
Signed-off-by: Alexander Graf <agraf@suse.de>
There's no need for this to be an int, it holds a boolean.
Move to the end of the struct for alignment.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
In order to support the generic eventfd infrastructure on PPC, we need
to call into the generic KVM in-kernel device mmio code.
Signed-off-by: Alexander Graf <agraf@suse.de>
Avoid a race as described in the code comment.
Also remove a related smp_wmb() from booke's kvmppc_prepare_to_enter().
I can't see any reason for it, and the book3s_pr version doesn't have it.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This removes the powerpc "generic" updates of vcpu->cpu in load and
put, and moves them to the various backends.
The reason is that "HV" KVM does its own sauce with that field
and the generic updates might corrupt it. The field contains the
CPU# of the -first- HW CPU of the core always for all the VCPU
threads of a core (the one that's online from a host Linux
perspective).
However, the preempt notifiers are going to be called on the
threads VCPUs when they are running (due to them sleeping on our
private waitqueue) causing unload to be called, potentially
clobbering the value.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds an implementation of kvm_arch_flush_shadow_memslot for
Book3S HV, and arranges for kvmppc_core_commit_memory_region to
flush the dirty log when modifying an existing slot. With this,
we can handle deletion and modification of memory slots.
kvm_arch_flush_shadow_memslot calls kvmppc_core_flush_memslot, which
on Book3S HV now traverses the reverse map chains to remove any HPT
(hashed page table) entries referring to pages in the memslot. This
gets called by generic code whenever deleting a memslot or changing
the guest physical address for a memslot.
We flush the dirty log in kvmppc_core_commit_memory_region for
consistency with what x86 does. We only need to flush when an
existing memslot is being modified, because for a new memslot the
rmap array (which stores the dirty bits) is all zero, meaning that
every page is considered clean already, and when deleting a memslot
we obviously don't care about the dirty bits any more.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that we have an architecture-specific field in the kvm_memory_slot
structure, we can use it to store the array of page physical addresses
that we need for Book3S HV KVM on PPC970 processors. This reduces the
size of struct kvm_arch for Book3S HV, and also reduces the size of
struct kvm_arch_memory_slot for other PPC KVM variants since the fields
in it are now only compiled in for Book3S HV.
This necessitates making the kvm_arch_create_memslot and
kvm_arch_free_memslot operations specific to each PPC KVM variant.
That in turn means that we now don't allocate the rmap arrays on
Book3S PR and Book E.
Since we now unpin pages and free the slot_phys array in
kvmppc_core_free_memslot, we no longer need to do it in
kvmppc_core_destroy_vm, since the generic code takes care to free
all the memslots when destroying a VM.
We now need the new memslot to be passed in to
kvmppc_core_prepare_memory_region, since we need to initialize its
arch.slot_phys member on Book3S HV.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds the watchdog emulation in KVM. The watchdog
emulation is enabled by KVM_ENABLE_CAP(KVM_CAP_PPC_BOOKE_WATCHDOG) ioctl.
The kernel timer are used for watchdog emulation and emulates
h/w watchdog state machine. On watchdog timer expiry, it exit to QEMU
if TCR.WRC is non ZERO. QEMU can reset/shutdown etc depending upon how
it is configured.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
[bharat.bhushan@freescale.com: reworked patch]
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
[agraf: adjust to new request framework]
Signed-off-by: Alexander Graf <agraf@suse.de>
Requests may want to tell us that we need to go back into host state,
so add a return value for the checks.
Signed-off-by: Alexander Graf <agraf@suse.de>
Our prepare_to_enter helper wants to be able to return in more circumstances
to the host than only when an interrupt is pending. Broaden the interface a
bit and move even more generic code to the generic helper.
Signed-off-by: Alexander Graf <agraf@suse.de>
We don't need to do anything when mode is EXITING_GUEST_MODE, because
we essentially are outside of guest mode and did everything it asked
us to do by the time we check it.
Signed-off-by: Alexander Graf <agraf@suse.de>
Today, we disable preemption while inside guest context, because we need
to expose to the world that we are not in a preemptible context. However,
during that time we already have interrupts disabled, which would indicate
that we are in a non-preemptible context.
The reason the checks for irqs_disabled() fail for us though is that we
manually control hard IRQs and ignore all the lazy EE framework. Let's
stop doing that. Instead, let's always use lazy EE to indicate when we
want to disable IRQs, but do a special final switch that gets us into
EE disabled, but soft enabled state. That way when we get back out of
guest state, we are immediately ready to process interrupts.
This simplifies the code drastically and reduces the time that we appear
as preempt disabled.
Signed-off-by: Alexander Graf <agraf@suse.de>
We need to do the same things when preparing to enter a guest for booke and
book3s_pr cores. Fold the generic code into a generic function that both call.
Signed-off-by: Alexander Graf <agraf@suse.de>
Semantically, the "SYNC" cap means that we have mmu notifiers available.
Express this in our #ifdef'ery around the feature, so that we can be sure
we don't miss out on ppc targets when they get their implementation.
Signed-off-by: Alexander Graf <agraf@suse.de>
And add a new flag definition in kvm_ppc_pvinfo to indicate
whether the host supports the EV_IDLE hcall.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
[stuart.yoder@freescale.com: cleanup,fixes for conditions allowing idle]
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
[agraf: fix typo]
Signed-off-by: Alexander Graf <agraf@suse.de>