The ColdFire 5249 and 525x family of SoCs are very similar. Most of the
internals are the same, and are mapped the same. We can use a single set of
peripheral definitions for all of them.
So merge the current m5249sim.h and m525xsim.h definitions into a single
file. The 5249 is now obsolete, and the 525x parts are current, so I have
chosen to move everything into the existing m525xsim.h file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make the ColdFire 5249 MBAR peripheral register definitions absolute
addresses, instead of offsets into the region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Make all definitions of the ColdFire Interrupt Source registers absolute
addresses. Currently some are relative to the MBAR peripheral region.
The various ColdFire parts use different methods to address the internal
registers, some are absolute, some are relative to peripheral regions
which can be mapped at different address ranges (such as the MBAR and IPSBAR
registers). We don't want to deal with this in the code when we are
accessing these registers, so make all register definitions the absolute
address - factoring out whether it is an offset into a peripheral region.
This makes them all consistently defined, and reduces the occasional bugs
caused by inconsistent definition of the register addresses.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we're not connecting external GPIO extenders via i2c or spi or whatever, we
probably don't need GPIOLIB. If we provide an alternate implementation of
the GPIOLIB functions to use when only on-chip GPIO is needed, we can change
ARCH_REQUIRE_GPIOLIB to ARCH_WANTS_OPTIONAL_GPIOLIB so that GPIOLIB becomes
optional.
The downside is that in the GPIOLIB=n case, we lose all error checking done by
gpiolib, ie multiply allocating the gpio, free'ing gpio etc., so that the
only checking that can be done is if we reference a gpio on an external part.
Targets that need the extra error checking can still select GPIOLIB=y.
For the case where GPIOLIB=y, we can simplify the table of gpio chips to use a
single chip, eliminating the tables of chips in the 5xxx.c files. The
original motivation for the definition of multiple chips was to match the way
many of the Coldfire variants defined their gpio as a spare array in memory.
However, all this really gains us is some error checking when we request a
gpio, gpiolib can check that it doesn't fall in one of the holes. If thats
important, I think we can still come up with a better way of accomplishing
that.
Also in this patch is some general cleanup and reorganizing of the gpio header
files (I'm sure I must have had a reason why I sometimes used a prefix of
mcf_gpio and other times mcfgpio but for the life of me I can't think of it
now).
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
All these separate directories for each ColdFire CPU SoC varient seems like
overkill. The majority of them only contain a single small config file. Move
these into the common ColdFire code directory.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>