Commit 3ab33d6dc3 ("powerpc/smp: Optimize update_mask_by_l2")
introduced submask_fn in update_mask_by_l2 to track the right submask.
However commit f6606cfdfb ("powerpc/smp: Dont assume l2-cache to be
superset of sibling") introduced sibling_mask in update_mask_by_l2 to
track the same submask. Remove sibling_mask in favour of submask_fn.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201019042716.106234-2-srikar@linux.vnet.ibm.com
Use of nmi_enter/exit in real mode handler causes the kernel to panic
and reboot on injecting SLB mutihit on pseries machine running in hash
MMU mode, because these calls try to accesses memory outside RMO
region in real mode handler where translation is disabled.
Add check to not to use these calls on pseries machine running in hash
MMU mode.
Fixes: 116ac378bb ("powerpc/64s: machine check interrupt update NMI accounting")
Cc: stable@vger.kernel.org # v5.8+
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201009064005.19777-2-ganeshgr@linux.ibm.com
Even though we use self removing sysfs helper, we still need
to make sure we do the final kobject delete conditionally.
sysfs_remove_file_self() will handle parallel calls to remove
the sysfs attribute file and returns true only in the caller
that removed the attribute file. The other parallel callers
are returned false. Do the final kobject delete checking
the return value of sysfs_remove_file_self().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201014064813.109515-1-aneesh.kumar@linux.ibm.com
On PPC64, get_tbl() is defined as an alias of get_tb() which return
the result of mftb(). That exactly the same as what the PPC32 version
does. We don't need two versions.
Remove the PPC64 definition of get_tbl() and use the PPC32 version
for both.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/a8eaabb87d69534e533ebac805163e08146e05bd.1601556145.git.christophe.leroy@csgroup.eu
get_tbl() is confusing as it returns the content of TBL register
on PPC32 but the concatenation of TBL and TBU on PPC64.
Use mftb() instead.
Do the same with get_tbu() for consistency allthough it's name
is less confusing.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/41573406a4eab98838decaa91649086fef1e6119.1601556145.git.christophe.leroy@csgroup.eu
On PPC64, we have mftb().
On PPC32, we have mftbl() and an #define mftb() mftbl().
mftb() and mftbl() are equivalent, their purpose is to read the
content of SPRN_TRBL, as returned by 'mftb' simplified instruction.
binutils seems to define 'mftbl' instruction as an equivalent
of 'mftb'.
However in both 32 bits and 64 bits documentation, only 'mftb' is
defined, and when performing a disassembly with objdump, the displayed
instruction is 'mftb'
No need to have two ways to do the same thing with different
names, rename mftbl() to have only mftb().
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/94dc68d3d9ef9eb549796d4b938b6ba0305a049b.1601556145.git.christophe.leroy@csgroup.eu
Unlike PPC64 which had a single head_64.S, PPC32 are multiple ones.
There is the head_32.S, selected by default based on the value of BITS
and overridden based on some CONFIG_ values. This leads to thinking
that it may be selected by different types of PPC32 platform but
indeed it ends up being selected by book3s/32 only.
Make that explicit by:
- Not doing any default selection based on BITS.
- Renaming head_32.S to head_book3s_32.S.
- Get head_book3s_32.S selected only by CONFIG_PPC_BOOK3S_32.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Fix head_$(BITS).o reference in arch/powerpc/Makefile]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/319d379f696412681c66a987cc75e6abf8f958d2.1601975100.git.christophe.leroy@csgroup.eu
At the time being, an early hash table is set up when
CONFIG_KASAN is selected.
There is nothing wrong with setting such an early hash table
all the time, even if it is not used. This is a statically
allocated 256 kB table which lies in the init data section.
This makes the code simpler and may in the future allow to
setup early IO mappings with fixmap instead of hard coding BATs.
Put create_hpte() and flush_hash_pages() in the .ref.text section
in order to avoid warning for the reference to early_hash[]. This
reference is removed by MMU_init_hw_patch() before init memory is
freed.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b8f8101c368b8a6451844a58d7bd7d83c14cf2aa.1601566529.git.christophe.leroy@csgroup.eu
PowerPC 601 has been retired.
Remove all associated specific code.
CPU_FTRS_PPC601 has CPU_FTR_COHERENT_ICACHE and CPU_FTR_COMMON.
CPU_FTR_COMMON is already present via other CPU_FTRS.
None of the remaining CPU selects CPU_FTR_COHERENT_ICACHE.
So CPU_FTRS_PPC601 can be removed from the possible features,
hence can be removed completely.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/60b725d55e21beec3335175c20b77903ff98284f.1601362098.git.christophe.leroy@csgroup.eu
This config option isn't in any defconfig.
The very first versions of Powerpc 601 have a bug which
requires additional sync before and/or after some instructions.
This was more than 25 years ago and time has come to retire
those buggy versions of the 601 from the kernel.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/55b46bff16705b1ae7bf0a60ccd522b1010ebf75.1601362098.git.christophe.leroy@csgroup.eu
Add NVDIMM_FAMILY_PAPR to the list of valid 'dimm_family_mask'
acceptable by papr_scm. This is needed as since commit
92fe2aa859 ("libnvdimm: Validate command family indices") libnvdimm
performs a validation of 'nd_cmd_pkg.nd_family' received as part of
ND_CMD_CALL processing to ensure only known command families can use
the general ND_CMD_CALL pass-through functionality.
Without this change the ND_CMD_CALL pass-through targeting
NVDIMM_FAMILY_PAPR error out with -EINVAL.
Fixes: 92fe2aa859 ("libnvdimm: Validate command family indices")
Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200913211904.24472-1-vaibhav@linux.ibm.com
Similar to commit 89c140bbae ("pseries: Fix 64 bit logical memory block panic")
make sure different variables tracking lmb_size are updated to be 64 bit.
Fixes: af9d00e93a ("powerpc/mm/radix: Create separate mappings for hot-plugged memory")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007114836.282468-4-aneesh.kumar@linux.ibm.com
Similar to commit 89c140bbae ("pseries: Fix 64 bit logical memory block panic")
make sure different variables tracking lmb_size are updated to be 64 bit.
This was found by code audit.
Cc: stable@vger.kernel.org
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007114836.282468-2-aneesh.kumar@linux.ibm.com
The inline execution path for the hardware assisted branch flush
instruction failed to set CTR to the correct value before bcctr,
causing a crash when the feature is enabled.
Fixes: 4d24e21cc6 ("powerpc/security: Allow for processors that flush the link stack using the special bcctr")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007080605.64423-1-npiggin@gmail.com
Patch here adds a cpumask attr to hv_gpci pmu along with ABI documentation.
Primary use to expose the cpumask is for the perf tool which has the
capability to parse the driver sysfs folder and understand the
cpumask file. Having cpumask file will reduce the number of perf command
line parameters (will avoid "-C" option in the perf tool
command line). It can also notify the user which is
the current cpu used to retrieve the counter data.
command:# cat /sys/devices/hv_gpci/cpumask
0
Signed-off-by: Kajol Jain <kjain@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201003074943.338618-5-kjain@linux.ibm.com
Patch here adds cpu hotplug functions to hv_gpci pmu.
A new cpuhp_state "CPUHP_AP_PERF_POWERPC_HV_GPCI_ONLINE" enum
is added.
The online callback function updates the cpumask only if its
empty. As the primary intention of adding hotplug support
is to designate a CPU to make HCALL to collect the
counter data.
The offline function test and clear corresponding cpu in a cpumask
and update cpumask to any other active cpu.
Signed-off-by: Kajol Jain <kjain@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201003074943.338618-4-kjain@linux.ibm.com
Commit 9e9f601084 ("powerpc/perf/{hv-gpci, hv-common}: generate
requests with counters annotated") adds a framework for defining
gpci counters.
In this patch, they adds starting_index value as '0xffffffffffffffff'.
which is wrong as starting_index is of size 32 bits.
Because of this, incase we try to run hv-gpci event we get error.
In power9 machine:
command#: perf stat -e hv_gpci/system_tlbie_count_and_time_tlbie_instructions_issued/
-C 0 -I 1000
event syntax error: '..bie_count_and_time_tlbie_instructions_issued/'
\___ value too big for format, maximum is 4294967295
This patch fix this issue and changes starting_index value to '0xffffffff'
After this patch:
command#: perf stat -e hv_gpci/system_tlbie_count_and_time_tlbie_instructions_issued/ -C 0 -I 1000
1.000085786 1,024 hv_gpci/system_tlbie_count_and_time_tlbie_instructions_issued/
2.000287818 1,024 hv_gpci/system_tlbie_count_and_time_tlbie_instructions_issued/
2.439113909 17,408 hv_gpci/system_tlbie_count_and_time_tlbie_instructions_issued/
Fixes: 9e9f601084 ("powerpc/perf/{hv-gpci, hv-common}: generate requests with counters annotated")
Signed-off-by: Kajol Jain <kjain@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201003074943.338618-1-kjain@linux.ibm.com
If the RTAS call to query the PE address for a device fails we jump the
err: label where an error message is printed along with the return code.
However, the printed return code is from the "ret" variable which isn't set
at that point since we assigned the result to "addr" instead. Fix this by
consistently using the "ret" variable for the result of the RTAS call
helpers an dropping the "addr" local variable"
Fixes: 98ba956f6a ("powerpc/pseries/eeh: Rework device EEH PE determination")
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007040903.819081-2-oohall@gmail.com
The eeh_pe->config_addr field was supposed to be removed in
commit 35d64734b6 ("powerpc/eeh: Clean up PE addressing") which made it
largely unused. Finish the job.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007040903.819081-1-oohall@gmail.com
During memory hot-add, dlpar_add_lmb() calls memory_add_physaddr_to_nid()
to determine which node id (nid) to use when later calling __add_memory().
This is wasteful. On pseries, memory_add_physaddr_to_nid() finds an
appropriate nid for a given address by looking up the LMB containing the
address and then passing that LMB to of_drconf_to_nid_single() to get the
nid. In dlpar_add_lmb() we get this address from the LMB itself.
In short, we have a pointer to an LMB and then we are searching for
that LMB *again* in order to find its nid.
If we call of_drconf_to_nid_single() directly from dlpar_add_lmb() we
can skip the redundant lookup. The only error handling we need to
duplicate from memory_add_physaddr_to_nid() is the fallback to the
default nid when drconf_to_nid_single() returns -1 (NUMA_NO_NODE) or
an invalid nid.
Skipping the extra lookup makes hot-add operations faster, especially
on machines with many LMBs.
Consider an LPAR with 126976 LMBs. In one test, hot-adding 126000
LMBs on an upatched kernel took ~3.5 hours while a patched kernel
completed the same operation in ~2 hours:
Unpatched (12450 seconds):
Sep 9 04:06:31 ltc-brazos1 drmgr[810169]: drmgr: -c mem -a -q 126000
Sep 9 04:06:31 ltc-brazos1 kernel: pseries-hotplug-mem: Attempting to hot-add 126000 LMB(s)
[...]
Sep 9 07:34:01 ltc-brazos1 kernel: pseries-hotplug-mem: Memory at 20000000 (drc index 80000002) was hot-added
Patched (7065 seconds):
Sep 8 21:49:57 ltc-brazos1 drmgr[877703]: drmgr: -c mem -a -q 126000
Sep 8 21:49:57 ltc-brazos1 kernel: pseries-hotplug-mem: Attempting to hot-add 126000 LMB(s)
[...]
Sep 8 23:27:42 ltc-brazos1 kernel: pseries-hotplug-mem: Memory at 20000000 (drc index 80000002) was hot-added
It should be noted that the speedup grows more substantial when
hot-adding LMBs at the end of the drconf range. This is because we
are skipping a linear LMB search.
To see the distinction, consider smaller hot-add test on the same
LPAR. A perf-stat run with 10 iterations showed that hot-adding 4096
LMBs completed less than 1 second faster on a patched kernel:
Unpatched:
Performance counter stats for 'drmgr -c mem -a -q 4096' (10 runs):
104,753.42 msec task-clock # 0.992 CPUs utilized ( +- 0.55% )
4,708 context-switches # 0.045 K/sec ( +- 0.69% )
2,444 cpu-migrations # 0.023 K/sec ( +- 1.25% )
394 page-faults # 0.004 K/sec ( +- 0.22% )
445,902,503,057 cycles # 4.257 GHz ( +- 0.55% ) (66.67%)
8,558,376,740 stalled-cycles-frontend # 1.92% frontend cycles idle ( +- 0.88% ) (49.99%)
300,346,181,651 stalled-cycles-backend # 67.36% backend cycles idle ( +- 0.76% ) (50.01%)
258,091,488,691 instructions # 0.58 insn per cycle
# 1.16 stalled cycles per insn ( +- 0.22% ) (66.67%)
70,568,169,256 branches # 673.660 M/sec ( +- 0.17% ) (50.01%)
3,100,725,426 branch-misses # 4.39% of all branches ( +- 0.20% ) (49.99%)
105.583 +- 0.589 seconds time elapsed ( +- 0.56% )
Patched:
Performance counter stats for 'drmgr -c mem -a -q 4096' (10 runs):
104,055.69 msec task-clock # 0.993 CPUs utilized ( +- 0.32% )
4,606 context-switches # 0.044 K/sec ( +- 0.20% )
2,463 cpu-migrations # 0.024 K/sec ( +- 0.93% )
394 page-faults # 0.004 K/sec ( +- 0.25% )
442,951,129,921 cycles # 4.257 GHz ( +- 0.32% ) (66.66%)
8,710,413,329 stalled-cycles-frontend # 1.97% frontend cycles idle ( +- 0.47% ) (50.06%)
299,656,905,836 stalled-cycles-backend # 67.65% backend cycles idle ( +- 0.39% ) (50.02%)
252,731,168,193 instructions # 0.57 insn per cycle
# 1.19 stalled cycles per insn ( +- 0.20% ) (66.66%)
68,902,851,121 branches # 662.173 M/sec ( +- 0.13% ) (49.94%)
3,100,242,882 branch-misses # 4.50% of all branches ( +- 0.15% ) (49.98%)
104.829 +- 0.325 seconds time elapsed ( +- 0.31% )
This is consistent. An add-by-count hot-add operation adds LMBs
greedily, so LMBs near the start of the drconf range are considered
first. On an otherwise idle LPAR with so many LMBs we would expect to
find the LMBs we need near the start of the drconf range, hence the
smaller speedup.
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916145122.3408129-1-cheloha@linux.ibm.com
A number of userspace utilities depend on making calls to RTAS to retrieve
information and update various things.
The existing API through which we expose RTAS to userspace exposes more
RTAS functionality than we actually need, through the sys_rtas syscall,
which allows root (or anyone with CAP_SYS_ADMIN) to make any RTAS call they
want with arbitrary arguments.
Many RTAS calls take the address of a buffer as an argument, and it's up to
the caller to specify the physical address of the buffer as an argument. We
allocate a buffer (the "RMO buffer") in the Real Memory Area that RTAS can
access, and then expose the physical address and size of this buffer in
/proc/powerpc/rtas/rmo_buffer. Userspace is expected to read this address,
poke at the buffer using /dev/mem, and pass an address in the RMO buffer to
the RTAS call.
However, there's nothing stopping the caller from specifying whatever
address they want in the RTAS call, and it's easy to construct a series of
RTAS calls that can overwrite arbitrary bytes (even without /dev/mem
access).
Additionally, there are some RTAS calls that do potentially dangerous
things and for which there are no legitimate userspace use cases.
In the past, this would not have been a particularly big deal as it was
assumed that root could modify all system state freely, but with Secure
Boot and lockdown we need to care about this.
We can't fundamentally change the ABI at this point, however we can address
this by implementing a filter that checks RTAS calls against a list
of permitted calls and forces the caller to use addresses within the RMO
buffer.
The list is based off the list of calls that are used by the librtas
userspace library, and has been tested with a number of existing userspace
RTAS utilities. For compatibility with any applications we are not aware of
that require other calls, the filter can be turned off at build time.
Cc: stable@vger.kernel.org
Reported-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200820044512.7543-1-ajd@linux.ibm.com
PMU counter support functions enforces event constraints for group of
events to check if all events in a group can be monitored. Incase of
event codes using PMC5 and PMC6 ( 500fa and 600f4 respectively ), not
all constraints are applicable, say the threshold or sample bits. But
current code includes pmc5 and pmc6 in some group constraints (like
IC_DC Qualifier bits) which is actually not applicable and hence
results in those events not getting counted when scheduled along with
group of other events. Patch fixes this by excluding PMC5/6 from
constraints which are not relevant for it.
Fixes: 7ffd948 ("powerpc/perf: factor out power8 pmu functions")
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Reviewed-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1600672204-1610-1-git-send-email-atrajeev@linux.vnet.ibm.com
All threads of a SMT4/SMT8 core can either be part of CPU's coregroup
mask or outside the coregroup. Use this relation to reduce the
number of iterations needed to find all the CPUs that share the same
coregroup
Use a temporary mask to iterate through the CPUs that may share
coregroup mask. Also instead of setting one CPU at a time into
cpu_coregroup_mask, copy the SMT4/SMT8/submask at one shot.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-12-srikar@linux.vnet.ibm.com
Move the logic for updating the coregroup mask of a CPU to its own
function. This will help in reworking the updation of coregroup mask in
subsequent patch.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-11-srikar@linux.vnet.ibm.com
All threads of a SMT4 core can either be part of this CPU's l2-cache
mask or not related to this CPU l2-cache mask. Use this relation to
reduce the number of iterations needed to find all the CPUs that share
the same l2-cache.
Use a temporary mask to iterate through the CPUs that may share l2_cache
mask. Also instead of setting one CPU at a time into cpu_l2_cache_mask,
copy the SMT4/sub mask at one shot.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-10-srikar@linux.vnet.ibm.com
CACHE and COREGROUP domains are now part of default topology. However on
systems that don't support CACHE or COREGROUP, these domains will
eventually be degenerated. The degeneration happens per CPU. Do note the
current fixup_topology() logic ensures that mask of a domain that is not
supported on the current platform is set to the previous domain.
Instead of waiting for the scheduler to degenerated try to consolidate
based on their masks and sd_flags. This is done just before setting
the scheduler topology.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-9-srikar@linux.vnet.ibm.com
Currently on hotplug/hotunplug, CPU iterates through all the CPUs in
its core to find threads in its thread group. However this info is
already captured in cpu_l1_cache_map. Hence reduce iterations and
cleanup add_cpu_to_smallcore_masks function.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-8-srikar@linux.vnet.ibm.com
update_mask_by_l2 is called only once. But it passes cpu_l2_cache_mask
as parameter. Instead of passing cpu_l2_cache_mask, use it directly in
update_mask_by_l2.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-7-srikar@linux.vnet.ibm.com
All the arch specific topology cpumasks are within a node/DIE.
However when setting these per CPU cpumasks, system traverses through
all the online CPUs. This is redundant.
Reduce the traversal to only CPUs that are online in the node to which
the CPU belongs to.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-6-srikar@linux.vnet.ibm.com
While offlining a CPU, system currently iterate through all the CPUs in
the DIE to clear sibling, l2_cache and smallcore maps. However if there
are more cores in a DIE, system can end up spending more time iterating
through CPUs which are completely unrelated.
Optimize this by only iterating through smaller but relevant cpumap.
If shared_cache is set, cpu_l2_cache_map should be relevant else
cpu_sibling_map would be relevant.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-5-srikar@linux.vnet.ibm.com
Now that cpu_core_mask has been removed and topology_core_cpumask has
been updated to use cpu_cpu_mask, we no more need
get_physical_package_id.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-4-srikar@linux.vnet.ibm.com
Anton Blanchard reported that his 4096 vcpu KVM guest took around 30
minutes to boot. He also analyzed it to the time taken to iterate while
setting the cpu_core_mask.
Further analysis shows that cpu_core_mask and cpu_cpu_mask for any CPU
would be equal on Power. However updating cpu_core_mask took forever to
update as its a per cpu cpumask variable. Instead cpu_cpu_mask was a per
NODE /per DIE cpumask that was shared by all the respective CPUs.
Also cpu_cpu_mask is needed from a scheduler perspective. However
cpu_core_map is an exported symbol. Hence stop updating cpu_core_map
and make it point to cpu_cpu_mask.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-3-srikar@linux.vnet.ibm.com
On Power, cpu_core_mask and cpu_cpu_mask refer to the same set of CPUs.
cpu_cpu_mask is needed by scheduler, hence look at deprecating
cpu_core_mask. Before deleting the cpu_core_mask, ensure its only user
is moved to cpu_cpu_mask.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-2-srikar@linux.vnet.ibm.com
Althought AMR is stashed in the checkpoint area, currently we don't save
it to the per thread checkpoint struct after a treclaim and so we don't
restore it either from that struct when we trechkpt. As a consequence when
the transaction is later rolled back the kernel space AMR value when the
trechkpt was done appears in userspace.
That commit saves and restores AMR accordingly on treclaim and trechkpt.
Since AMR value is also used in kernel space in other functions, it also
takes care of stashing kernel live AMR into the stack before treclaim and
before trechkpt, restoring it later, just before returning from tm_reclaim
and __tm_recheckpoint.
Is also fixes two nonrelated comments about CR and MSR.
Signed-off-by: Gustavo Romero <gromero@linux.ibm.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200919150025.9609-1-gromero@linux.ibm.com
When support for EEH on PowerNV was added a lot of pseries specific code
was made "generic" and some of the quirks of pseries EEH came along for the
ride. One of the stranger quirks is eeh_pe containing two types of PE
address: pe->addr and pe->config_addr. There reason for this appears to be
historical baggage rather than any real requirements.
On pseries EEH PEs are manipulated using RTAS calls. Each EEH RTAS call
takes a "PE configuration address" as an input which is used to identify
which EEH PE is being manipulated by the call. When initialising the EEH
state for a device the first thing we need to do is determine the
configuration address for the PE which contains the device so we can enable
EEH on that PE. This process is outlined in PAPR which is the modern
(i.e post-2003) FW specification for pseries. However, EEH support was
first described in the pSeries RISC Platform Architecture (RPA) and
although they are mostly compatible EEH is one of the areas where they are
not.
The major difference is that RPA doesn't actually have the concept of a PE.
On RPA systems the EEH RTAS calls are done on a per-device basis using the
same config_addr that would be passed to the RTAS functions to access PCI
config space (e.g. ibm,read-pci-config). The config_addr is not identical
since the function and config register offsets of the config_addr must be
set to zero. EEH operations being done on a per-device basis doesn't make a
whole lot of sense when you consider how EEH was implemented on legacy PCI
systems.
For legacy PCI(-X) systems EEH was implemented using special PCI-PCI
bridges which contained logic to detect errors and freeze the secondary
bus when one occurred. This means that the EEH enabled state is shared
among all devices behind that EEH bridge. As a result there's no way to
implement the per-device control required for the semantics specified by
RPA. It can be made to work if we assume that a separate EEH bridge exists
for each EEH capable PCI slot and there are no bridges behind those slots.
However, RPA also specifies the ibm,configure-bridge RTAS call for
re-initalising bridges behind EEH capable slots after they are reset due
to an EEH event so that is probably not a valid assumption. This
incoherence was fixed in later PAPR, which succeeded RPA. Unfortunately,
since Linux EEH support seems to have been implemented based on the RPA
spec some of the legacy assumptions were carried over (probably for POWER4
compatibility).
The fix made in PAPR was the introduction of the "PE" concept and
redefining the EEH RTAS calls (set-eeh-option, reset-slot, etc) to operate
on a per-PE basis so all devices behind an EEH bride would share the same
EEH state. The "config_addr" argument to the EEH RTAS calls became the
"PE_config_addr" and the OS was required to use the
ibm,get-config-addr-info RTAS call to find the correct PE address for the
device. When support for the new interfaces was added to Linux it was
implemented using something like:
At probe time:
pdn->eeh_config_addr = rtas_config_addr(pdn);
pdn->eeh_pe_config_addr = rtas_get_config_addr_info(pdn);
When performing an RTAS call:
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
rtas_call(..., config_addr, ...);
In other words, if the ibm,get-config-addr-info RTAS call is implemented
and returned a valid result we'd use that as the argument to the EEH
RTAS calls. If not, Linux would fall back to using the device's
config_addr. Over time these addresses have moved around going from pci_dn
to eeh_dev and finally into eeh_pe. Today the users look like this:
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
rtas_call(..., config_addr, ...);
However, considering the EEH core always operates on a per-PE basis and
even on pseries the only per-device operation is the initial call to
ibm,set-eeh-option I'm not sure if any of this actually works on an RPA
system today. It doesn't make much sense to have the fallback address in
a generic structure either since the bulk of the code which reference it
is in pseries anyway.
The EEH core makes a token effort to support looking up a PE using the
config_addr by having two arguments to eeh_pe_get(). However, a survey of
all the callers to eeh_pe_get() shows that all bar one have the config_addr
argument hard-coded to zero.The only caller that doesn't is in
eeh_pe_tree_insert() which has:
if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr)
return -EINVAL;
pe = eeh_pe_get(hose, edev->pe_config_addr, edev->bdfn);
The third argument (config_addr) is only used if the second (pe->addr)
argument is invalid. The preceding check ensures that the call to
eeh_pe_get() will never happen if edev->pe_config_addr is invalid so there
is no situation where eeh_pe_get() will search for a PE based on the 3rd
argument. The check also means that we'll never insert a PE into the tree
where pe_config_addr is zero since EEH_VALID_PE_ZERO is never set on
pseries. All the users of the fallback address on pseries never actually
use the fallback and all the only caller that supplies something for the
config_addr argument to eeh_pe_get() never use it either. It's all dead
code.
This patch removes the fallback address from eeh_pe since nothing uses it.
Specificly, we do this by:
1) Removing pe->config_addr
2) Removing the EEH_VALID_PE_ZERO flag
3) Removing the fallback address argument to eeh_pe_get().
4) Removing all the checks for pe->addr being zero in the pseries EEH code.
This leaves us with PE's only being identified by what's in their pe->addr
field and the EEH core relying on the platform to ensure that eeh_dev's are
only inserted into the EEH tree if they're actually inside a PE.
No functional changes, I hope.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-9-oohall@gmail.com
There's no real reason why zero can't be a valid PE configuration address.
Under qemu each sPAPR PHB (i.e. EEH supporting) has the passed-though
devices on bus zero, so the PE address of bus <dddd>:00 should be zero.
However, all previous versions of Linux will reject that, so Qemu at least
goes out of it's way to avoid it. The Qemu implementation of
ibm,get-config-addr-info2 RTAS has the following comment:
> /*
> * We always have PE address of form "00BB0001". "BB"
> * represents the bus number of PE's primary bus.
> */
So qemu puts a one into the register portion of the PE's config_addr to
avoid it being zero. The whole is pretty silly considering that RTAS will
return a negative error code if it can't map the device's config_addr to a
PE.
This patch fixes Linux to treat zero as a valid PE address. This shouldn't
have any real effects due to the Qemu hack mentioned above. And the fact
that Linux EEH has worked historically on PowerVM means they never pass
through devices on bus zero so we would never see the problem there either.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-8-oohall@gmail.com