The functions used during NUMA initialization - *_numa_init() and
*_scan_nodes() - have different arguments and return values. Unify
them such that they all take no argument and return 0 on success and
-errno on failure. This is in preparation for further NUMA init
cleanups.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
initmem_init() extensively accesses and modifies global data
structures and the parameters aren't even followed depending on which
path is being used. Drop @start/last_pfn and let it deal with
@max_pfn directly. This is in preparation for further NUMA init
cleanups.
- v2: x86-32 initmem_init() weren't updated breaking 32bit builds.
Fixed. Found by Yinghai.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Hotplug node handling in acpi_numa_memory_affinity_init() was
unnecessarily complicated with storing the original nodes[] entry and
restoring it afterwards. Simplify it by not modifying the nodes[]
entry for hotplug nodes from the beginning.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Dummy node initialization in initmem_init() didn't initialize apicid
to node mapping and set cpu to node mapping directly by caling
numa_set_node(), which is different from non-dummy init paths.
Update it such that they behave similarly. Initialize apicid to node
mapping and call numa_init_array(). The actual cpu to node mapping is
handled by init_cpu_to_node() later.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Commit d518573de6 ("x86, amd: Normalize compute unit IDs on
multi-node processors") introduced compute unit normalization
but causes a compiler warning:
arch/x86/kernel/cpu/amd.c: In function 'amd_detect_cmp':
arch/x86/kernel/cpu/amd.c:268: warning: 'cores_per_cu' may be used uninitialized in this function
arch/x86/kernel/cpu/amd.c:268: note: 'cores_per_cu' was declared here
The compiler is right - initialize it with a proper value.
Also, fix up a comment while at it.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20110214171451.GB10076@kryptos.osrc.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
CONFIG_DEBUG_PER_CPU_MAPS may return NUMA_NO_NODE when an
early_cpu_to_node() mapping hasn't been initialized. In such a
case, it emits a warning and continues without an issue but
callers may try to use the return value to index into an array.
We can catch those errors and fail silently since a warning has
already been emitted. No current user of numa_add_cpu()
requires this error checking to avoid a crash, but it's better
to be proactive in case a future user happens to have a bug and
a user tries to diagnose it with CONFIG_DEBUG_PER_CPU_MAPS.
Reported-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
LKML-Reference: <alpine.DEB.2.00.1102071407250.7812@chino.kir.corp.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Emit warning when "mem=nopentium" is specified on any arch other
than x86_32 (the only that arch supports it).
Signed-off-by: Kamal Mostafa <kamal@canonical.com>
BugLink: http://bugs.launchpad.net/bugs/553464
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
LKML-Reference: <1296783486-23033-2-git-send-email-kamal@canonical.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: <stable@kernel.org>
Avoid removing all of memory and panicing when "mem={invalid}"
is specified, e.g. mem=blahblah, mem=0, or mem=nopentium (on
platforms other than x86_32).
Signed-off-by: Kamal Mostafa <kamal@canonical.com>
BugLink: http://bugs.launchpad.net/bugs/553464
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: <stable@kernel.org> # .3x: as far back as it applies
LKML-Reference: <1296783486-23033-1-git-send-email-kamal@canonical.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This one isn't related to previous patch. If online cpus are
below NUM_INVALIDATE_TLB_VECTORS, we don't need the lock. The
comments in the code declares we don't need the check, but a hot
lock still needs an atomic operation and expensive, so add the
check here.
Uses nr_cpu_ids here as suggested by Eric Dumazet.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
LKML-Reference: <1295232730.1949.710.camel@sli10-conroe>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make the maxium TLB invalidate vectors depend on NR_CPUS linearly,
with a maximum of 32 vectors.
We currently only have 8 vectors for TLB invalidation and that is clearly
inadequate. If we have a lot of CPUs, the CPUs need share the 8 vectors and
tlbstate_lock is used to protect them. flush_tlb_page() is
heavily used in page reclaim, which will cause a lot of lock
contention for tlbstate_lock.
Andi Kleen suggested increasing the vectors number to 32, which should be
good for current typical systems to reduce the tlbstate_lock contention.
My test system has 4 sockets and 64G memory, and 64 CPUs. My
workload creates 64 processes. Each process mmap reads a big
empty sparse file. The total size of the files are 2*total_mem,
so this will cause a lot of page reclaim.
Below is the result I get from perf call-graph profiling:
without the patch:
------------------
24.25% usemem [kernel] [k] _raw_spin_lock
|
--- _raw_spin_lock
|
|--42.15%-- native_flush_tlb_others
with the patch:
------------------
14.96% usemem [kernel] [k] _raw_spin_lock
|
--- _raw_spin_lock
|--13.89%-- native_flush_tlb_others
So this heavily reduces the tlbstate_lock contention.
Suggested-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1295232727.1949.709.camel@sli10-conroe>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add up to 32 invalidate_interrupt handlers. How many handlers are
added depends on NUM_INVALIDATE_TLB_VECTORS. So if
NUM_INVALIDATE_TLB_VECTORS is smaller than 32, we reduce code
size.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
LKML-Reference: <1295232725.1949.708.camel@sli10-conroe>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cleanup the vector usage and make them continuous if possible.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
LKML-Reference: <1295232722.1949.707.camel@sli10-conroe>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts:
arch/x86/mm/numa_64.c
Merge reason: fix the conflict, update to latest -rc and pick up this
dependent fix from Yinghai:
e6d2e2b2b1: memblock: don't adjust size in memblock_find_base()
Signed-off-by: Ingo Molnar <mingo@elte.hu>
amd_nb_misc_ids[] can live in .rodata, and enable_pci_io_ecs()
can be moved into .cpuinit.text.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Andreas Herrmann <Andreas.Herrmann3@amd.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <4D525DDD0200007800030F07@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The gs_index loading code uses the swapgs instruction to
switch to the user gs_base temporarily. This is unsave in an
lightweight exit-path in KVM on AMD because the
KERNEL_GS_BASE MSR is switches lazily. An NMI happening in
the critical path of load_gs_index may use the wrong GS_BASE
value then leading to unpredictable behavior, e.g. a
triple-fault.
This patch fixes the issue by making sure that load_gs_index
is called only with a valid KERNEL_GS_BASE value loaded in
KVM.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
L3 Cache Partitioning allows selecting which of the 4 L3 subcaches can be used
for evictions by the L2 cache of each compute unit. By writing a 4-bit
hexadecimal mask into the the sysfs file
/sys/devices/system/cpu/cpuX/cache/index3/subcaches, the user can set the
enabled subcaches for a CPU.
The settings are directly read from and written to the hardware, so there is no
way to have contradicting settings for two CPUs belonging to the same compute
unit. Writing will always overwrite any previous setting for a compute unit.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: <Andreas.Herrmann3@amd.com>
LKML-Reference: <1297098639-431383-1-git-send-email-hans.rosenfeld@amd.com>
[ -v3: minor style fixes ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We reserve lowmem for the things that need it, like the ACPI
wakeup code, way early to guarantee availability. This happens
before we set up the proper pagetables, so set_memory_x() has no
effect.
Until we have a better solution, use an initcall to mark the
wakeup code executable.
Originally-by: Matthieu Castet <castet.matthieu@free.fr>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Matthias Hopf <mhopf@suse.de>
Cc: rjw@sisk.pl
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <4D4F8019.2090104@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-32: Make sure the stack is set up before we use it
x86, mtrr: Avoid MTRR reprogramming on BP during boot on UP platforms
x86, nx: Don't force pages RW when setting NX bits
Since checkin ebba638ae7 we call
verify_cpu even in 32-bit mode. Unfortunately, calling a function
means using the stack, and the stack pointer was not initialized in
the 32-bit setup code! This code initializes the stack pointer, and
simplifies the interface slightly since it is easier to rely on just a
pointer value rather than a descriptor; we need to have different
values for the segment register anyway.
This retains start_stack as a virtual address, even though a physical
address would be more convenient for 32 bits; the 64-bit code wants
the other way around...
Reported-by: Matthieu Castet <castet.matthieu@free.fr>
LKML-Reference: <4D41E86D.8060205@free.fr>
Tested-by: Kees Cook <kees.cook@canonical.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Clearing the cpu in prev's mm_cpumask early will avoid the flush tlb
IPI's while the cr3 is still pointing to the prev mm. And this window
can lead to the possibility of bogus TLB fills resulting in strange
failures. One such problematic scenario is mentioned below.
T1. CPU-1 is context switching from mm1 to mm2 context and got a NMI
etc between the point of clearing the cpu from the mm_cpumask(mm1)
and before reloading the cr3 with the new mm2.
T2. CPU-2 is tearing down a specific vma for mm1 and will proceed with
flushing the TLB for mm1. It doesn't send the flush TLB to CPU-1
as it doesn't see that cpu listed in the mm_cpumask(mm1).
T3. After the TLB flush is complete, CPU-2 goes ahead and frees the
page-table pages associated with the removed vma mapping.
T4. CPU-2 now allocates those freed page-table pages for something
else.
T5. As the CR3 and TLB caches for mm1 is still active on CPU-1, CPU-1
can potentially speculate and walk through the page-table caches
and can insert new TLB entries. As the page-table pages are
already freed and being used on CPU-2, this page walk can
potentially insert a bogus global TLB entry depending on the
(random) contents of the page that is being used on CPU-2.
T6. This bogus TLB entry being global will be active across future CR3
changes and can result in weird memory corruption etc.
To avoid this issue, for the prev mm that is handing over the cpu to
another mm, clear the cpu from the mm_cpumask(prev) after the cr3 is
changed.
Marking it for -stable, though we haven't seen any reported failure that
can be attributed to this.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: stable@kernel.org [v2.6.32+]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Markus Kohn ran into a hard hang regression on an acer aspire
1310, when acpi is enabled. git bisect showed the following
commit as the bad one that introduced the boot regression.
commit d0af9eed5a
Author: Suresh Siddha <suresh.b.siddha@intel.com>
Date: Wed Aug 19 18:05:36 2009 -0700
x86, pat/mtrr: Rendezvous all the cpus for MTRR/PAT init
Because of the UP configuration of that platform,
native_smp_prepare_cpus() bailed out (in smp_sanity_check())
before doing the set_mtrr_aps_delayed_init()
Further down the boot path, native_smp_cpus_done() will call the
delayed MTRR initialization for the AP's (mtrr_aps_init()) with
mtrr_aps_delayed_init not set. This resulted in the boot
processor reprogramming its MTRR's to the values seen during the
start of the OS boot. While this is not needed ideally, this
shouldn't have caused any side-effects. This is because the
reprogramming of MTRR's (set_mtrr_state() that gets called via
set_mtrr()) will check if the live register contents are
different from what is being asked to write and will do the actual
write only if they are different.
BP's mtrr state is read during the start of the OS boot and
typically nothing would have changed when we ask to reprogram it
on BP again because of the above scenario on an UP platform. So
on a normal UP platform no reprogramming of BP MTRR MSR's
happens and all is well.
However, on this platform, bios seems to be modifying the fixed
mtrr range registers between the start of OS boot and when we
double check the live registers for reprogramming BP MTRR
registers. And as the live registers are modified, we end up
reprogramming the MTRR's to the state seen during the start of
the OS boot.
During ACPI initialization, something in the bios (probably smi
handler?) don't like this fact and results in a hard lockup.
We didn't see this boot hang issue on this platform before the
commit d0af9eed5a, because only
the AP's (if any) will program its MTRR's to the value that BP
had at the start of the OS boot.
Fix this issue by checking mtrr_aps_delayed_init before
continuing further in the mtrr_aps_init(). Now, only AP's (if
any) will program its MTRR's to the BP values during boot.
Addresses https://bugzilla.novell.com/show_bug.cgi?id=623393
[ By the way, this behavior of the bios modifying MTRR's after the start
of the OS boot is not common and the kernel is not prepared to
handle this situation well. Irrespective of this issue, during
suspend/resume, linux kernel will try to reprogram the BP's MTRR values
to the values seen during the start of the OS boot. So suspend/resume might
be already broken on this platform for all linux kernel versions. ]
Reported-and-bisected-by: Markus Kohn <jabber@gmx.org>
Tested-by: Markus Kohn <jabber@gmx.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Thomas Renninger <trenn@novell.com>
Cc: Rafael Wysocki <rjw@novell.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: stable@kernel.org # [v2.6.32+]
LKML-Reference: <1296694975.4418.402.camel@sbsiddha-MOBL3.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Xen want page table pages read only.
But the initial page table (from head_*.S) live in .data or .bss.
That was broken by 64edc8ed5f. There is
absolutely no reason to force these pages RW after they have already
been marked RO.
Signed-off-by: Matthieu CASTET <castet.matthieu@free.fr>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
numa_cpu_node() prototype in numa_32.h has wrongly named
parameter @apicid when it actually takes the CPU number.
Change it to @cpu.
Reported-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <20110131155905.GM7459@htj.dyndns.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 4c321ff8 (x86: Replace cpu_2_logical_apicid[] with early
percpu variable) and following changes introduced and used
x86_cpu_to_logical_apicid percpu variable. It was declared and
defined inside CONFIG_SMP && CONFIG_X86_32 but if
CONFIG_X86_UP_APIC is set UP configuration makes use of it and
build fails.
Fix it by declaring and defining it inside CONFIG_X86_LOCAL_APIC
&& CONFIG_X86_32.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Ingo Molnar <mingo@elte.hu>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <20110128162248.GA25746@htj.dyndns.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that everything else is unified, NUMA initialization can be
unified too.
* numa_init_array() and init_cpu_to_node() are moved from
numa_64 to numa.
* numa_32::initmem_init() is updated to call numa_init_array()
and setup_arch() to call init_cpu_to_node() on 32bit too.
* x86_cpu_to_node_map is now initialized to NUMA_NO_NODE on
32bit too. This is safe now as numa_init_array() will initialize
it early during boot.
This makes NUMA mapping fully initialized before
setup_per_cpu_areas() on 32bit too and thus makes the first
percpu chunk which contains all the static variables and some of
dynamic area allocated with NUMA affinity correctly considered.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-17-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
x86_32 has been managing node_to_cpumask_map explicitly from
map_cpu_to_node() and friends in a rather ugly way. With
previous changes, it's now possible to share the code with
64bit.
* When CONFIG_NUMA_EMU is disabled, numa_add/remove_cpu() are
implemented in numa.c and shared by 32 and 64bit. CONFIG_NUMA_EMU
versions still live in numa_64.c.
NUMA_EMU's dependency on 64bit is planned to be removed and the
above should go away together.
* identify_cpu() now calls numa_add_cpu() for 32bit too. This
makes the explicit mask management from map_cpu_to_node() unnecessary.
* The whole x86_32 specific map_cpu_to_node() chunk is no longer
necessary. Dropped.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-16-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
Unlike 64bit, 32bit has been using its own cpu_to_node_map[] for
CPU -> NUMA node mapping. Replace it with early_percpu variable
x86_cpu_to_node_map and share the mapping code with 64bit.
* USE_PERCPU_NUMA_NODE_ID is now enabled for 32bit too.
* x86_cpu_to_node_map and numa_set/clear_node() are moved from
numa_64 to numa. For now, on 32bit, x86_cpu_to_node_map is initialized
with 0 instead of NUMA_NO_NODE. This is to avoid introducing unexpected
behavior change and will be updated once init path is unified.
* srat_detect_node() is now enabled for x86_32 too. It calls
numa_set_node() and initializes the mapping making explicit
cpu_to_node_map[] updates from map/unmap_cpu_to_node() unnecessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-15-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
The mapping between cpu/apicid and node is done via
apicid_to_node[] on 64bit and apicid_2_node[] +
apic->x86_32_numa_cpu_node() on 32bit. This difference makes it
difficult to further unify 32 and 64bit NUMA handling.
This patch unifies it by replacing both apicid_to_node[] and
apicid_2_node[] with __apicid_to_node[] array, which is accessed
by two accessors - set_apicid_to_node() and numa_cpu_node(). On
64bit, numa_cpu_node() always consults __apicid_to_node[]
directly while 32bit goes through apic->numa_cpu_node() method
to allow apic implementations to override it.
srat_detect_node() for amd cpus contains workaround for broken
NUMA configuration which assumes relationship between APIC ID,
HT node ID and NUMA topology. Leave it to access
__apicid_to_node[] directly as mapping through CPU might result
in undesirable behavior change. The comment is reformatted and
updated to note the ugliness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-14-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
apic->apicid_to_node() is 32bit specific apic operation which
determines NUMA node for a CPU. Depending on the APIC
implementation, it can be easier to determine NUMA node from
either physical or logical apicid. Currently,
->apicid_to_node() takes @logical_apicid and calls
hard_smp_processor_id() if the physical apicid is needed.
This prevents NUMA mapping from being queried from a different
CPU, which in turn makes it impossible to initialize NUMA
mapping before SMP bringup.
This patch replaces apic->apicid_to_node() with
->x86_32_numa_cpu_node() which takes @cpu, from which both
logical and physical apicids can easily be determined. While at
it, drop duplicate implementations from bigsmp_32 and summit_32,
and use the default one.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-13-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On x86_32, the mapping between cpu and logical apic ID differs
depending on the specific apic implementation in use. The
mapping is initialized while bringing up CPUs; however, this
makes early inits ignore memory topology.
Add a x86_32 specific apic->x86_32_early_logical_apicid() which
is called early during boot to query the mapping. The mapping
is later verified against the result of init_apic_ldr(). The
method is allowed to return BAD_APICID if it can't be determined
early.
noop variant which always returns BAD_APICID is implemented and
added to all x86_32 apic implementations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-8-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
After the previous patch, apic->cpu_to_logical_apicid() is no
longer used. Kill it.
For apic types with custom cpu_to_logical_apicid() which is also
used for other purposes, remove the function and modify its
users to do the mapping directly.
#ifdef's on CONFIG_SMP in es7000_32 and summit_32 are ignored
during conversion as they are not used for UP kernels.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-7-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, cpu -> logical apic id translation is done by
apic->cpu_to_logical_apicid() callback which may or may not use
x86_cpu_to_logical_apicid. This is unnecessary as it should
always equal logical_smp_processor_id() which is known early
during CPU bring up.
Initialize x86_cpu_to_logical_apicid after apic->init_apic_ldr()
in setup_local_APIC() and always use x86_cpu_to_logical_apicid
for cpu -> logical apic id mapping.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-6-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Unlike x86_64, on x86_32, the mapping from cpu to logical apicid
may vary depending on apic in use. cpu_2_logical_apicid[] array
is used for this mapping. Replace it with early percpu variable
x86_cpu_to_logical_apicid to make it better aligned with other
mappings.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-5-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Both functions are used only in 32bit. Put them inside
CONFIG_X86_32. This is to prepare for logical apicid handling
update.
- Cyrill Gorcunov spotted that I forgot to move declarations in
ipi.h under CONFIG_X86_32. Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: brgerst@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-4-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'stable/bug-fixes-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/setup: Route halt operations to safe_halt pvop.
xen/e820: Guard against E820_RAM not having page-aligned size or start.
xen/p2m: Mark INVALID_P2M_ENTRY the mfn_list past max_pfn.
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
percpu, x86: Fix percpu_xchg_op()
x86: Remove left over system_64.h
x86-64: Don't use pointer to out-of-scope variable in dump_trace()
This patch fixes some issues with raw event validation on
Pentium 4 (Netburst) based processors.
As I was testing libpfm4 Netburst support, I ran into two
problems in the p4_validate_raw_event() function:
- the shared field must be checked ONLY when HT is on
- the binding to ESCR register was missing
The second item was causing raw events to not be encoded
correctly compared to generic PMU events.
With this patch, I can now pass Netburst events to libpfm4
examples and get meaningful results:
$ task -e global_power_events🏃u noploop 1
noploop for 1 seconds
3,206,304,898 global_power_events:running
Signed-off-by: Stephane Eranian <eranian@google.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: peterz@infradead.org
Cc: paulus@samba.org
Cc: davem@davemloft.net
Cc: fweisbec@gmail.com
Cc: perfmon2-devel@lists.sf.net
Cc: eranian@gmail.com
Cc: robert.richter@amd.com
Cc: acme@redhat.com
Cc: gorcunov@gmail.com
Cc: ming.m.lin@intel.com
LKML-Reference: <4d3efb2f.1252d80a.1a80.ffffc83f@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With this patch, the cpuidle driver does not load and
does not issue the mwait operations. Instead the hypervisor
is doing them (b/c we call the safe_halt pvops call).
This fixes quite a lot of bootup issues wherein the user had
to force interrupts for the continuation of the bootup.
Details are discussed in:
http://lists.xensource.com/archives/html/xen-devel/2011-01/msg00535.html
[v2: Wrote the commit description]
Reported-by: Daniel De Graaf <dgdegra@tycho.nsa.gov>
Tested-by: Daniel De Graaf <dgdegra@tycho.nsa.gov>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>