Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Individual scheduler domain should consist different hierarchy
consisting of cores sharing similar property. Currently, no
scheduler domain is defined separately for the cores that shares
the last level cache. As a result, the scheduler fails to take
advantage of cache locality while migrating tasks during load
balancing.
Here are the cpu masks currently present for sparc that are/can
be used in scheduler domain construction.
cpu_core_map : set based on the cores that shares l1 cache.
core_core_sib_map : is set based on the socket id.
The prior SPARC notion of socket was defined as highest level of
shared cache. However, the MD record on T7 platforms now describes
the CPUs that share the physical socket and this is no longer tied
to shared cache.
That's why a separate cpu mask needs to be created that truly
represent highest level of shared cache for all platforms.
Signed-off-by: Atish Patra <atish.patra@oracle.com>
Reviewed-by: Chris Hyser <chris.hyser@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
commit 5f4826a362405748bbf73957027b77993e61e1af
Author: chris hyser <chris.hyser@oracle.com>
Date: Tue Apr 21 10:31:38 2015 -0400
sparc64: Setup sysfs to mark LDOM sockets, cores and threads correctly
The current sparc kernel has no representation for sockets though tools
like lscpu can pull this from sysfs. This patch walks the machine
description cache and socket hierarchy and marks sockets as well as cores
and threads such that a representative sysfs is created by
drivers/base/topology.c.
Before this patch:
$ lscpu
Architecture: sparc64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Big Endian
CPU(s): 1024
On-line CPU(s) list: 0-1023
Thread(s) per core: 8
Core(s) per socket: 1 <--- wrong
Socket(s): 128 <--- wrong
NUMA node(s): 4
NUMA node0 CPU(s): 0-255
NUMA node1 CPU(s): 256-511
NUMA node2 CPU(s): 512-767
NUMA node3 CPU(s): 768-1023
After this patch:
$ lscpu
Architecture: sparc64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Big Endian
CPU(s): 1024
On-line CPU(s) list: 0-1023
Thread(s) per core: 8
Core(s) per socket: 32
Socket(s): 4
NUMA node(s): 4
NUMA node0 CPU(s): 0-255
NUMA node1 CPU(s): 256-511
NUMA node2 CPU(s): 512-767
NUMA node3 CPU(s): 768-1023
Most of this patch was done by Chris with updates by David.
Signed-off-by: Chris Hyser <chris.hyser@oracle.com>
Signed-off-by: David Ahern <david.ahern@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: sparclinux@vger.kernel.org
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix following sparc32 warning:
cpu.c:430:29: warning: symbol 'cpuinfo_op' was not declared. Should it be static?
Fix following sparc64 warnings:
cpu.c:364:14: warning: symbol 'dcache_parity_tl1_occurred' was not declared. Should it be static?
cpu.c:365:14: warning: symbol 'icache_parity_tl1_occurred' was not declared. Should it be static?
Rearrange asm/cpu.h to share more stuff between sparc32 and sparc64.
Added missing include to cpu.c of kernel.h
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This keeps us from having to use kstat_irqs_cpu() from the NMI handler,
the former of which is a profiled function.
Instead we use a currently empty slot in the cpu_data
Signed-off-by: David S. Miller <davem@davemloft.net>
Later we're going to want to get at these definitions from
asm/percpu.h and that's not possible via cpudata.h because
of the set of dependencies the non-trap_block[] stuff has.
Signed-off-by: David S. Miller <davem@davemloft.net>
This really isn't necessary at all, a local variable suits the
job just fine.
This frees up 8 bytes in the trap_block[] that we can use later
to store the per-cpu base addresses.
Signed-off-by: David S. Miller <davem@davemloft.net>
Three main things:
1) Make prober an arch initcall instead of using hard-coded invocation
from paging_init()
2) Shrink table size, the fpu ident stuff was never used.
3) Use named struct initialized in table.
Signed-off-by: David S. Miller <davem@davemloft.net>
The majority of this patch was created by the following script:
***
ASM=arch/sparc/include/asm
mkdir -p $ASM
git mv include/asm-sparc64/ftrace.h $ASM
git rm include/asm-sparc64/*
git mv include/asm-sparc/* $ASM
sed -ie 's/asm-sparc64/asm/g' $ASM/*
sed -ie 's/asm-sparc/asm/g' $ASM/*
***
The rest was an update of the top-level Makefile to use sparc
for header files when sparc64 is being build.
And a small fixlet to pick up the correct unistd.h from
sparc64 code.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>