This kills off the deprected fixed memory range accessors for
the cases of non-translatable ioremapping.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
IRQs are re-enabled at a later stage when doing the unmapping on R2D via
the sm501 USB coherent DMA, resulting in the irqs_disabled() check
producing considerable noise for this configuration. Just kill off the
check, which was blindly copied from x86 anyways.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This patch fixes a bug within the cmpxchg GRB version.
A problem was notices while running some tests to stress
the priority inheritance, for example pi_stress
(http://rt.wiki.kernel.org/index.php/PI_Mutex_Test).
Also, without this patch, after applying the latest work to
consolidate atomic_cmpxchg() definitions (commit:
8c0b8139c8)
the Kernel doesn't boot at all.
Signed-off-by: Giuseppe Cavallaro <peppe.cavallaro@st.com>
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
These routines are unsuitable for cross-platform use and no new code
should be using them, flag them as deprecated in order to give drivers
sufficient time to migrate over.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The old ctrl in/out routines are non-portable and unsuitable for
cross-platform use. While drivers/sh has already been sanitized, there
is still quite a lot of code that is not. This converts the arch/sh/ bits
over, which permits us to flag the routines as deprecated whilst still
building with -Werror for the architecture code, and to ensure that
future users are not added.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently the IOREMAP_FIXED fixmaps are always defined, even if the
platform isn't capable of supporting it. Since we already have an ifdef
for it, ifdef the entries, too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Now that cached_to_uncached works as advertized in 32-bit mode and we're
never going to be able to map < 16MB anyways, there's no need for the
special uncached section. Kill it off.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a variable for tracking the uncached mapping size, and uses
it for pretty printing the uncached lowmem range. Beyond this, we'll also
be building on top of this for figuring out from where the remainder of
P2 becomes usable when constructing unrelated mappings.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This implements dynamic probing for the system FPGA. The system reset
controller contains a fixed magic read word in order to identify the
FPGA. This just utilizes a simple loop that scans across all of the fixed
physical areas (area 0 through area 6) to locate the FPGA.
The FPGA also contains register information detailing the area mappings
and chip select settings for all of the other blocks, so this needs to be
done before we can set up anything else.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a machine_ops-based reboot interface loosely cloned from
x86, and converts the native sh32 and sh64 cases over to it.
Necessary both for tying in SMP support and also enabling platforms like
SDK7786 to add support for their microcontroller-based power managers.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently __in_29bit_mode() is only defined for the PMB case, but
it's also easily derived from the CONFIG_29BIT and CONFIG_32BIT &&
CONFIG_PMB=n cases.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This moves out the FPGA IRQ controller setup code to its own file, in
preparation for switching off of IRL mode and having it provide its own
irq_chip.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This does a bit of refactoring of the FPGA management code. The primary
FPGA initialization is moved out to its own file in preparation for
implementing some of the more complex capabilities, a complete set of
register definitions is provided, and all of the existing users in the
board code are moved over to use the new interface instead of setting up
overlapping mappings. This also corrects the FPGA size, which previously
was chomped off at the SDIF control register.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Implement .set_rate() for all SH "div4 clocks," .enable(), .disable(), and
.set_parent() for those, that support them. This allows, among other uses,
reparenting of SIU clocks to the external source, and enabling and
disabling of the IrDA clock on sh7722.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This updates the sh64 processor info with the sh32 changes in order to
tie in to the generic task_xstate management code.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently this is duplicated between tlb-sh4 and tlb-pteaex. Split the
helpers out in to a generic tlb-urb that can be used by any parts
equipped with MMUCR.URB.
At the same time, move the SH-5 code out-of-line, as we require single
global state for DTLB entry wiring.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a dummy value for legacy parts which permits the entry
wiring to be open-coded. The compiler takes care of optimizing the entry
wiring away in these cases.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently ioremap_prot() uses an unsigned long to pass the pgprot value
around. This results in the upper half of the pgprot being chomped when
using 64-bit pgprots on a 32-bit ABI (X2TLB and SH-5).
As the only users of ioremap_prot() are presently legacy parts, this
doesn't cause too much of an issue. In the future when the interface is
converted to use pgprot_t directly this can be re-enabled for the other
parts, too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This is already taken care of in the top-level ioremap, and now that
no one should be calling ioremap_fixed() directly we can simply throw the
mapping displacement in as an additional argument.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently 'flags' gets passed around a lot between the various ioremap
helpers and implementations, which is only 32-bits. In the X2TLB case
we use 64-bit pgprots which presently results in the upper 32bits being
chopped off (which handily include our read/write/exec permissions).
As such, we convert everything internally to using pgprot_t directly and
simply convert over with pgprot_val() where needed. With this in place,
transparent fixmap utilization for early ioremap works as expected.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This converts iounmap_fixed() to return success/error if it handled the
unmap request or not. At the same time, drop the __init label, as this
can be called in to later.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently the fixed ioremap API is only defined when CONFIG_IOREMAP_FIXED
is set. As we want to call in to it unconditionally, provide a stubbed
out interface.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds in a mem_init_done to work out when a standard ioremap() is
possible, falling back to the fixmap based ioremap otherwise.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Some devices need to be ioremap'd and accessed very early in the boot
process. It is not possible to use the standard ioremap() function in
this case because that requires kmalloc()'ing some virtual address space
and kmalloc() may not be available so early in boot.
This patch provides fixmap mappings that allow physical address ranges
to be remapped into the kernel address space during the early boot
stages.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Generalise the code for setting and clearing pte's and allow TLB entries
to be pinned and unpinned if the _PAGE_WIRED flag is present.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
We need some more page flags to hook up _PAGE_WIRED (and eventually
other things). So use the unused PTE bits above the PPN field as no
implementations use these for anything currently.
Now that we have _PAGE_WIRED let's provide the SH-5 functions for wiring
up TLB entries.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Provide a new extended page flag, _PAGE_WIRED and an SH4 implementation
for wiring TLB entries and use it in the fixmap code path so that we can
wire the fixmap TLB entry.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
The last commit introduced the following breakage
arch/sh/include/asm/mmu.h: In function 'pmb_remap':
arch/sh/include/asm/mmu.h:79: error: expected ';' before '}' token
and...
arch/sh/include/asm/mmu.h:78: error: 'EINVAL' undeclared (first use in this function)
arch/sh/include/asm/mmu.h:78: error: (Each undeclared identifier is reported only once
arch/sh/include/asm/mmu.h:78: error: for each function it appears in.)
arch/sh/include/asm/mmu.h: In function 'pmb_init':
arch/sh/include/asm/mmu.h:87: error: 'ENODEV' undeclared (first use in this function)
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
These were originally named _nopmd and _pmd to follow their asm-generic
counterparts, but we rename them to -2level and -3level for general
consistency.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
All SH-X2 and SH-X3 parts support an extended TLB mode, which has been
left as experimental since support was originally merged. Now that it's
had some time to stabilize and get some exposure to various platforms,
we can drop it as an option and default enable it across the board.
This is also good future proofing for newer parts that will drop support
for the legacy TLB mode completely.
This will also force 3-level page tables for all newer parts, which is
necessary both for the varying page sizes and larger memories.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This stubs out all of the PxSEGADDR() wrappers for non-legacy code.
29-bit will continue to work with these, while 32-bit code will now blow
up on compile rather than at runtime.
The vast majority of the in-tree offenders are gone, with the only
remaining culprits being unable to support 32-bit mode.
Hopefully this will prevent anyone from ever using these again.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This introduces some much overdue chainsawing of the fixed PMB support.
fixed PMB was introduced initially to work around the fact that dynamic
PMB mode was relatively broken, though they were never intended to
converge. The main areas where there are differences are whether the
system is booted in 29-bit mode or 32-bit mode, and whether legacy
mappings are to be preserved. Any system booting in true 32-bit mode will
not care about legacy mappings, so these are roughly decoupled.
Regardless of the entry point, PMB and 32BIT are directly related as far
as the kernel is concerned, so we also switch back to having one select
the other.
With legacy mappings iterated through and applied in the initialization
path it's now possible to finally merge the two implementations and
permit dynamic remapping overtop of remaining entries regardless of
whether boot mappings are crafted by hand or inherited from the boot
loader.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The legacy P2 area may not always be mapped (for example when using
PMB). So perform an icbi on an address that we know will always be
mapped.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This follows the x86 xstate changes and implements a task_xstate slab
cache that is dynamically sized to match one of hard FP/soft FP/FPU-less.
This also tidies up and consolidates some of the SH-2A/SH-4 FPU
fragmentation. Now fpu state restorers are commonly defined, with the
init_fpu()/fpu_init() mess reworked to follow the x86 convention.
The fpu_init() register initialization has been replaced by xstate setup
followed by writing out to hardware via the standard restore path.
As init_fpu() now performs a slab allocation a secondary lighterweight
restorer is also introduced for the context switch.
In the future the DSP state will be rolled in here, too.
More work remains for math emulation and the SH-5 FPU, which presently
uses its own special (UP-only) interfaces.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently the thread_info allocators are special cased, depending on
THREAD_SHIFT < PAGE_SHIFT. This provides a sensible definition for them
regardless of configuration, in preparation for extended CPU state.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
start_thread() will become a bit heavier with the xstate freeing to be
added in, so move it out-of-line in preparation.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This splits out the unaligned access counters and userspace bits in to
their own generic interface, which will allow them to be wired up on sh64
too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Now that the sh-sci earlyprintk is taken care of by the sh-sci driver
directly, there's no longer any reason for having a split-out
early_printk framework. sh_bios is the only other thing that uses it, so
we just migrate the leftovers in to there. As it's possible to have
multiple early_param()'s for the same string, there's not much point in
having this split out anymore anyways, particularly since the sh_bios
dependencies are still special-cased within sh-sci itself.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This moves the VBR handling out of the main trap handling code and in to
the sh-bios helper code. A couple of accessors are added in order to
permit other kernel code to get at the VBR value for state save/restore
paths.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This gets rid of the arbitrary set of vectors used by the SE7722 FPGA
interrupt controller and switches over to a completely dynamic set.
No assumptions regarding a contiguous range are made, and the platform
resources themselves need to be filled in lazily.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The LL/SC and IRQ versions were using generic stubs while the GRB version
was just reimplementing what it already had for the standard cmpxchg()
code. As we have optimized cmpxchg() implementations that are decoupled
from the atomic code, simply falling back on the generic wrapper does the
right thing. With this in place the GRB case is unaffected while the
LL/SC case gets to use its optimized cmpxchg().
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This was used by the old hw-breakpoints API, but now there is nothing
is using it anymore, so just kill it off.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This is the next big chunk of hw_breakpoint support. This decouples
the SH-4A support from the core and moves it out in to its own stub,
following many of the conventions established with the perf events
layering.
In addition to extending SH-4A support to encapsulate the remainder
of the UBC channels, clock framework support for handling the UBC
interface clock is added as well, allowing for dynamic clock gating.
This also fixes up a regression introduced by the SIGTRAP handling that
broke the ksym_tracer, to the extent that the current support works well
with all of the ksym_tracer/ptrace/kgdb. The kprobes singlestep code will
follow in turn.
With this in place, the remaining UBC variants (SH-2A and SH-4) can now
be trivially plugged in.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>