On POWER9 the ERAT may be incorrect on wakeup from some stop states
that lose state. This causes random segvs and illegal instructions
when these stop states are enabled.
This patch invalidates the ERAT on wakeup on POWER9 to prevent this
from causing a problem.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Merge comment change with upstream changes]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As for slb_miss_realmode(), rename slb_allocate_realmode() to avoid
confusion over whether it runs in real or virtual mode - it runs in
both.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
slb_miss_realmode() doesn't always runs in real mode, which is what the
name implies. So rename it to avoid confusing people.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
All the callers of slb_miss_realmode currently open code the #ifndef
CONFIG_RELOCATABLE check and the branch via CTR in the RELOCATABLE case.
We have a macro to do this, BRANCH_TO_COMMON(), so use it.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
The SLB miss handler uses r3 for the faulting address but r12 is
mostly able to be freed up to save r3 in. It just requires SRR1
be reloaded again on error.
It would be more conventional to use r12 for SRR1 (and use r11 to
save r3), but slb_allocate_realmode clobbers r11 and not r12.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The EXCEPTION_PROLOG_1 used by SLB miss already saves CTR when the
kernel is built with CONFIG_RELOCATABLE. So it does not have to be
saved and reloaded when branching to slb_miss_realmode. It can be
restored from the PACA as usual.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The EX_DAR save area is only used in exceptional cases. With r3 no
longer clobbered by slb_allocate_realmode, saving faulting address to
EX_DAR can be deferred to those cases.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Idle code now always runs at the 0xc... effective address whether
in real or virtual mode. This means rfid can be ditched, along
with a lot of SRR manipulations.
In the wakeup path, carry SRR1 around in r12. Use mtmsrd to change
MSR states as required.
This also balances the return prediction for the idle call, by
doing blr rather than rfid to return to the idle caller.
On POWER9, 2-process context switch on different cores, with snooze
disabled, increases performance by 2%.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Incorporate v2 fixes from Nick]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Have the system reset idle wakeup handlers branched to in real mode
with the 0xc... kernel address applied. This allows simplifications of
avoiding rfid when switching to virtual mode in the wakeup handler.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The __replay_interrupt() code is branched to with bl, but the caller is
returned to directly with rfid from the interrupt.
Instead, rfid to a stub that returns to the caller with blr, which
should keep the return branch predictor balanced.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
msgsnd doorbell exceptions are cleared when the doorbell interrupt is
taken. However if a doorbell exception causes a system reset interrupt
wake from power saving state, the message is not cleared. Processing
the doorbell from the system reset interrupt requires msgclr to avoid
taking the exception again.
Testing this plus the previous wakup direct patch gives:
original wakeup direct msgclr
Different threads, same core: 315k/s 264k/s 345k/s
Different cores: 235k/s 242k/s 242k/s
Net speedup is +10% for same core, and +3% for different core.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On Power9, trying to use data breakpoints throws the splat shown
below. This is because the check for a data breakpoint in DSISR is in
do_hash_page(), which is not called when in Radix mode.
Unable to handle kernel paging request for data at address 0xc000000000e19218
Faulting instruction address: 0xc0000000001155e8
cpu 0x0: Vector: 300 (Data Access) at [c0000000ef1e7b20]
pc: c0000000001155e8: find_pid_ns+0x48/0xe0
lr: c000000000116ac4: find_task_by_vpid+0x44/0x90
sp: c0000000ef1e7da0
msr: 9000000000009033
dar: c000000000e19218
dsisr: 400000
Move the check to handle_page_fault() so as to catch data breakpoints
in both Hash and Radix MMU modes.
We have to change the check in do_hash_page() against 0xa410 to use
0xa450, so as to include the value of (DSISR_DABRMATCH << 16).
There are two sites that call handle_page_fault() when in Radix, both
already pass DSISR in r4.
Fixes: caca285e5a ("powerpc/mm/radix: Use STD_MMU_64 to properly isolate hash related code")
Cc: stable@vger.kernel.org # v4.7+
Reported-by: Shriya R. Kulkarni <shriykul@in.ibm.com>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
[mpe: Fix the fall-through case on hash, we need to reload DSISR]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
After bc3551257a ("powerpc/64: Allow for relocation-on interrupts from
guest to host"), a getppid() system call goes from 307 cycles to 358
cycles (+17%) on POWER8. This is due significantly to the scratch SPR
used by the hypercall check.
It turns out there are a some volatile registers common to both system
call and hypercall (in particular, r12, cr0, ctr), which can be used to
avoid the SPR and some other overheads. This brings getppid to 320 cycles
(+4%).
Testing hcall entry performance by running "sc 1" in guest userspace
before this patch is 854 cycles, afterwards is 826. Also a small win
there.
POWER9 syscall is improved by about the same amount, hcall not tested.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights include:
- rework the Linux page table geometry to lower memory usage on 64-bit Book3S
(IBM chips) using the Hash MMU.
- support for a new device tree binding for discovering CPU features on future
firmwares.
- Freescale updates from Scott: "Includes a fix for a powerpc/next mm regression
on 64e, a fix for a kernel hang on 64e when using a debugger inside a
relocated kernel, a qman fix, and misc qe improvements."
Thanks to:
Christophe Leroy, Gavin Shan, Horia Geantă, LiuHailong, Nicholas Piggin, Roy
Pledge, Scott Wood, Valentin Longchamp.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZFXjPAAoJEFHr6jzI4aWAgG4QAJoF7G5Txj0Du2I2/wQDkVq1
InJ+BNji0xnOrFpz2EcIIlbIwBeJbY9cSIbmKUEPQU4hxtQgI8Q5WNEl2btWq8xz
I0Ej3uc5obc9ltUdQoGxgXih/XDd8UN3fscSE2/SSuPY/A7JwAVZMsCEJ1tWdxpM
hx+R9wlaUT3I6jmQwj9gg6zuBdIOL5szvZXKh9ruPKNyZWbPmPSUwIqiyT0YHsiD
01OZsFYpdSH6Ka/eNHSNx5HC+kK8aDVaqd5E2fkHeH9+sxerpEzMo2PmK4T8vChh
mSD4nhfqRwC2WRpPF/MY+zGBeXrFkCkR+nYhaqVDXXACKzfHgU58NOfvrmtRj52X
vTW+cn92wqFTmi0TNUfhEFt8elcOO7/fKh1OVhsFx+bD+bgj8G1ZkLoBU/0QUzRf
R4hiKKuOMnDHriNPdlAOKjHpR+ewh8Q679INThEJzEQpn7VBY72hcQwapQ3MjMnd
E7LfsGwqGPkTc6gy1bFbWum5HMGOcmE0qkrnZo5VyFhNNwBs1Kx/B1GHjUOiucVu
km5GEVNTfCkZqeabdca7fwbGcMH7zchR1ootqH2m18PZJAzr85A+aTqfrdJ5fDBs
v/nznfcPVNEgvEW0im2jhpPoAlQE6/YvYa+kG4zjjxWA5FKVKdTzINexD82jlcqP
+fDtIDxNcFkzlt4gacjh
=YOQs
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.12-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull more powerpc updates from Michael Ellerman:
"The change to the Linux page table geometry was delayed for more
testing with 16G pages, and there's the new CPU features stuff which
just needed one more polish before going in. Plus a few changes from
Scott which came in a bit late. And then various fixes, mostly minor.
Summary highlights:
- rework the Linux page table geometry to lower memory usage on
64-bit Book3S (IBM chips) using the Hash MMU.
- support for a new device tree binding for discovering CPU features
on future firmwares.
- Freescale updates from Scott:
"Includes a fix for a powerpc/next mm regression on 64e, a fix for
a kernel hang on 64e when using a debugger inside a relocated
kernel, a qman fix, and misc qe improvements."
Thanks to: Christophe Leroy, Gavin Shan, Horia Geantă, LiuHailong,
Nicholas Piggin, Roy Pledge, Scott Wood, Valentin Longchamp"
* tag 'powerpc-4.12-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/64s: Support new device tree binding for discovering CPU features
powerpc: Don't print cpu_spec->cpu_name if it's NULL
of/fdt: introduce of_scan_flat_dt_subnodes and of_get_flat_dt_phandle
powerpc/64s: Fix unnecessary machine check handler relocation branch
powerpc/mm/book3s/64: Rework page table geometry for lower memory usage
powerpc: Fix distclean with Makefile.postlink
powerpc/64e: Don't place the stack beyond TASK_SIZE
powerpc/powernv: Block PCI config access on BCM5718 during EEH recovery
powerpc/8xx: Adding support of IRQ in MPC8xx GPIO
soc/fsl/qbman: Disable IRQs for deferred QBMan work
soc/fsl/qe: add EXPORT_SYMBOL for the 2 qe_tdm functions
soc/fsl/qe: only apply QE_General4 workaround on affected SoCs
soc/fsl/qe: round brg_freq to 1kHz granularity
soc/fsl/qe: get rid of immrbar_virt_to_phys()
net: ethernet: ucc_geth: fix MEM_PART_MURAM mode
powerpc/64e: Fix hang when debugging programs with relocated kernel
Similarly to commit 2563a70c3b ("powerpc/64s: Remove unnecessary relocation
branch from idle handler"), the machine check handler has a BRANCH_TO from
relocated to relocated code, which is unnecessary.
It has also caused build errors with some toolchains:
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:395: Error: operand out of range
(0xffffffffffff8280 is not between 0x0000000000000000 and
0x000000000000ffff)
Fixes: 1945bc4549 ("powerpc/64s: Fix POWER9 machine check handler from stop state")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reported-and-tested-by : Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we use a 128TB
virtual address space, but a process can request access to the full 512TB by
passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator Interface
Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and runtime.
- Several small fixes and cleanups to the kprobes code, as well as support for
KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts, correctly treating
them as NMIs, giving them a dedicated stack and using a new hypervisor call
to trigger them, all of which should aid debugging and robustness.
Many fixes and other minor enhancements.
Thanks to:
Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan,
Aneesh Kumar K.V, Anshuman Khandual, Anton Blanchard, Balbir Singh, Ben
Hutchings, Benjamin Herrenschmidt, Bhupesh Sharma, Chris Packham, Christian
Zigotzky, Christophe Leroy, Christophe Lombard, Daniel Axtens, David Gibson,
Gautham R. Shenoy, Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli,
Hamish Martin, Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan,
Mahesh J Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell Currey, Sukadev
Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C. Harding, Tyrel Datwyler,
Uma Krishnan, Vaibhav Jain, Vipin K Parashar, Yang Shi.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDHUMAAoJEFHr6jzI4aWAT7oQALkE2Nj3gjcn1z0SkFhq/1iO
Py9Elmqm4E+L6NKYtBY5dS8xVAJ088ffzERyqJ1FY1LHkB8tn8bWRcMQmbjAFzTI
V4TAzDNI890BN/F4ptrYRwNFxRBHAvZ4NDunTzagwYnwmTzW9PYHmOi4pvWTo3Tw
KFUQ0joLSEgHzyfXxYB3fyj41u8N0FZvhfazdNSqia2Y5Vwwv/ION5jKplDM+09Y
EtVEXFvaKAS1sjbM/d/Jo5rblHfR0D9/lYV10+jjyIokjzslIpyTbnj3izeYoM5V
I4h99372zfsEjBGPPXyM3khL3zizGMSDYRmJHQSaKxjtecS9SPywPTZ8ufO/aSzV
Ngq6nlND+f1zep29VQ0cxd3Jh40skWOXzxJaFjfDT25xa6FbfsWP2NCtk8PGylZ7
EyqTuCWkMgIP02KlX3oHvEB2LRRPCDmRU2zECecRGNJrIQwYC2xjoiVi7Q8Qe8rY
gr7Ib5Jj/a+uiTcCIy37+5nXq2s14/JBOKqxuYZIxeuZFvKYuRUipbKWO05WDOAz
m/pSzeC3J8AAoYiqR0gcSOuJTOnJpGhs7zrQFqnEISbXIwLW+ICumzOmTAiBqOEY
Rt8uW2gYkPwKLrE05445RfVUoERaAjaE06eRMOWS6slnngHmmnRJbf3PcoALiJkT
ediqGEj0/N1HMB31V5tS
=vSF3
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we
use a 128TB virtual address space, but a process can request access
to the full 512TB by passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator
Interface Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and
runtime.
- Several small fixes and cleanups to the kprobes code, as well as
support for KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts,
correctly treating them as NMIs, giving them a dedicated stack and
using a new hypervisor call to trigger them, all of which should
aid debugging and robustness.
- Many fixes and other minor enhancements.
Thanks to: Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple,
Andrew Donnellan, Aneesh Kumar K.V, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Ben Hutchings, Benjamin Herrenschmidt,
Bhupesh Sharma, Chris Packham, Christian Zigotzky, Christophe Leroy,
Christophe Lombard, Daniel Axtens, David Gibson, Gautham R. Shenoy,
Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli, Hamish Martin,
Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan, Mahesh J
Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell
Currey, Sukadev Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C.
Harding, Tyrel Datwyler, Uma Krishnan, Vaibhav Jain, Vipin K Parashar,
Yang Shi"
* tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (214 commits)
powerpc/64s: Power9 has no LPCR[VRMASD] field so don't set it
powerpc/powernv: Fix TCE kill on NVLink2
powerpc/mm/radix: Drop support for CPUs without lockless tlbie
powerpc/book3s/mce: Move add_taint() later in virtual mode
powerpc/sysfs: Move #ifdef CONFIG_HOTPLUG_CPU out of the function body
powerpc/smp: Document irq enable/disable after migrating IRQs
powerpc/mpc52xx: Don't select user-visible RTAS_PROC
powerpc/powernv: Document cxl dependency on special case in pnv_eeh_reset()
powerpc/eeh: Clean up and document event handling functions
powerpc/eeh: Avoid use after free in eeh_handle_special_event()
cxl: Mask slice error interrupts after first occurrence
cxl: Route eeh events to all drivers in cxl_pci_error_detected()
cxl: Force context lock during EEH flow
powerpc/64: Allow CONFIG_RELOCATABLE if COMPILE_TEST
powerpc/xmon: Teach xmon oops about radix vectors
powerpc/mm/hash: Fix off-by-one in comment about kernel contexts ids
powerpc/pseries: Enable VFIO
powerpc/powernv: Fix iommu table size calculation hook for small tables
powerpc/powernv: Check kzalloc() return value in pnv_pci_table_alloc
powerpc: Add arch/powerpc/tools directory
...
The system reset interrupt is used for crash/debug situations, so it is
desirable to have as little impact on the normal state of the system as
possible.
Currently it uses the current kernel stack to process the exception.
This stores into the stack which may be involved with the crash. The
stack pointer may be corrupted, or it may have overflowed.
Avoid or minimise these problems by creating a dedicated NMI stack for
the system reset interrupt to use.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In preparation for using a dedicated stack for system reset interrupts,
prevent a nested system reset from recovering, in order to simplify
code that is called in crash/debug path. This allows a system reset
interrupt to just use the base stack pointer.
Keep an in_nmi nesting counter similarly to the in_mce counter. Consider
the interrrupt non-recoverable if it is taken inside another system
reset.
Interrupt nesting could be allowed similarly to MCE, but system reset
is a special case that's not for normal operation, so simplicity wins
until there is requirement for nested system reset interrupts.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The system reset interrupt can occur when MSR_EE=0, and it currently
uses the PACA_EXGEN save area.
Some PACA_EXGEN interrupts have a window where MSR_RI=1 and MSR_EE=0
when the save area is still in use. A system reset interrupt in this
window can lead to undetected corruption when the save area gets
overwritten.
This patch introduces PACA_EXNMI save area for system reset exceptions,
which closes this corruption window. It's also helpful to retain the
EXGEN state for debugging situations, even if not considering the
recoverability aspect.
This patch also moves the PACA_EXMC area down to a less frequently used
part of the paca with the new save area.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This code is common to a few exceptions, and another user will be added.
This causes a trivial change to generated code:
- 604: std r9,416(r1)
- 608: mfspr r11,314
- 60c: std r11,368(r1)
- 610: mfspr r12,315
+ 604: mfspr r11,314
+ 608: mfspr r12,315
+ 60c: std r9,416(r1)
+ 610: std r11,368(r1)
machine_check_powernv_early could also use this, but that requires non
trivial changes to generated code, so that's for another patch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Subsequent patches will add more non-RI variant exceptions, so
create a macro for it rather than open-code it.
This does not change generated instructions.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The ISA specifies power save wakeup due to a machine check exception can
cause a machine check interrupt (rather than the usual system reset
interrupt).
The machine check handler copes with this by doing low level machine
check recovery without restoring full state from idle, then queues up a
machine check event for logging, then directly executes the same idle
instruction it woke from. This minimises the work done before recovery
is performed.
The problem is that it requires machine specific instructions and
knowledge of the book3s idle code. Currently it only has code to handle
POWER8 idle, so POWER9 crashes when trying to execute the P8 idle
instructions which don't exist in ISAv3.0B.
cpu 0x0: Vector: e40 (Emulation Assist) at [c0000000008f3810]
pc: c000000000008380: machine_check_handle_early+0x130/0x2f0
lr: c00000000053a098: stop_loop+0x68/0xd0
sp: c0000000008f3a90
msr: 9000000000081001
current = 0xc0000000008a1080
paca = 0xc00000000ffd0000 softe: 0 irq_happened: 0x01
pid = 0, comm = swapper/0
Instead of going to sleep after recovery, do the usual idle wakeup and
state restoration by calling into the normal idle wakeup path. This
reuses the normal idle wakeup paths.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: Mahesh J Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The POWER8 idle code has a neat trick of programming the power on engine
to restore a low bit into HSPRG0, so idle wakeup code can test and see
if it has been programmed this way and therefore lost all state. Restore
time can be reduced if winkle has not been reached.
However this messes with our r13 PACA pointer, and requires HSPRG0 to be
written to. It also optimizes the slowest and most uncommon case at the
expense of another SPR write in the common nap state wakeup.
Remove this complexity and assume winkle sleeps always require a state
restore. This speedup could be made entirely contained within the winkle
idle code by counting per-core winkles and setting a thread bitmap when
all have gone to winkle.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
No functional change.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The system reset idle handler system_reset_idle_common is relocated, so
relocation is not required to branch to kvm_start_guest. The superfluous
relocation does not result in incorrect code, but it does not compile
outside of exception-64s.S (with fixed section definitions).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Prior to commit 2337d20728 ("powerpc/64: CONFIG_RELOCATABLE support for hmi
interrupts"), the branch from hmi_exception_early() to hmi_exception_realmode()
was just a bl hmi_exception_realmode, which the linker would turn into a bl to
the local entry point of hmi_exception_realmode. This was broken when
CONFIG_RELOCATABLE=y because hmi_exception_realmode() is not in the low part of
the kernel text that is copied down to 0x0.
But in fixing that, we added a new bug on little endian kernels. Because the
branch is now a bctrl when CONFIG_RELOCATABLE=y, we branch to the global entry
point of hmi_exception_realmode(). The global entry point must be called with
r12 containing the address of hmi_exception_realmode(), because it uses that
value to calculate the TOC value (r2).
This may manifest as a checkstop, because we take a junk value from r12 which
came from HSRR1, add a small constant to it and then use that as the TOC
pointer. The HSRR1 value will have 0x9 as the top nibble, which puts it above
RAM and somewhere in MMIO space.
Fix it by changing the BRANCH_LINK_TO_FAR() macro to always use r12 to load the
label we're branching to. This means r12 will be setup correctly on LE, fixing
this bug, and r12 is also volatile across function calls on BE so it's a good
choice anyway.
Fixes: 2337d20728 ("powerpc/64: CONFIG_RELOCATABLE support for hmi interrupts")
Reported-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The branch from hmi_exception_early to hmi_exception_realmode must use
a "relocatable-style" branch, because it is branching from unrelocated
exception code to beyond __end_interrupts.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
start,size has the benefit of being easier to search for (start,end
usually gives you the preceeding vector from the one you want, as first
result).
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Somewhere along the line, search/replace left some naming garbled,
and untidy alignment (aka. mpe stuffed it up). Might as well fix them
all up now while git blame history doesn't extend too far.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With host and guest both using radix translation, it is feasible
for the host to take interrupts that come from the guest with
relocation on, and that is in fact what the POWER9 hardware will
do when LPCR[AIL] = 3. All such interrupts use HSRR0/1 not SRR0/1
except for system call with LEV=1 (hcall).
Therefore this adds the KVM tests to the _HV variants of the
relocation-on interrupt handlers, and adds the KVM test to the
relocation-on system call entry point.
We also instantiate the relocation-on versions of the hypervisor
data storage and instruction interrupt handlers, since these can
occur with relocation on in radix guests.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
64-bit Book3S exception handlers must find the dynamic kernel base
to add to the target address when branching beyond __end_interrupts,
in order to support kernel running at non-0 physical address.
Support this in KVM by branching with CTR, similarly to regular
interrupt handlers. The guest CTR saved in HSTATE_SCRATCH1 and
restored after the branch.
Without this, the host kernel hangs and crashes randomly when it is
running at a non-0 address and a KVM guest is started.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently all the low-power idle states are expected to wake up
at reset vector 0x100. Which is why the macro IDLE_STATE_ENTER_SEQ
that puts the CPU to an idle state and never returns.
On ISA v3.0, when the ESL and EC bits in the PSSCR are zero, the CPU
is expected to wake up at the next instruction of the idle
instruction.
This patch adds a new macro named IDLE_STATE_ENTER_SEQ_NORET for the
no-return variant and reuses the name IDLE_STATE_ENTER_SEQ
for a variant that allows resuming operation at the instruction next
to the idle-instruction.
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
A subsequent patch to make KVM handlers relocation-safe makes them
unusable from within alt section "else" cases (due to the way fixed
addresses are taken from within fixed section head code).
Stop open-coding the KVM handlers, and add them both as normal. A more
optimal fix may be to allow some level of alternate feature patching in
the exception macros themselves, but for now this will do.
The TRAMP_KVM handlers must be moved to the "virt" fixed section area
(name is arbitrary) in order to be closer to .text and avoid the dreaded
"relocation truncated to fit" error.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights include:
- Support for the kexec_file_load() syscall, which is a prereq for secure and
trusted boot.
- Prevent kernel execution of userspace on P9 Radix (similar to SMEP/PXN).
- Sort the exception tables at build time, to save time at boot, and store
them as relative offsets to save space in the kernel image & memory.
- Allow building the kernel with thin archives, which should allow us to build
an allyesconfig once some other fixes land.
- Build fixes to allow us to correctly rebuild when changing the kernel endian
from big to little or vice versa.
- Plumbing so that we can avoid doing a full mm TLB flush on P9 Radix.
- Initial stack protector support (-fstack-protector).
- Support for dumping the radix (aka. Linux) and hash page tables via debugfs.
- Fix an oops in cxl coredump generation when cxl_get_fd() is used.
- Freescale updates from Scott: "Highlights include 8xx hugepage support,
qbman fixes/cleanup, device tree updates, and some misc cleanup."
- Many and varied fixes and minor enhancements as always.
Thanks to:
Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anshuman Khandual,
Anton Blanchard, Balbir Singh, Bartlomiej Zolnierkiewicz, Christophe Jaillet,
Christophe Leroy, Denis Kirjanov, Elimar Riesebieter, Frederic Barrat,
Gautham R. Shenoy, Geliang Tang, Geoff Levand, Jack Miller, Johan Hovold,
Lars-Peter Clausen, Libin, Madhavan Srinivasan, Michael Neuling, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Pan Xinhui, Peter Senna Tschudin,
Rashmica Gupta, Rui Teng, Russell Currey, Scott Wood, Simon Guo, Suraj
Jitindar Singh, Thiago Jung Bauermann, Tobias Klauser, Vaibhav Jain.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYU4YSAAoJEFHr6jzI4aWAC4gQALtIAqqPon0Cd5b/FVVcMbW7
mMqB2b/0FGEl5GoRTzGUDaQqElilm6AEVfHO86C7DFji/a6olneFfw87iz+mtWuZ
JvrNq68ZiSnoeszdUy4MgtXFLb5sTzNMev4skaHfjI9E5CepWBoR0zH4G+kNVnd5
WSgudv8Cq4Px+MEuTOigt3QYjHzZ3cw/XNOOm9c+oGj+PDW4O9UItVI+S1WLoey4
rAB2nRcLMDPuwfRQC9XsF3zEbkv4h1dEXo/EBRuRpcF+0lLTzFw1lv1WE8OxlUmS
kAXbty3dIytBfSbtJT0c0Ps6sfQ4HFhu6ZV2fjnxNTz2KDkBIN7LBYHmBYiqY9oZ
9zvbUWtfiTu5ocfRtTq7rC/Hcj4Kbr9S9F/FvXR0WyDsKgu4xxAovqC3gcn6YjYK
Rr1tcCI4nUzyhVJVmd+OEhUvc5JbFy9aGage+YeOyejfvvSbXIunaxWlPjoDkvim
Vjl+UKU8gw51XFssqY5ZBi/HNlMFKYedLpMFp/fItnLglhj50V0eFWkpDgdSCYom
vo9ifPLZx8n8m8De3H7TV4E0F4gCHcTeqZdu7tW9AAUVM6iLJcDLm3asGmtNh21t
snOHNOJ5QSIno6ezUUg29T6VBjbPh46fdJJSlIZrEe8OzLZ1haGyttf0tD00PQvY
Z2W/m3gxafnOeGgBqvyv
=xOzf
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Support for the kexec_file_load() syscall, which is a prereq for
secure and trusted boot.
- Prevent kernel execution of userspace on P9 Radix (similar to
SMEP/PXN).
- Sort the exception tables at build time, to save time at boot, and
store them as relative offsets to save space in the kernel image &
memory.
- Allow building the kernel with thin archives, which should allow us
to build an allyesconfig once some other fixes land.
- Build fixes to allow us to correctly rebuild when changing the
kernel endian from big to little or vice versa.
- Plumbing so that we can avoid doing a full mm TLB flush on P9
Radix.
- Initial stack protector support (-fstack-protector).
- Support for dumping the radix (aka. Linux) and hash page tables via
debugfs.
- Fix an oops in cxl coredump generation when cxl_get_fd() is used.
- Freescale updates from Scott: "Highlights include 8xx hugepage
support, qbman fixes/cleanup, device tree updates, and some misc
cleanup."
- Many and varied fixes and minor enhancements as always.
Thanks to:
Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anshuman
Khandual, Anton Blanchard, Balbir Singh, Bartlomiej Zolnierkiewicz,
Christophe Jaillet, Christophe Leroy, Denis Kirjanov, Elimar
Riesebieter, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff
Levand, Jack Miller, Johan Hovold, Lars-Peter Clausen, Libin,
Madhavan Srinivasan, Michael Neuling, Nathan Fontenot, Naveen N.
Rao, Nicholas Piggin, Pan Xinhui, Peter Senna Tschudin, Rashmica
Gupta, Rui Teng, Russell Currey, Scott Wood, Simon Guo, Suraj
Jitindar Singh, Thiago Jung Bauermann, Tobias Klauser, Vaibhav Jain"
[ And thanks to Michael, who took time off from a new baby to get this
pull request done. - Linus ]
* tag 'powerpc-4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (174 commits)
powerpc/fsl/dts: add FMan node for t1042d4rdb
powerpc/fsl/dts: add sg_2500_aqr105_phy4 alias on t1024rdb
powerpc/fsl/dts: add QMan and BMan nodes on t1024
powerpc/fsl/dts: add QMan and BMan nodes on t1023
soc/fsl/qman: test: use DEFINE_SPINLOCK()
powerpc/fsl-lbc: use DEFINE_SPINLOCK()
powerpc/8xx: Implement support of hugepages
powerpc: get hugetlbpage handling more generic
powerpc: port 64 bits pgtable_cache to 32 bits
powerpc/boot: Request no dynamic linker for boot wrapper
soc/fsl/bman: Use resource_size instead of computation
soc/fsl/qe: use builtin_platform_driver
powerpc/fsl_pmc: use builtin_platform_driver
powerpc/83xx/suspend: use builtin_platform_driver
powerpc/ftrace: Fix the comments for ftrace_modify_code
powerpc/perf: macros for power9 format encoding
powerpc/perf: power9 raw event format encoding
powerpc/perf: update attribute_group data structure
powerpc/perf: factor out the event format field
powerpc/mm/iommu, vfio/spapr: Put pages on VFIO container shutdown
...
Exception handlers are aligned to 128 bytes (L1 cache) on 64s, which is
overkill. It can reduce the icache footprint of any individual exception
path. However taken as a whole, the expansion in icache footprint seems
likely to be counter-productive and cause more total misses.
Create IFETCH_ALIGN_SHIFT/BYTES, which should give optimal ifetch
alignment with much more reasonable alignment. This saves 1792 bytes
from head_64.o text with an allmodconfig build.
Other subarchitectures should define appropriate IFETCH_ALIGN_SHIFT
values if this becomes more widely used.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Wakeups from winkle set the low bit of the HSPRG0 register, to
distinguish it from other sleep states. This is also the PACA pointer.
The system reset exception handler fails to mask this bit away before
using this value before using it as the PACA pointer.
Fix this by adding a new type of exception prolog macro where we already
have the PACA set in r13, and have the system reset vector mask it out.
The winkle wakeup handler will store the masked value back into HSPRG0.
Fixes: fb479e44a9 ("powerpc/64s: relocation, register save fixes for system reset interrupt")
Cc: stable@vger.kernel.org # v3.0+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch does a couple of things. First of all, powernv immediately
explodes when running a relocated kernel, because the system reset
exception for handling sleeps does not do correct relocated branches.
Secondly, the sleep handling code trashes the condition and cfar
registers, which we would like to preserve for debugging purposes (for
non-sleep case exception).
This patch changes the exception to use the standard format that saves
registers before any tests or branches are made. It adds the test for
idle-wakeup as an "extra" to break out of the normal exception path.
Then it branches to a relocated idle handler that calls the various
idle handling functions.
After this patch, POWER8 CPU simulator now boots powernv kernel that is
running at non-zero.
Fixes: 948cf67c47 ("powerpc: Add NAP mode support on Power7 in HV mode")
Cc: stable@vger.kernel.org # v3.0+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
power4_fixup_nap is called from the "common" handlers, not the virt/real
handlers, therefore it should itself be a common handler. Placing it
down in the trampoline space caused it to go out of reach of its
callers, requiring a trampoline inserted at the start of the text
section, which breaks the fixed section address calculations.
Fixes: da2bc4644c ("powerpc/64s: Add new exception vector macros")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This was not done before the big patches because I only noticed
them afterwards. It has become much easier to see which handlers
are branched to from which exception vectors now, and to see
exactly what vector space is being used for what.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Simple substitution. This is possible now that both parts of the OOL
initial handler get linked into their correct location.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This is not an exception handler as such, it's called from
local_irq_enable(), not exception entry.
Also clean up some now redundant comments at the end of the
consolidation series.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Use assembler sections of fixed size and location to arrange the 64-bit
Book3S exception vector code (64-bit Book3E also uses it in head_64.S
for 0x0..0x100).
This allows better flexibility in arranging exception code and hiding
unimportant details behind macros.
Gas sections can be a bit painful to use this way, mainly because the
assembler does not know where they will be finally linked. Taking
absolute addresses requires a bit of trickery for example, but it can
be hidden behind macros for the most part.
Generated code is mostly the same except locations, offsets, alignments.
The "+ 0x2" is only required for the trap number / kvm exit number,
which gets loaded as a constant into a register.
Previously, code also used + 0x2 for label names, but we changed to
using "H" to distinguish HV case for that. Remove the last vestiges
of that.
__after_prom_start is taking absolute address of a label in another
fixed section. Newer toolchains seemed to compile this okay, but older
ones do not. FIXED_SYMBOL_ABS_ADDR is more foolproof, it just takes an
additional line to define.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Move exception handler alignment directives into the head-64.h macros,
beause they will no longer work in-place after the next patch. This
slightly changes functions that have alignments applied and therefore
code generation, which is why it was not done initially (see earlier
patch).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Create arch/powerpc/include/asm/head-64.h with macros that specify
an exception vector (name, type, location), which will be used to
label and lay out exceptions into the object file.
Naming is moved out of exception-64s.h, which is used to specify the
implementation of exception handlers.
objdump of generated code in exception vectors is unchanged except for
names. Alignment directives scattered around are annoying, but done
this way so that disassembly can verify identical instruction
generation before and after patch. These get cleaned up in future
patch.
We change the way KVMTEST works, explicitly passing EXC_HV or EXC_STD
rather than overloading the trap number. This removes the need to have
SOFTEN values for the overloaded trap numbers, eg. 0x502.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When we originally added the ability to split the exception vectors from
the kernel (commit 1f6a93e4c3 ("powerpc: Make it possible to move the
interrupt handlers away from the kernel" 2008-09-15)), the LOAD_HANDLER() macro
used an addi instruction to compute the offset of the common handler
from the kernel base address.
Using addi meant the handler had to be within 32K of the kernel base
address, due to the addi instruction taking a signed immediate value.
That necessitated creating a trampoline for the system call handler,
because system_call_common (in entry64.S) is not linked within 32K of
the kernel base address.
Later in commit 61e2390ede ("powerpc: Make load_hander handle upto 64k
offset" 2012-11-15) we changed LOAD_HANDLER to take a 64K offset, by
changing it to use ori.
Although system_call_common is not in head_64.S or exceptions-64s.S, it
is included in head-y, which causes it to be linked early in the kernel
text, so in practice it ends up below 64K. Additionally if it can't be
placed below 64K the linker will fail to build with a "relocation
truncated to fit" error.
So remove the trampoline.
Newer toolchains are able to work out that the ori in LOAD_HANDLER only
takes a 16 bit offset, and so they generate a 16 bit relocation. Older
toolchains (binutils 2.22 at least) are not so smart, so we have to add
the @l annotation to tell the assembler to generate a 16 bit relocation.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The 0xf80 hv_facility_unavailable trampoline branches to the 0xf60
handler. This works because they both do the same thing, but it should
be fixed.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The mflr r10 instruction was left over from when the code used LR to
branch to system_call_entry from the exception handler. That was
changed by commit 6a404806df ("powerpc: Avoid link stack corruption in
MMU on syscall entry path") to use the count register. The value is
never used now, so mflr can be removed, and r10 can be used for storage
rather than spilling to the SPR scratch register.
The scratch register spill causes a long pipeline stall due to the SPR
read after write. This change brings getppid syscall cost from 406 to
376 cycles on POWER8. getppid for non-relocatable case is 371 cycles.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The LOAD_HANDLER macro requires that you have previously loaded "reg"
with PACAKBASE. Although that gives callers flexibility to get PACAKBASE
in some interesting way, none of the callers actually do that. So fold
the load of PACAKBASE into the macro, making it simpler for callers to
use correctly.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nick Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently, if userspace or the kernel accesses a completely bogus address,
for example with any of bits 46-59 set, we first take an SLB miss interrupt,
install a corresponding SLB entry with VSID 0, retry the instruction, then
take a DSI/ISI interrupt because there is no HPT entry mapping the address.
However, by the time of the second interrupt, the Come-From Address Register
(CFAR) has been overwritten by the rfid instruction at the end of the SLB
miss interrupt handler. Since bogus accesses can often be caused by a
function return after the stack has been overwritten, the CFAR value would
be very useful as it could indicate which function it was whose return had
led to the bogus address.
This patch adds code to create a full exception frame in the SLB miss handler
in the case of a bogus address, rather than inserting an SLB entry with a
zero VSID field. Then we call a new slb_miss_bad_addr() function in C code,
which delivers a signal for a user access or creates an oops for a kernel
access. In the latter case the oops message will show the CFAR value at the
time of the access.
In the case of the radix MMU, a segment miss interrupt indicates an access
outside the ranges mapped by the page tables. Previously this was handled
by the code for an unrecoverable SLB miss (one with MSR[RI] = 0), which is
not really correct. With this patch, we now handle these interrupts with
slb_miss_bad_addr(), which is much more consistent.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
MCE must not use PACA_EXGEN. When a general exception enables MSR_RI,
that means SPRN_SRR[01] and SPRN_SPRG are no longer used. However the
PACA save area is still in use.
Acked-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current implementation of MCE early handling modifies CR0/1 registers
without saving its old values. Fix this by moving early check for
powersaving mode to machine_check_handle_early().
The power architecture 2.06 or later allows the possibility of getting
machine check while in nap/sleep/winkle. The last bit of HSPRG0 is set
to 1, if thread is woken up from winkle. Hence, clear the last bit of
HSPRG0 (r13) before MCE handler starts using it as paca pointer.
Also, the current code always puts the thread into nap state irrespective
of whatever idle state it woke up from. Fix that by looking at
paca->thread_idle_state and put the thread back into same state where it
came from.
Fixes: 1c51089f77 ("powerpc/book3s: Return from interrupt if coming from evil context.")
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Reviewed-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Fixes:
- Fix early access to cpu_spec relocation from Benjamin Herrenschmidt
- Fix incorrect event codes in power9-event-list from Madhavan Srinivasan
- Move register_process_table() out of ppc_md from Michael Ellerman
Use jump_label for [cpu|mmu]_has_feature() from Aneesh Kumar K.V, Kevin Hao and Michael Ellerman:
- Add mmu_early_init_devtree() from Michael Ellerman
- Move disable_radix handling into mmu_early_init_devtree() from Michael Ellerman
- Do hash device tree scanning earlier from Michael Ellerman
- Do radix device tree scanning earlier from Michael Ellerman
- Do feature patching before MMU init from Michael Ellerman
- Check features don't change after patching from Michael Ellerman
- Make MMU_FTR_RADIX a MMU family feature from Aneesh Kumar K.V
- Convert mmu_has_feature() to returning bool from Michael Ellerman
- Convert cpu_has_feature() to returning bool from Michael Ellerman
- Define radix_enabled() in one place & use static inline from Michael Ellerman
- Add early_[cpu|mmu]_has_feature() from Michael Ellerman
- Convert early cpu/mmu feature check to use the new helpers from Aneesh Kumar K.V
- jump_label: Make it possible for arches to invoke jump_label_init() earlier from Kevin Hao
- Call jump_label_init() in apply_feature_fixups() from Aneesh Kumar K.V
- Remove mfvtb() from Kevin Hao
- Move cpu_has_feature() to a separate file from Kevin Hao
- Add kconfig option to use jump labels for cpu/mmu_has_feature() from Michael Ellerman
- Add option to use jump label for cpu_has_feature() from Kevin Hao
- Add option to use jump label for mmu_has_feature() from Kevin Hao
- Catch usage of cpu/mmu_has_feature() before jump label init from Aneesh Kumar K.V
- Annotate jump label assembly from Michael Ellerman
TLB flush enhancements from Aneesh Kumar K.V:
- radix: Implement tlb mmu gather flush efficiently
- Add helper for finding SLBE LLP encoding
- Use hugetlb flush functions
- Drop multiple definition of mm_is_core_local
- radix: Add tlb flush of THP ptes
- radix: Rename function and drop unused arg
- radix/hugetlb: Add helper for finding page size
- hugetlb: Add flush_hugetlb_tlb_range
- remove flush_tlb_page_nohash
Add new ptrace regsets from Anshuman Khandual and Simon Guo:
- elf: Add powerpc specific core note sections
- Add the function flush_tmregs_to_thread
- Enable in transaction NT_PRFPREG ptrace requests
- Enable in transaction NT_PPC_VMX ptrace requests
- Enable in transaction NT_PPC_VSX ptrace requests
- Adapt gpr32_get, gpr32_set functions for transaction
- Enable support for NT_PPC_CGPR
- Enable support for NT_PPC_CFPR
- Enable support for NT_PPC_CVMX
- Enable support for NT_PPC_CVSX
- Enable support for TM SPR state
- Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
- Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
- Enable support for EBB registers
- Enable support for Performance Monitor registers
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXpGaLAAoJEFHr6jzI4aWA9aYP/1AqmRPJ9D0XVUJWT+FVABUK
LESESoVFF4Hug1j1F8Synhg5o4SzD2t45iGKbclYaFthOIyovMg7Wr1KSu4hQ0go
rPuQfpXDNQ8jKdDX8hbPXKUxrNRBNfqJGFo5E7mO6wN9AJ9d1LVwQ+jKAva29Tqs
LaAlMbQNbeObPNzOl73B73iew3aozr+mXjBqv82lqvgYknBD2CLf24xGG3eNIbq5
ZZk4LPC8pdkaxnajnzRFzqwiyPWzao0yfpVRKh52TKHBQF/prR/KACb6zUuja/61
krOfegUKob14OYrehjs6X8XNRLnILRI0u1H5bmj7eVEiY/usyNzE93SMHZM3Wdau
sQF/Au4OLNXj0ZQdNBtzRsZRyp1d560Gsj+lQGBoPd4hfIWkFYHvxzxsUSdqv4uA
MWDMwN0Vvfk0cpprsabsWNevkaotYYBU00px5hF/e5ZUc9/x/xYUVMgPEDr0QZLr
cHJo9/Pjk4u/0g4lj+2y1LLl/0tNEZZg69O6bvffPAPVSS4/P4y/bKKYd4I0zL99
Ykp91mSmkl70F3edgOSFqyda2gN2l2Ekb/i081YGXheFy1rbD29Vxv82BOVog4KY
ibvOqp38WDzCVk5OXuCRvBl0VudLKGJYdppU1nXg4KgrTZXHeCAC0E+NzUsgOF4k
OMvQ+5drVxrno+Hw8FVJ
=0Q8E
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull more powerpc updates from Michael Ellerman:
"These were delayed for various reasons, so I let them sit in next a
bit longer, rather than including them in my first pull request.
Fixes:
- Fix early access to cpu_spec relocation from Benjamin Herrenschmidt
- Fix incorrect event codes in power9-event-list from Madhavan Srinivasan
- Move register_process_table() out of ppc_md from Michael Ellerman
Use jump_label use for [cpu|mmu]_has_feature():
- Add mmu_early_init_devtree() from Michael Ellerman
- Move disable_radix handling into mmu_early_init_devtree() from Michael Ellerman
- Do hash device tree scanning earlier from Michael Ellerman
- Do radix device tree scanning earlier from Michael Ellerman
- Do feature patching before MMU init from Michael Ellerman
- Check features don't change after patching from Michael Ellerman
- Make MMU_FTR_RADIX a MMU family feature from Aneesh Kumar K.V
- Convert mmu_has_feature() to returning bool from Michael Ellerman
- Convert cpu_has_feature() to returning bool from Michael Ellerman
- Define radix_enabled() in one place & use static inline from Michael Ellerman
- Add early_[cpu|mmu]_has_feature() from Michael Ellerman
- Convert early cpu/mmu feature check to use the new helpers from Aneesh Kumar K.V
- jump_label: Make it possible for arches to invoke jump_label_init() earlier from Kevin Hao
- Call jump_label_init() in apply_feature_fixups() from Aneesh Kumar K.V
- Remove mfvtb() from Kevin Hao
- Move cpu_has_feature() to a separate file from Kevin Hao
- Add kconfig option to use jump labels for cpu/mmu_has_feature() from Michael Ellerman
- Add option to use jump label for cpu_has_feature() from Kevin Hao
- Add option to use jump label for mmu_has_feature() from Kevin Hao
- Catch usage of cpu/mmu_has_feature() before jump label init from Aneesh Kumar K.V
- Annotate jump label assembly from Michael Ellerman
TLB flush enhancements from Aneesh Kumar K.V:
- radix: Implement tlb mmu gather flush efficiently
- Add helper for finding SLBE LLP encoding
- Use hugetlb flush functions
- Drop multiple definition of mm_is_core_local
- radix: Add tlb flush of THP ptes
- radix: Rename function and drop unused arg
- radix/hugetlb: Add helper for finding page size
- hugetlb: Add flush_hugetlb_tlb_range
- remove flush_tlb_page_nohash
Add new ptrace regsets from Anshuman Khandual and Simon Guo:
- elf: Add powerpc specific core note sections
- Add the function flush_tmregs_to_thread
- Enable in transaction NT_PRFPREG ptrace requests
- Enable in transaction NT_PPC_VMX ptrace requests
- Enable in transaction NT_PPC_VSX ptrace requests
- Adapt gpr32_get, gpr32_set functions for transaction
- Enable support for NT_PPC_CGPR
- Enable support for NT_PPC_CFPR
- Enable support for NT_PPC_CVMX
- Enable support for NT_PPC_CVSX
- Enable support for TM SPR state
- Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
- Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
- Enable support for EBB registers
- Enable support for Performance Monitor registers"
* tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (48 commits)
powerpc/mm: Move register_process_table() out of ppc_md
powerpc/perf: Fix incorrect event codes in power9-event-list
powerpc/32: Fix early access to cpu_spec relocation
powerpc/ptrace: Enable support for Performance Monitor registers
powerpc/ptrace: Enable support for EBB registers
powerpc/ptrace: Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
powerpc/ptrace: Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
powerpc/ptrace: Enable support for TM SPR state
powerpc/ptrace: Enable support for NT_PPC_CVSX
powerpc/ptrace: Enable support for NT_PPC_CVMX
powerpc/ptrace: Enable support for NT_PPC_CFPR
powerpc/ptrace: Enable support for NT_PPC_CGPR
powerpc/ptrace: Adapt gpr32_get, gpr32_set functions for transaction
powerpc/ptrace: Enable in transaction NT_PPC_VSX ptrace requests
powerpc/ptrace: Enable in transaction NT_PPC_VMX ptrace requests
powerpc/ptrace: Enable in transaction NT_PRFPREG ptrace requests
powerpc/process: Add the function flush_tmregs_to_thread
elf: Add powerpc specific core note sections
powerpc/mm: remove flush_tlb_page_nohash
powerpc/mm/hugetlb: Add flush_hugetlb_tlb_range
...
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
MMU feature bits are defined such that we use the lower half to
present MMU family features. Remove the strict split of half and
also move Radix to a mmu family feature. Radix introduce a new MMU
model and strictly speaking it is a new MMU family. This also free
up bits which can be used for individual features later.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This will be delivering external interrupts from the XIVE to the
Hypervisor. We treat it as a normal external interrupt for the
lazy irq disable code (so it will be replayed as a 0x500) and
route it to do_IRQ.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This moves the CBE RAS and facility unavailable "common" handlers
down to after the FWNMI page.
This frees up some space in the very demanded spaces before the
relocation-on vectors and before the FWNMI page. They are still
within 64K of __start, so CONFIG_RELOCATABLE should still work.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Functions like power7_wakeup_loss, power7_wakeup_noloss,
power7_wakeup_tb_loss are used by POWER7 and POWER8 hardware. They can
also be used by POWER9. Hence rename these functions hardware agnostic
names.
Suggested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In the current code, when the thread wakes up in reset vector, some
of the state restore code and check for whether a thread needs to
branch to kvm is duplicated. Reorder the code such that this
duplication is avoided.
At a higher level this is what the change looks like-
Before this patch -
power7_wakeup_tb_loss:
restore hypervisor state
if (thread needed by kvm)
goto kvm_start_guest
restore nvgprs, cr, pc
rfid to process context
power7_wakeup_loss:
restore nvgprs, cr, pc
rfid to process context
reset vector:
if (waking from deep idle states)
goto power7_wakeup_tb_loss
else
if (thread needed by kvm)
goto kvm_start_guest
goto power7_wakeup_loss
After this patch -
power7_wakeup_tb_loss:
restore hypervisor state
return
power7_restore_hyp_resource():
if (waking from deep idle states)
goto power7_wakeup_tb_loss
return
power7_wakeup_loss:
restore nvgprs, cr, pc
rfid to process context
reset vector:
power7_restore_hyp_resource()
if (thread needed by kvm)
goto kvm_start_guest
goto power7_wakeup_loss
Reviewed-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As part of the Radix MMU support we added some feature sections in the
SLB miss handler. These are intended to catch the case that we
incorrectly take an SLB miss when Radix is enabled, and instead of
crashing weirdly they bail out to a well defined exit path and trigger
an oops.
However the way they were written meant the bailout case was enabled by
default until we did CPU feature patching.
On powermacs the early debug prints in setup_system() can cause an SLB
miss, which happens before code patching, and so the SLB miss handler
would incorrectly bailout and crash during boot.
Fix it by inverting the sense of the feature section, so that the code
which is in place at boot is correct for the hash case. Once we
determine we are using Radix - which will never happen on a powermac -
only then do we patch in the bailout case which unconditionally jumps.
Fixes: caca285e5a ("powerpc/mm/radix: Use STD_MMU_64 to properly isolate hash related code")
Reported-by: Denis Kirjanov <kda@linux-powerpc.org>
Tested-by: Denis Kirjanov <kda@linux-powerpc.org>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When a guest is assigned to a core it converts the host Timebase (TB)
into guest TB by adding guest timebase offset before entering into
guest. During guest exit it restores the guest TB to host TB. This means
under certain conditions (Guest migration) host TB and guest TB can differ.
When we get an HMI for TB related issues the opal HMI handler would
try fixing errors and restore the correct host TB value. With no guest
running, we don't have any issues. But with guest running on the core
we run into TB corruption issues.
If we get an HMI while in the guest, the current HMI handler invokes opal
hmi handler before forcing guest to exit. The guest exit path subtracts
the guest TB offset from the current TB value which may have already
been restored with host value by opal hmi handler. This leads to incorrect
host and guest TB values.
With split-core, things become more complex. With split-core, TB also gets
split and each subcore gets its own TB register. When a hmi handler fixes
a TB error and restores the TB value, it affects all the TB values of
sibling subcores on the same core. On TB errors all the thread in the core
gets HMI. With existing code, the individual threads call opal hmi handle
independently which can easily throw TB out of sync if we have guest
running on subcores. Hence we will need to co-ordinate with all the
threads before making opal hmi handler call followed by TB resync.
This patch introduces a sibling subcore state structure (shared by all
threads in the core) in paca which holds information about whether sibling
subcores are in Guest mode or host mode. An array in_guest[] of size
MAX_SUBCORE_PER_CORE=4 is used to maintain the state of each subcore.
The subcore id is used as index into in_guest[] array. Only primary
thread entering/exiting the guest is responsible to set/unset its
designated array element.
On TB error, we get HMI interrupt on every thread on the core. Upon HMI,
this patch will now force guest to vacate the core/subcore. Primary
thread from each subcore will then turn off its respective bit
from the above bitmap during the guest exit path just after the
guest->host partition switch is complete.
All other threads that have just exited the guest OR were already in host
will wait until all other subcores clears their respective bit.
Once all the subcores turn off their respective bit, all threads will
will make call to opal hmi handler.
It is not necessary that opal hmi handler would resync the TB value for
every HMI interrupts. It would do so only for the HMI caused due to
TB errors. For rest, it would not touch TB value. Hence to make things
simpler, primary thread would call TB resync explicitly once for each
core immediately after opal hmi handler instead of subtracting guest
offset from TB. TB resync call will restore the TB with host value.
Thus we can be sure about the TB state.
One of the primary threads exiting the guest will take up the
responsibility of calling TB resync. It will use one of the top bits
(bit 63) from subcore state flags bitmap to make the decision. The first
primary thread (among the subcores) that is able to set the bit will
have to call the TB resync. Rest all other threads will wait until TB
resync is complete. Once TB resync is complete all threads will then
proceed.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The routine machine_check_pSeries_early() is only used on powernv, not
pseries. Hence rename machine_check_pSeries_early() to
machine_check_powernv_early().
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We also use MMU_FTR_RADIX to branch out from code path specific to
hash.
No functionality change.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The __end_handlers marker was intended to mark down upto code that gets
called from exception prologs. But that hasn't kept pace with code
changes. Case in point, slb_miss_realmode being called from exception
prolog code but isn't below __end_handlers marker. So, __end_handlers
marker is as good as a comment but could be misleading at times if it
isn't in sync with the code, as is the case now. So, let us avoid this
confusion by having a better comment and removing __end_handlers marker
altogether.
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some of the interrupt vectors on 64-bit POWER server processors are only
32 bytes long (8 instructions), which is not enough for the full
first-level interrupt handler. For these we need to branch to an
out-of-line (OOL) handler. But when we are running a relocatable kernel,
interrupt vectors till __end_interrupts marker are copied down to real
address 0x100. So, branching to labels (ie. OOL handlers) outside this
section must be handled differently (see LOAD_HANDLER()), considering
relocatable kernel, which would need at least 4 instructions.
However, branching from interrupt vector means that we corrupt the
CFAR (come-from address register) on POWER7 and later processors as
mentioned in commit 1707dd16. So, EXCEPTION_PROLOG_0 (6 instructions)
that contains the part up to the point where the CFAR is saved in the
PACA should be part of the short interrupt vectors before we branch out
to OOL handlers.
But as mentioned already, there are interrupt vectors on 64-bit POWER
server processors that are only 32 bytes long (like vectors 0x4f00,
0x4f20, etc.), which cannot accomodate the above two cases at the same
time owing to space constraint. Currently, in these interrupt vectors,
we simply branch out to OOL handlers, without using LOAD_HANDLER(),
which leaves us vulnerable when running a relocatable kernel (eg. kdump
case). While this has been the case for sometime now and kdump is used
widely, we were fortunate not to see any problems so far, for three
reasons:
1. In almost all cases, production kernel (relocatable) is used for
kdump as well, which would mean that crashed kernel's OOL handler
would be at the same place where we end up branching to, from short
interrupt vector of kdump kernel.
2. Also, OOL handler was unlikely the reason for crash in almost all
the kdump scenarios, which meant we had a sane OOL handler from
crashed kernel that we branched to.
3. On most 64-bit POWER server processors, page size is large enough
that marking interrupt vector code as executable (see commit
429d2e83) leads to marking OOL handler code from crashed kernel,
that sits right below interrupt vector code from kdump kernel, as
executable as well.
Let us fix this by moving the __end_interrupts marker down past OOL
handlers to make sure that we also copy OOL handlers to real address
0x100 when running a relocatable kernel.
This fix has been tested successfully in kdump scenario, on an LPAR with
4K page size by using different default/production kernel and kdump
kernel.
Also tested by manually corrupting the OOL handlers in the first kernel
and then kdump'ing, and then causing the OOL handlers to fire - mpe.
Fixes: c1fb6816fb ("powerpc: Add relocation on exception vector handlers")
Cc: stable@vger.kernel.org
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We have a bunch of SLB related code in the tree which is there to handle
dynamic VSIDs - but currently it's all disabled at compile time. The
comments say "Keep that around for when we re-implement dynamic VSIDs".
But that was over 10 years ago (commit 3c726f8dee ("[PATCH] ppc64:
support 64k pages")). The chance that it would still work unchanged is
minimal, and in the meantime it's confusing to folks browsing/grepping
the code. If we ever want to re-instate it, it's in the git history.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Balbir Singh <bsingharora@gmail.com>
The STD_EXCEPTION_PSERIES macro takes both a vector number, and a
location (memory address). However both are always identical, so combine
them to save repeating ourselves.
This does mean an exception handler must always exist at the location in
memory that matches its vector number. But that's OK because this is the
"STD" macro (standard), which does exactly that. We have other macros
for the other cases, eg. STD_EXCEPTION_PSERIES_OOL (out of line).
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
HMT_MEDIUM_PPR_DISCARD is a macro which is present at the start of most
of our first level exception handlers. It conditionally executes a
HMT_MEDIUM instruction, which sets the processor priority to medium.
On on modern systems, ie. Power7 and later, it is nop'ed out at boot.
All it does is make the exception vectors more cramped, and consume 4
bytes of icache.
On old systems it has the effect of boosting the processor priority at
the start of exception processing. If we were previously in the idle
loop for example, we may be at low or very low priority. This is
desirable as we want to process the exception as fast as possible.
However looking closely at the generated code, we see that in all cases
we execute another HMT_MEDIUM just four instructions later. With code
patching applied, the final code on an old (Power6) system will look
like, eg:
c000000000000300 <data_access_pSeries>:
c000000000000300: 7c 42 13 78 mr r2,r2 <-
c000000000000304: 7d b2 43 a6 mtsprg 2,r13
c000000000000308: 7d b1 42 a6 mfsprg r13,1
c00000000000030c: f9 2d 00 80 std r9,128(r13)
c000000000000310: 60 00 00 00 nop
c000000000000314: 7c 42 13 78 mr r2,r2 <-
So I suggest that the added code complexity of HMT_MEDIUM_PPR_DISCARD is
not justified by the benefit of boosting the processor priority for the
duration of four instructions, and therefore we drop it.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We should not expect pte bit position in asm code. Simply
by moving part of that to C
Acked-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently, if HV KVM is configured but PR KVM isn't, we don't include
a test to see whether we were interrupted in KVM guest context for the
set of interrupts which get delivered directly to the guest by hardware
if they occur in the guest. This includes things like program
interrupts.
However, the recent bug where userspace could set the MSR for a VCPU
to have an illegal value in the TS field, and thus cause a TM Bad Thing
type of program interrupt on the hrfid that enters the guest, showed that
we can never be completely sure that these interrupts can never occur
in the guest entry/exit code. If one of these interrupts does happen
and we have HV KVM configured but not PR KVM, then we end up trying to
run the handler in the host with the MMU set to the guest MMU context,
which generally ends badly.
Thus, for robustness it is better to have the test in every interrupt
vector, so that if some way is found to trigger some interrupt in the
guest entry/exit path, we can handle it without immediately crashing
the host.
This means that the distinction between KVMTEST and KVMTEST_PR goes
away. Thus we delete KVMTEST_PR and associated macros and use KVMTEST
everywhere that we previously used either KVMTEST_PR or KVMTEST. It
also means that SOFTEN_TEST_HV_201 becomes the same as SOFTEN_TEST_PR,
so we deleted SOFTEN_TEST_HV_201 and use SOFTEN_TEST_PR instead.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We need to use a trampoline when using LOAD_HANDLER(), because the
destination needs to be in the first 64kB. An absolute branch has
no such limitations, so just jump there.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We had some code to restore the LR in the relocatable system call path
back when we used the LR to do an indirect branch.
Commit 6a404806df ("powerpc: Avoid link stack corruption in MMU
on syscall entry path") changed this to use the CTR which is volatile
across system calls so does not need restoring.
Remove the stale comment and the restore of the LR.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
commit id 2ba9f0d has changed CONFIG_KVM_BOOK3S_64_HV to tristate to allow
HV/PR bits to be built as modules. But the MCE code still depends on
CONFIG_KVM_BOOK3S_64_HV which is wrong. When user selects
CONFIG_KVM_BOOK3S_64_HV=m to build HV/PR bits as a separate module the
relevant MCE code gets excluded.
This patch fixes the MCE code to use CONFIG_KVM_BOOK3S_64_HANDLER. This
makes sure that the relevant MCE code is included when HV/PR bits
are built as a separate modules.
Fixes: 2ba9f0d887 ("kvm: powerpc: book3s: Support building HV and PR KVM as module")
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Winkle is a deep idle state supported in power8 chips. A core enters
winkle when all the threads of the core enter winkle. In this state
power supply to the entire chiplet i.e core, private L2 and private L3
is turned off. As a result it gives higher powersavings compared to
sleep.
But entering winkle results in a total hypervisor state loss. Hence the
hypervisor context has to be preserved before entering winkle and
restored upon wake up.
Power-on Reset Engine (PORE) is a dedicated engine which is responsible
for powering on the chiplet during wake up. It can be programmed to
restore the register contests of a few specific registers. This patch
uses PORE to restore register state wherever possible and uses stack to
save and restore rest of the necessary registers.
With hypervisor state restore things fall under three categories-
per-core state, per-subcore state and per-thread state. To manage this,
extend the infrastructure introduced for sleep. Mainly we add a paca
variable subcore_sibling_mask. Using this and the core_idle_state we can
distingush first thread in core and subcore.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Deep idle states like sleep and winkle are per core idle states. A core
enters these states only when all the threads enter either the
particular idle state or a deeper one. There are tasks like fastsleep
hardware bug workaround and hypervisor core state save which have to be
done only by the last thread of the core entering deep idle state and
similarly tasks like timebase resync, hypervisor core register restore
that have to be done only by the first thread waking up from these
state.
The current idle state management does not have a way to distinguish the
first/last thread of the core waking/entering idle states. Tasks like
timebase resync are done for all the threads. This is not only is
suboptimal, but can cause functionality issues when subcores and kvm is
involved.
This patch adds the necessary infrastructure to track idle states of
threads in a per-core structure. It uses this info to perform tasks like
fastsleep workaround and timebase resync only once per core.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Originally-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When a secondary hardware thread has finished running a KVM guest, we
currently put that thread into nap mode using a nap instruction in
the KVM code. This changes the code so that instead of doing a nap
instruction directly, we instead cause the call to power7_nap() that
put the thread into nap mode to return. The reason for doing this is
to avoid having the KVM code having to know what low-power mode to
put the thread into.
In the case of a secondary thread used to run a KVM guest, the thread
will be offline from the point of view of the host kernel, and the
relevant power7_nap() call is the one in pnv_smp_cpu_disable().
In this case we don't want to clear pending IPIs in the offline loop
in that function, since that might cause us to miss the wakeup for
the next time the thread needs to run a guest. To tell whether or
not to clear the interrupt, we use the SRR1 value returned from
power7_nap(), and check if it indicates an external interrupt. We
arrange that the return from power7_nap() when we have finished running
a guest returns 0, so pending interrupts don't get flushed in that
case.
Note that it is important a secondary thread that has finished
executing in the guest, or that didn't have a guest to run, should
not return to power7_nap's caller while the kvm_hstate.hwthread_req
flag in the PACA is non-zero, because the return from power7_nap
will reenable the MMU, and the MMU might still be in guest context.
In this situation we spin at low priority in real mode waiting for
hwthread_req to become zero.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
upatepp can get called for a nohpte fault when we find from the linux
page table that the translation was hashed before. In that case
we are sure that there is no existing translation, hence we could
avoid doing tlbie.
We could possibly race with a parallel fault filling the TLB. But
that should be ok because updatepp is only ever relaxing permissions.
We also look at linux pte permission bits when filling hash pte
permission bits. We also hold the linux pte busy bits while
inserting/updating a hashpte entry, hence a paralle update of
linux pte is not possible. On the other hand mprotect involves
ptep_modify_prot_start which cause a hpte invalidate and not updatepp.
Performance number:
We use randbox_access_bench written by Anton.
Kernel with THP disabled and smaller hash page table size.
86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp
2.10% random_access_b random_access_bench [.] doit
1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock
1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert
1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range
1.18% random_access_b [kernel.kallsyms] [k] .__delay
0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove
0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page
0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K
0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return
0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm
With Fix:
27.54% random_access_b random_access_bench [.] doit
22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert
5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove
5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return
5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K
4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm
3.31% random_access_b [kernel.kallsyms] [k] data_access_common
1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Cleanup OpalMCE_* definitions/declarations and other related code which
is not used anymore.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Benjamin Herrrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The system call FLIH (first-level interrupt handler) at 0xc00
unconditionally sets hardware priority to medium. For hypercalls, this
means we lose guest OS priority. The front end (do_kvm_0x**) to the
KVM interrupt handler always assumes that PPR priority is saved in
PACA exception save area, so it copies this to the kvm_hstate
structure. For hypercalls, this would be the saved priority from any
previous exception. Eventually, the guest gets resumed with an
incorrect priority.
The fix is to save the PPR priority in PACA exception save area before
switching HMT priorities in the FLIH so that existing code described above
in the KVM interrupt handler can copy it from there into the VCPU's saved
context.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[mpe: Dropped HMT_MEDIUM_PPR_DISCARD and reworded comment]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In HMI interrupt handler we don't touch SRR0/SRR1, instead we touch
HSRR0/HSRR1. Hence we don't need to clear MSR_RI bit.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Once again, we see
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:865: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:866: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:890: Error: attempt to move .org backwards
when compiling ppc:allmodconfig.
This time the problem has been caused by to commit 0869b6fd20
("powerpc/book3s: Add basic infrastructure to handle HMI in Linux"),
which adds functions hmi_exception_early and hmi_exception_after_realmode
into a critical (size-limited) code area, even though that does not appear
to be necessary.
Move those functions to a non-critical area of the file.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Handle Hypervisor Maintenance Interrupt (HMI) in Linux. This patch implements
basic infrastructure to handle HMI in Linux host. The design is to invoke
opal handle hmi in real mode for recovery and set irq_pending when we hit HMI.
During check_irq_replay pull opal hmi event and print hmi info on console.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
DISABLE_INTS has a long and storied history, but for some time now it
has not actually disabled interrupts.
For the open-coded exception handlers, just stop using it, instead call
RECONCILE_IRQ_STATE directly. This has the benefit of removing a level
of indirection, and making it clear that r10 & r11 are used at that
point.
For the addition case we still need a macro, so rename it to clarify
what it actually does.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
At the moment the allmodconfig build is failing because we run out of
space between altivec_assist() at 0x5700 and the fwnmi_data_area at
0x7000.
Fixing it permanently will take some more work, but a quick fix is to
move bad_stack() below the fwnmi_data_area. That gives us just enough
room with everything enabled.
bad_stack() is called from the common exception handlers, but it's a
non-conditional branch, so we have plenty of scope to move it further
way.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Old cpus didn't have a Segment Lookaside Buffer (SLB), instead they had
a Segment Table (STAB). Now that we've dropped support for those cpus,
we can remove the STAB support entirely.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit 2749a2f26a (powerpc/book3s: Fix machine check handling for
unhandled errors) introduced a few ABIv2 issues.
We can maintain ABIv1 and ABIv2 compatibility by branching to the
function rather than the dot symbol.
Fixes: 2749a2f26a ("powerpc/book3s: Fix machine check handling for unhandled errors")
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently machine check handler does not check for stack overflow for
nested machine check. If we hit another MCE while inside the machine check
handler repeatedly from same address then we get into risk of stack
overflow which can cause huge memory corruption. This patch limits the
nested MCE level to 4 and panic when we cross level 4.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Current code does not check for unhandled/unrecovered errors and return from
interrupt if it is recoverable exception which in-turn triggers same machine
check exception in a loop causing hypervisor to be unresponsive.
This patch fixes this situation and forces hypervisor to panic for
unhandled/unrecovered errors.
This patch also fixes another issue where unrecoverable_exception routine
was called in real mode in case of unrecoverable exception (MSR_RI = 0).
This causes another exception vector 0x300 (data access) during system crash
leading to confusion while debugging cause of the system crash.
Also turn ME bit off while going down, so that when another MCE is hit during
panic path, system will checkstop and hypervisor will get restarted cleanly
by SP.
With the above fixes we now throw correct console messages (see below) while
crashing the system in case of unhandled/unrecoverable machine checks.
--------------
Severe Machine check interrupt [[Not recovered]
Initiator: CPU
Error type: UE [Instruction fetch]
Effective address: 0000000030002864
Oops: Machine check, sig: 7 [#1]
SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in: bork(O) bridge stp llc kvm [last unloaded: bork]
CPU: 36 PID: 55162 Comm: bash Tainted: G O 3.14.0mce #1
task: c000002d72d022d0 ti: c000000007ec0000 task.ti: c000002d72de4000
NIP: 0000000030002864 LR: 00000000300151a4 CTR: 000000003001518c
REGS: c000000007ec3d80 TRAP: 0200 Tainted: G O (3.14.0mce)
MSR: 9000000000041002 <SF,HV,ME,RI> CR: 28222848 XER: 20000000
CFAR: 0000000030002838 DAR: d0000000004d0000 DSISR: 00000000 SOFTE: 1
GPR00: 000000003001512c 0000000031f92cb0 0000000030078af0 0000000030002864
GPR04: d0000000004d0000 0000000000000000 0000000030002864 ffffffffffffffc9
GPR08: 0000000000000024 0000000030008af0 000000000000002c c00000000150e728
GPR12: 9000000000041002 0000000031f90000 0000000010142550 0000000040000000
GPR16: 0000000010143cdc 0000000000000000 00000000101306fc 00000000101424dc
GPR20: 00000000101424e0 000000001013c6f0 0000000000000000 0000000000000000
GPR24: 0000000010143ce0 00000000100f6440 c000002d72de7e00 c000002d72860250
GPR28: c000002d72860240 c000002d72ac0038 0000000000000008 0000000000040000
NIP [0000000030002864] 0x30002864
LR [00000000300151a4] 0x300151a4
Call Trace:
Instruction dump:
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
---[ end trace 7285f0beac1e29d3 ]---
Sending IPI to other CPUs
IPI complete
OPAL V3 detected !
--------------
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
STD_EXCEPTION_COMMON, STD_EXCEPTION_COMMON_ASYNC and
MASKABLE_EXCEPTION branch to the handler, so we can remove
the explicit dot symbol and binutils will do the right thing.
Signed-off-by: Anton Blanchard <anton@samba.org>
We have a number of places where we load the text address of a local
function and indirectly branch to it in assembly. Since it is an
indirect branch binutils will not know to use the function text
address, so that trick wont work.
There is no need for these functions to have a function descriptor
so we can replace it with a label and remove the dot symbol.
Signed-off-by: Anton Blanchard <anton@samba.org>
binutils is smart enough to know that a branch to a function
descriptor is actually a branch to the functions text address.
Alan tells me that binutils has been doing this for 9 years.
Signed-off-by: Anton Blanchard <anton@samba.org>
In:
commit 742415d6b6
Author: Michael Neuling <mikey@neuling.org>
powerpc: Turn syscall handler into macros
We converted the syscall entry code onto macros, but in doing this we
introduced some cruft that's never run and should never have been added.
This removes that code.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull powerpc non-virtualized cpuidle from Ben Herrenschmidt:
"This is the branch I mentioned in my other pull request which contains
our improved cpuidle support for the "powernv" platform
(non-virtualized).
It adds support for the "fast sleep" feature of the processor which
provides higher power savings than our usual "nap" mode but at the
cost of losing the timers while asleep, and thus exploits the new
timer broadcast framework to work around that limitation.
It's based on a tip timer tree that you seem to have already merged"
* 'powernv-cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
cpuidle/powernv: Parse device tree to setup idle states
cpuidle/powernv: Add "Fast-Sleep" CPU idle state
powerpc/powernv: Add OPAL call to resync timebase on wakeup
powerpc/powernv: Add context management for Fast Sleep
powerpc: Split timer_interrupt() into timer handling and interrupt handling routines
powerpc: Implement tick broadcast IPI as a fixed IPI message
powerpc: Free up the slot of PPC_MSG_CALL_FUNC_SINGLE IPI message
While checking powersaving mode in machine check handler at 0x200, we
clobber CFAR register. Fix it by saving and restoring it during beq/bgt.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
During "Fast-sleep" and deeper power savings state, decrementer and
timebase could be stopped making it out of sync with rest
of the cores in the system.
Add a firmware call to request platform to resync timebase
using low level platform methods.
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Before adding Fast-Sleep into the cpuidle framework, some low level
support needs to be added to enable it. This includes saving and
restoring of certain registers at entry and exit time of this state
respectively just like we do in the NAP idle state.
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
[Changelog modified by Preeti U. Murthy <preeti@linux.vnet.ibm.com>]
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With recent machine check patch series changes, The exception vectors
starting from 0x4300 are now overflowing with allyesconfig. Fix that by
moving machine_check_common and machine_check_handle_early code out of
that region to make enough room for exception vector area.
Fixes this build error reportes by Stephen:
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:958: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:959: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:983: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:984: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1003: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1013: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1014: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1015: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1016: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1017: Error: attempt to move .org backwards
arch/powerpc/kernel/exceptions-64s.S:1018: Error: attempt to move .org backwards
[Moved the code further down as it introduced link errors due to too long
relative branches to the masked interrupts handlers from the exception
prologs. Also removed the useless feature section --BenH
]
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When machine check real mode handler can not continue into host kernel
in V mode, it returns from the interrupt and we loose MCE event which
never gets logged. In such a situation queue up the MCE event so that
we can log it later when we get back into host kernel with r1 pointing to
kernel stack e.g. during syscall exit.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We can get machine checks from any context. We need to make sure that
we handle all of them correctly. If we are coming from hypervisor user-space,
we can continue in host kernel in virtual mode to deliver the MC event.
If we got woken up from power-saving mode then we may come in with one of
the following state:
a. No state loss
b. Supervisor state loss
c. Hypervisor state loss
For (a) and (b), we go back to nap again. State (c) is fatal, keep spinning.
For all other context which we not sure of queue up the MCE event and return
from the interrupt.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Move machine check entry point into Linux. So far we were dependent on
firmware to decode MCE error details and handover the high level info to OS.
This patch introduces early machine check routine that saves the MCE
information (srr1, srr0, dar and dsisr) to the emergency stack. We allocate
stack frame on emergency stack and set the r1 accordingly. This allows us to be
prepared to take another exception without loosing context. One thing to note
here that, if we get another machine check while ME bit is off then we risk a
checkstop. Hence we restrict ourselves to save only MCE information and
register saved on PACA_EXMC save are before we turn the ME bit on. We use
paca->in_mce flag to differentiate between first entry and nested machine check
entry which helps proper use of emergency stack. We increment paca->in_mce
every time we enter in early machine check handler and decrement it while
leaving. When we enter machine check early handler first time (paca->in_mce ==
0), we are sure nobody is using MC emergency stack and allocate a stack frame
at the start of the emergency stack. During subsequent entry (paca->in_mce >
0), we know that r1 points inside emergency stack and we allocate separate
stack frame accordingly. This prevents us from clobbering MCE information
during nested machine checks.
The early machine check handler changes are placed under CPU_FTR_HVMODE
section. This makes sure that the early machine check handler will get executed
only in hypervisor kernel.
This is the code flow:
Machine Check Interrupt
|
V
0x200 vector ME=0, IR=0, DR=0
|
V
+-----------------------------------------------+
|machine_check_pSeries_early: | ME=0, IR=0, DR=0
| Alloc frame on emergency stack |
| Save srr1, srr0, dar and dsisr on stack |
+-----------------------------------------------+
|
(ME=1, IR=0, DR=0, RFID)
|
V
machine_check_handle_early ME=1, IR=0, DR=0
|
V
+-----------------------------------------------+
| machine_check_early (r3=pt_regs) | ME=1, IR=0, DR=0
| Things to do: (in next patches) |
| Flush SLB for SLB errors |
| Flush TLB for TLB errors |
| Decode and save MCE info |
+-----------------------------------------------+
|
(Fall through existing exception handler routine.)
|
V
machine_check_pSerie ME=1, IR=0, DR=0
|
(ME=1, IR=1, DR=1, RFID)
|
V
machine_check_common ME=1, IR=1, DR=1
.
.
.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch add a new callback kvmppc_ops. This will help us in enabling
both HV and PR KVM together in the same kernel. The actual change to
enable them together is done in the later patch in the series.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in booke changes]
Signed-off-by: Alexander Graf <agraf@suse.de>
With later patches supporting PR kvm as a kernel module, the changes
that has to be built into the main kernel binary to enable PR KVM module
is now selected via KVM_BOOK3S_PR_POSSIBLE
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Both PR and HV KVM have separate, identical copies of the
kvmppc_skip_interrupt and kvmppc_skip_Hinterrupt handlers that are
used for the situation where an interrupt happens when loading the
instruction that caused an exit from the guest. To eliminate this
duplication and make it easier to compile in both PR and HV KVM,
this moves this code to arch/powerpc/kernel/exceptions-64s.S along
with other kernel interrupt handler code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This makes back traces and profiles easier to read.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The symbols that name some of our exception trampolines are ahead of the
location they name. In most cases this is OK because the code is tightly
packed, but in some cases it means the symbol floats ahead of the
correct location, eg:
c000000000000ea0 <performance_monitor_pSeries_1>:
...
c000000000000f00: 7d b2 43 a6 mtsprg 2,r13
Fix them all by moving the symbol after the set of the location.
While we're moving them anyway, rename them to loose the camelcase and
to make it clear that they are trampolines.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The denormalized exception handler (denorm_exception_hv) has a couple
of bugs. If the CONFIG_PPC_DENORMALISATION option is not selected,
or the HSRR1_DENORM bit is not set in HSRR1, we don't test whether the
interrupt occurred within a KVM guest. On the other hand, if the
HSRR1_DENORM bit is set and CONFIG_PPC_DENORMALISATION is enabled,
we corrupt the CFAR and PPR.
To correct these problems, this replaces the open-coded version of
EXCEPTION_PROLOG_1 that is there currently, and that is missing the
saving of PPR and CFAR values to the PACA, with an instance of
EXCEPTION_PROLOG_1. This adds an explicit KVMTEST after testing
whether the exception is one we can handle, and adds code to restore
the CFAR on exit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently if we take hypervisor facility unavaliable (from 0xf80/0x4f80) we
mark it as an OS facility unavaliable (0xf60) as the two share the same code
path.
The becomes a problem in facility_unavailable_exception() as we aren't able to
see the hypervisor facility unavailable exceptions.
Below fixes this by duplication the required macros.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Cc: <stable@vger.kernel.org> [v3.10]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQEcBAABAgAGBQJR0K2gAAoJEHm+PkMAQRiGWsEH+gMZSN1qRm34hZ82q1Tx7HvL
Eb/Gsl3Qw/7G2TlTqgjBUs36IdqV9O2cui/aa3/TfXvdvrx+0GlhRkEwQPc+ygcO
Mvoyoke4tT4+4jVFdCg1J8avREsa28/6oaHs0ZZxuVmJBBLTJH7aXaNsGn6eU1q9
9+p798MQis6naIiPC63somlZcCIiBhsuWCPWpEfLMn8G1HWAFTM3xXIbNBqe/brS
bmIOfhomlIZ5dcdaXGvjtP3+KJhkNDwhkPC4tVYu8JqqgSlrE+a+EGyEuuGqKk10
U+swiqyuD31uBI9ga54u/2FzSqDiAu6YOcMXevjo/m3g9XLdYbYLvN+nvN8alCQ=
=Ob6Z
-----END PGP SIGNATURE-----
Merge tag 'v3.10' into next
Merge 3.10 in order to get some of the last minute powerpc
changes, resolve conflicts and add additional fixes on top
of them.
Similar to the facility unavailble exception, except the facilities are
controlled by HFSCR.
Adapt the facility_unavailable_exception() so it can be called for
either the regular or Hypervisor facility unavailable exceptions.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
CC: <stable@vger.kernel.org> [v3.10]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The exception at 0xf60 is not the TM (Transactional Memory) unavailable
exception, it is the "Facility Unavailable Exception", rename it as
such.
Flesh out the handler to acknowledge the fact that it can be called for
many reasons, one of which is TM being unavailable.
Use STD_EXCEPTION_COMMON() for the exception body, for some reason we
had it open-coded, I've checked the generated code is identical.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
CC: <stable@vger.kernel.org> [v3.10]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
KVMTEST is a macro which checks whether we are taking an exception from
guest context, if so we branch out of line and eventually call into the
KVM code to handle the switch.
When running real guests on bare metal (HV KVM) the hardware ensures
that we never take a relocation on exception when transitioning from
guest to host. For PR KVM we disable relocation on exceptions ourself in
kvmppc_core_init_vm(), as of commit a413f47 "Disable relocation on
exceptions whenever PR KVM is active".
So convert all the RELON macros to use NOTEST, and drop the remaining
KVM_HANDLER() definitions we have for 0xe40 and 0xe80.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
CC: <stable@vger.kernel.org> [v3.9+]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We have relocation on exception handlers defined for h_data_storage and
h_instr_storage. However we will never take relocation on exceptions for
these because they can only come from a guest, and we never take
relocation on exceptions when we transition from guest to host.
We also have a handler for hmi_exception (Hypervisor Maintenance) which
is defined in the architecture to never be delivered with relocation on,
see see v2.07 Book III-S section 6.5.
So remove the handlers, leaving a branch to self just to be double extra
paranoid.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
CC: <stable@vger.kernel.org> [v3.9+]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Normally, the kernel emulates a few instructions that are unimplemented
on some processors (e.g. the old dcba instruction), or privileged (e.g.
mfpvr). The emulation of unimplemented instructions is currently not
working on the PowerNV platform. The reason is that on these machines,
unimplemented and illegal instructions cause a hypervisor emulation
assist interrupt, rather than a program interrupt as on older CPUs.
Our vector for the emulation assist interrupt just calls
program_check_exception() directly, without setting the bit in SRR1
that indicates an illegal instruction interrupt. This fixes it by
making the emulation assist interrupt set that bit before calling
program_check_interrupt(). With this, old programs that use no-longer
implemented instructions such as dcba now work again.
CC: <stable@vger.kernel.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
POWER8 can take a denormalisation exception on any VSX registers.
This does the extra 32 VSX registers we don't currently handle.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The following simplifies the denorm code by using macros to generate the long
stream of almost identical instructions.
This patch results in no changes to the output binary, but removes a lot of
lines of code.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We were not saving DAR and DSISR on MCE. Save then and also print the values
along with exception details in xmon.
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Building a 64-bit powerpc kernel with PR KVM enabled currently gives
this error:
AS arch/powerpc/kernel/head_64.o
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:258: Error: attempt to move .org backwards
make[2]: *** [arch/powerpc/kernel/head_64.o] Error 1
This happens because the MASKABLE_EXCEPTION_PSERIES macro turns into
33 instructions, but we only have space for 32 at the decrementer
interrupt vector (from 0x900 to 0x980).
In the code generated by the MASKABLE_EXCEPTION_PSERIES macro, we
currently have two instances of the HMT_MEDIUM macro, which has the
effect of setting the SMT thread priority to medium. One is the
first instruction, and is overwritten by a no-op on processors where
we save the PPR (processor priority register), that is, POWER7 or
later. The other is after we have saved the PPR.
In order to reduce the code at 0x900 by one instruction, we omit the
first HMT_MEDIUM. On processors without SMT this will have no effect
since HMT_MEDIUM is a no-op there. On POWER5 and RS64 machines this
will mean that the first few instructions take a little longer in the
case where a decrementer interrupt occurs when the hardware thread is
running at low SMT priority. On POWER6 and later machines, the
hardware automatically boosts the thread priority when a decrementer
interrupt is taken if the thread priority was below medium, so this
change won't make any difference.
The alternative would be to branch out of line after saving the CFAR.
However, that would incur an extra overhead on all processors, whereas
the approach adopted here only adds overhead on older threaded processors.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
POWER8 allows us to take interrupts with the MMU on. This gives us a
second set of vectors offset at 0x4000.
Unfortunately when coping these vectors we missed checking for MSR HV
for hardware interrupts (0x500). This results in us trying to use
HSRR0/1 when HV=0, rather than SRR0/1 on HW IRQs
The below fixes this to check CPU_FTR_HVMODE when patching the code at
0x4500.
Also we remove the check for CPU_FTR_ARCH_206 since relocation on IRQs
are only available in arch 2.07 and beyond.
Thanks to benh for helping find this.
Signed-off-by: Michael Neuling <mikey@neuling.org>
CC: <stable@vger.kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit c1fb6816fb ("powerpc: Add
relocation on exception vector handlers") added two lines of code that
depend on the macro CONFIG_HVC_SCOM. That macro doesn't exist. Perhaps
it was intended to use CONFIG_PPC_SCOM here. But since
"maintence_interrupt" is a typo and there's nothing in arch/powerpc that
looks like maintenance_interrupt it seems best to just delete these
lines.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Acked-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
The FWNMI region is fixed at 0x7000 and the vector are now overflowing
that with allmodconfig. Fix that by moving slb_miss_realmode code out
of that region as it doesn't need to be that close to the call sites
(it is a _GLOBAL function)
Fixes this build error:
arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
arch/powerpc/kernel/exceptions-64s.S:1304: Error: attempt to move .org backwards
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Now we use ESID_BITS of kernel address to build proto vsid. So rename
USER_ESIT_BITS to ESID_BITS
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: <stable@vger.kernel.org> [v3.8]
This patch change the kernel VSID range so that we limit VSID_BITS to 37.
This enables us to support 64TB with 65 bit VA (37+28). Without this patch
we have boot hangs on platforms that only support 65 bit VA.
With this patch we now have proto vsid generated as below:
We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
from mmu context id and effective segment id of the address.
For user processes max context id is limited to ((1ul << 19) - 5)
for kernel space, we use the top 4 context ids to map address as below
0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: <stable@vger.kernel.org> [v3.8]
Currently we use the link register to branch up high in the early MMU on
syscall entry path. Unfortunately, this trashes the link stack as the
address we are going to is not associated with the earlier mflr.
This patch simply converts us to used the count register (volatile over
syscalls anyway) instead. This is much better at predicting in this
scenario and doesn't trash link stack causing a bunch of additional
branch mispredicts later. Benchmarking this on POWER8 saves a bunch of
cycles on Anton's null syscall benchmark here:
http://ozlabs.org/~anton/junkcode/null_syscall.c
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This hooks the new transactional memory code into context switching, FP/VMX/VMX
unavailable and exception return.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
These should never happen since we always turn on MSR TM when in userspace. We
don't do lazy TM.
Hence if we hit this, we barf and kill the task as something's gone horribly
wrong.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some of the interrupt vectors on 64-bit POWER server processors are
only 32 bytes long, which is not enough for the full first-level
interrupt handler. For these we currently just have a branch to an
out-of-line handler. However, this means that we corrupt the CFAR
(come-from address register) on POWER7 and later processors.
To fix this, we split the EXCEPTION_PROLOG_1 macro into two pieces:
EXCEPTION_PROLOG_0 contains the part up to the point where the CFAR
is saved in the PACA, and EXCEPTION_PROLOG_1 contains the rest. We
then put EXCEPTION_PROLOG_0 in the short interrupt vectors before
we branch to the out-of-line handler, which contains the rest of the
first-level interrupt handler. To facilitate this, we define new
_OOL (out of line) variants of STD_EXCEPTION_PSERIES, etc.
In order to get EXCEPTION_PROLOG_0 to be short enough, i.e., no more
than 6 instructions, it was necessary to move the stores that move
the PPR and CFAR values into the PACA into __EXCEPTION_PROLOG_1 and
to get rid of one of the two HMT_MEDIUM instructions. Previously
there was a HMT_MEDIUM_PPR_DISCARD before the prolog, which was
nop'd out on processors with the PPR (POWER7 and later), and then
another HMT_MEDIUM inside the HMT_MEDIUM_PPR_SAVE macro call inside
__EXCEPTION_PROLOG_1, which was nop'd out on processors without PPR.
Now the HMT_MEDIUM inside EXCEPTION_PROLOG_0 is there unconditionally
and the HMT_MEDIUM_PPR_DISCARD is not strictly necessary, although
this leaves it in for the interrupt vectors where there is room for
it.
Previously we had a handler for hypervisor maintenance interrupts at
0xe50, which doesn't leave enough room for the vector for hypervisor
emulation assist interrupts at 0xe40, since we need 8 instructions.
The 0xe50 vector was only used on POWER6, as the HMI vector was moved
to 0xe60 on POWER7. Since we don't support running in hypervisor mode
on POWER6, we just remove the handler at 0xe50.
This also changes denorm_exception_hv to use EXCEPTION_PROLOG_0
instead of open-coding it, and removes the HMT_MEDIUM_PPR_DISCARD
from the relocation-on vectors (since any CPU that supports
relocation-on interrupts also has the PPR).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The Cell processor doesn't support relocation-on interrupts, so we
don't need relocation-on versions of the interrupt vectors that are
purely Cell-specific. This removes them.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The FWNMI region is fixed at 0x7000 and the vector are now
overflowing that with some configurations. Fix that by moving
some hash management code out of that region as it doesn't need
to be that close to the call sites (isn't accessed using
conditional branches).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This is a rewrite so that we don't assume we are using the DABR throughout the
code. We now use the arch_hw_breakpoint to store the breakpoint in a generic
manner in the thread_struct, rather than storing the raw DABR value.
The ptrace GET/SET_DEBUGREG interface currently passes the raw DABR in from
userspace. We keep this functionality, so that future changes (like the POWER8
DAWR), will still fake the DABR to userspace.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[PATCH 6/6] powerpc: Implement PPR save/restore
When the task enters in to kernel space, the user defined priority (PPR)
will be saved in to PACA at the beginning of first level exception
vector and then copy from PACA to thread_info in second level vector.
PPR will be restored from thread_info before exits the kernel space.
P7/P8 temporarily raises the thread priority to higher level during
exception until the program executes HMT_* calls. But it will not modify
PPR register. So we save PPR value whenever some register is available
to use and then calls HMT_MEDIUM to increase the priority. This feature
supports on P7 or later processors.
We save/ restore PPR for all exception vectors except system call entry.
GLIBC will be saving / restore for system calls. So the default PPR
value (3) will be set for the system call exit when the task returned
to the user space.
Signed-off-by: Haren Myneni <haren@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds the logic to properly handle doorbells that come in when
interrupts have been soft disabled and to replay them when interrupts
are re-enabled:
- masked_##_H##interrupt is modified to leave interrupts enabled when a
doorbell has come in since doorbells are edge sensitive and as such
won't be automatically re-raised.
- __check_irq_replay now tests if a doorbell happened on book3s, and
returns either 0xe80 or 0xa00 depending on whether we are the
hypervisor or not.
- restore_check_irq_replay now tests for the two possible server
doorbell vector numbers to replay.
- __replay_interrupt also adds tests for the two server doorbell vector
numbers, and is modified to use a compare instruction rather than an
andi. on the single bit difference between 0x500 and 0x900.
The last two use a CPU feature section to avoid needlessly testing
against the hypervisor vector if it is not the hypervisor, and vice
versa.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Directed Privileged Doorbell Interrupts come in at 0xa00 (or
0xc000000000004a00 if relocation on exception is enabled), so add
exception vectors at these locations.
If doorbell support is not compiled in we handle it as an
unknown_exception.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Directed Hypervisor Doorbell Interrupts come in at 0xe80 (or
0xc000000000004e80 if relocation on exceptions is enabled), so add
exception vectors at these locations.
If doorbell support is not compiled in we handle it as an
unknown_exception.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
POWER8/v2.07 allows exceptions to be taken with the MMU still on.
A new set of exception vectors is added at 0xc000_0000_0000_4xxx. When the HW
takes us here, MSR IR/DR will be set already and we no longer need a costly
RFID to turn the MMU back on again.
The original 0x0 based exception vectors remain for when the HW can't leave the
MMU on. Examples of this are when we can't trust the current MMU mappings,
like when we are changing from guest to hypervisor (HV 0 -> 1) or when the MMU
was off already. In these cases the HW will take us to the original 0x0 based
exception vectors with the MMU off as before.
This uses the new macros added previously too implement these new execption
vectors at 0xc000_0000_0000_4xxx. We exit these exception vectors using
mflr/blr (rather than mtspr SSR0/RFID), since we don't need the costly MMU
switch anymore.
This moves the __end_interrupts marker down past these new 0x4000 vectors since
they will need to be copied down to 0x0 when the kernel is not at 0x0.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
POWER8/v2.07 allows exceptions to be taken with the MMU still on.
A new set of exception vectors is added at 0xc000_0000_0000_4xxx. When the HW
takes us here, MSR IR/DR will be set already and we no longer need a costly
RFID to turn the MMU back on again.
The original 0x0 based exception vectors remain for when the HW can't leave the
MMU on. Examples of this are when we can't trust the current the MMU mappings,
like when we are changing from guest to hypervisor (HV 0 -> 1) or when the MMU
was off already. In these cases the HW will take us to the original 0x0 based
exception vectors with the MMU off as before.
The below macros are copies of the macros used at the 0x0 offset but modified
to handle the MMU being on. In these macros we use the link register to jump
to the secondary handlers rather than using RFID (RFID was also use to turn on
the MMU).
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This turns the syscall handler into macros as we are going to want to reuse
them again later.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If we change load_hander() to use an ori instead of addi, we can load handlers
upto 64k away provided we are still 64k aligned.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This removes the large gap between 0x1800 and 0x3000.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Remove redundancy spaces and make tab usage consistent.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Fix global symbol name to match actual denorm_exception_hv label.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Increase max addressable range to 64TB. This is not tested on
real hardware yet.
Reviewed-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On POWER6 and POWER7 if the input operand to an instruction is a
denormalised single precision binary floating point value we can take
a denormalisation exception where it's expected that the hypervisor
(HV=1) will fix up the inputs before the instruction is run.
This adds code to handle this denormalisation exception for POWER6 and
POWER7.
It also add a CONFIG_PPC_DENORMALISATION option and sets it in
pseries/ppc64_defconfig.
This is useful on bare metal systems only. Based on patch from Milton
Miller.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
At the moment the handler for hypervisor decrementer interrupts is
the same as for decrementer interrupts, i.e. timer_interrupt().
This is bogus; if we ever do get a hypervisor decrementer interrupt
it won't have anything to do with the next timer event. In fact
the only time we get hypervisor decrementer interrupts is when one
is left pending on exit from a KVM guest.
When we get a hypervisor decrementer interrupt we don't need to do
anything special to clear it, since they are edge-triggered on the
transition of HDEC from 0 to -1. Thus this adds an empty handler
function for them. We don't need to have them masked when interrupts
are soft-disabled, so we use STD_EXCEPTION_HV instead of
MASKABLE_EXCEPTION_HV.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Purely for cosmetic purposes, otherwise it can appear that we are in
single_step_pSeries() which is slightly confusing.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull KVM changes from Avi Kivity:
"Changes include additional instruction emulation, page-crossing MMIO,
faster dirty logging, preventing the watchdog from killing a stopped
guest, module autoload, a new MSI ABI, and some minor optimizations
and fixes. Outside x86 we have a small s390 and a very large ppc
update.
Regarding the new (for kvm) rebaseless workflow, some of the patches
that were merged before we switch trees had to be rebased, while
others are true pulls. In either case the signoffs should be correct
now."
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
arch/powerpc/kvm/book3s_segment.S and arch/x86/include/asm/kvm_para.h.
I suspect the kvm_para.h resolution ends up doing the "do I have cpuid"
check effectively twice (it was done differently in two different
commits), but better safe than sorry ;)
* 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (125 commits)
KVM: make asm-generic/kvm_para.h have an ifdef __KERNEL__ block
KVM: s390: onereg for timer related registers
KVM: s390: epoch difference and TOD programmable field
KVM: s390: KVM_GET/SET_ONEREG for s390
KVM: s390: add capability indicating COW support
KVM: Fix mmu_reload() clash with nested vmx event injection
KVM: MMU: Don't use RCU for lockless shadow walking
KVM: VMX: Optimize %ds, %es reload
KVM: VMX: Fix %ds/%es clobber
KVM: x86 emulator: convert bsf/bsr instructions to emulate_2op_SrcV_nobyte()
KVM: VMX: unlike vmcs on fail path
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
...
Alignment was the last user of the ENABLE_INTS macro, which we can
now remove. All non-syscall exceptions now disable interrupts on
entry, they get re-enabled conditionally from C code. Don't
unconditionally re-enable in program check either, check the
original context.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Remove CONFIG_POWER4_ONLY, the option is badly named and only does two
things:
- It wraps the MMU segment table code. With feature fixups there is
little downside to compiling this in.
- It uses the newer mtocrf instruction in various assembly functions.
Instead of making this a compile option just do it at runtime via
a feature fixup.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently on POWER7, if we are running the guest on a core and we don't
need all the hardware threads, we do nothing to ensure that the unused
threads aren't executing in the kernel (other than checking that they
are offline). We just assume they're napping and we don't do anything
to stop them trying to enter the kernel while the guest is running.
This means that a stray IPI can wake up the hardware thread and it will
then try to enter the kernel, but since the core is in guest context,
it will execute code from the guest in hypervisor mode once it turns the
MMU on, which tends to lead to crashes or hangs in the host.
This fixes the problem by adding two new one-byte flags in the
kvmppc_host_state structure in the PACA which are used to interlock
between the primary thread and the unused secondary threads when entering
the guest. With these flags, the primary thread can ensure that the
unused secondaries are not already in kernel mode (i.e. handling a stray
IPI) and then indicate that they should not try to enter the kernel
if they do get woken for any reason. Instead they will go into KVM code,
find that there is no vcpu to run, acknowledge and clear the IPI and go
back to nap mode.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Pull kvm updates from Avi Kivity:
"Changes include timekeeping improvements, support for assigning host
PCI devices that share interrupt lines, s390 user-controlled guests, a
large ppc update, and random fixes."
This is with the sign-off's fixed, hopefully next merge window we won't
have rebased commits.
* 'kvm-updates/3.4' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: Convert intx_mask_lock to spin lock
KVM: x86: fix kvm_write_tsc() TSC matching thinko
x86: kvmclock: abstract save/restore sched_clock_state
KVM: nVMX: Fix erroneous exception bitmap check
KVM: Ignore the writes to MSR_K7_HWCR(3)
KVM: MMU: make use of ->root_level in reset_rsvds_bits_mask
KVM: PMU: add proper support for fixed counter 2
KVM: PMU: Fix raw event check
KVM: PMU: warn when pin control is set in eventsel msr
KVM: VMX: Fix delayed load of shared MSRs
KVM: use correct tlbs dirty type in cmpxchg
KVM: Allow host IRQ sharing for assigned PCI 2.3 devices
KVM: Ensure all vcpus are consistent with in-kernel irqchip settings
KVM: x86 emulator: Allow PM/VM86 switch during task switch
KVM: SVM: Fix CPL updates
KVM: x86 emulator: VM86 segments must have DPL 3
KVM: x86 emulator: Fix task switch privilege checks
arch/powerpc/kvm/book3s_hv.c: included linux/sched.h twice
KVM: x86 emulator: correctly mask pmc index bits in RDPMC instruction emulation
KVM: mmu_notifier: Flush TLBs before releasing mmu_lock
...
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
On 64-bit, the mfmsr instruction can be quite slow, slower
than loading a field from the cache-hot PACA, which happens
to already contain the value we want in most cases.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If we get a floating point, altivec or vsx unavaible interrupt in
kernel, we trigger a kernel error. There is no point preserving
the interrupt state, in fact, that can even make debugging harder
as the processor state might change (we may even preempt) between
taking the exception and landing in a debugger.
So just make those 3 disable interrupts unconditionally.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2: On BookE only disable when hitting the kernel unavailable
path, otherwise it will fail to restore softe as
fast_exception_return doesn't do it.
We currently turn interrupts back to their previous state before
calling do_page_fault(). This can be annoying when debugging as
a bad fault will potentially have lost some processor state before
getting into the debugger.
We also end up calling some generic code with interrupts enabled
such as notify_page_fault() with interrupts enabled, which could
be unexpected.
This changes our code to behave more like other architectures,
and make the assembly entry code call into do_page_faults() with
interrupts disabled. They are conditionally re-enabled from
within do_page_fault() in the same spot x86 does it.
While there, add the might_sleep() test in the case of a successful
trylock of the mmap semaphore, again like x86.
Also fix a bug in the existing assembly where r12 (_MSR) could get
clobbered by C calls (the DTL accounting in the exception common
macro and DISABLE_INTS) in some cases.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2. Add the r12 clobber fix
This moves the inlines into system.h and changes the runlatch
code to use the thread local flags (non-atomic) rather than
the TIF flags (atomic) to keep track of the latch state.
The code to turn it back on in an asynchronous interrupt is
now simplified and partially inlined.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The perfmon interrupt is the sole user of a special variant of the
interrupt prolog which differs from the one used by external and timer
interrupts in that it saves the non-volatile GPRs and doesn't turn the
runlatch on.
The former is unnecessary and the later is arguably incorrect, so
let's clean that up by using the same prolog. While at it we rename
that prolog to use the _ASYNC prefix.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This removes the various bits of assembly in the kernel entry,
exception handling and SLB management code that were specific
to running under the legacy iSeries hypervisor which is no
longer supported.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
In commit 54321242af ("Disable interrupts early in Program Check"), we
switched from enabling to disabling interrupts in program_check_common.
Whereas ENABLE_INTS leaves r3 untouched, if lockdep is enabled DISABLE_INTS
calls into lockdep code and will clobber r3. That means we pass a bogus
struct pt_regs* into program_check_exception() and all hell breaks loose.
So load our regs pointer into r3 after we call DISABLE_INTS.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Program Check exceptions are the result of WARNs, BUGs, some
type of breakpoints, kprobe, and other illegal instructions.
We want interrupts (and thus preemption) to remain disabled
while doing the initial stage of testing the reason and
branching off to a debugger or kprobe, so we are still on
the original CPU which makes debugging easier in various cases.
This is how the code was intended, hence the local_irq_enable()
right in the middle of program_check_exception().
However, the assembly exception prologue for that exception was
incorrectly marked as enabling interrupts, which defeats that
(and records a redundant enable with lockdep).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
At present, on the powernv platform, if you off-line a CPU that was
online, and then try to on-line it again, the kernel generates a
warning message "OPAL Error -1 starting CPU n". Furthermore, if the
CPU is a secondary thread that was used by KVM while it was off-line,
the CPU fails to come online.
The first problem is fixed by only calling OPAL to start the CPU the
first time it is on-lined, as indicated by the cpu_start field of its
PACA being zero. The second problem is fixed by restoring the
cpu_start field to 1 instead of 0 when using the CPU within KVM.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>