Commit Graph

22958 Commits

Author SHA1 Message Date
Leo Yan
91d933c221 perf c2c: Add metrics "RMT Load Hit"
The metrics "LLC Ld Miss" and "Load Dram" overlap with each other for
accouting items:

  "LLC Ld Miss" = "lcl_dram" + "rmt_dram" + "rmt_hit" + "rmt_hitm"
  "Load Dram"   = "lcl_dram" + "rmt_dram"

Furthermore, the metrics "LLC Ld Miss" is not directive to show
statistics due to it contains summary value and cannot give out
breakdown details.

For this reason, add a new metrics "RMT Load Hit" which is used to
present the remote cache hit; it contains two items:

  "RMT Load Hit" = remote hit ("rmt_hit") + remote hitm ("rmt_hitm")

As result, the metrics "LLC Ld Miss" is perfectly divided into two
metrics "RMT Load Hit" and "Load Dram".  It's not necessary to keep
metrics "LLC Ld Miss", so remove it.

Before:

  #        ----------- Cacheline ----------      Tot  ------- Load Hitm -------    Total    Total    Total  ---- Stores ----  ----- Core Load Hit -----  - LLC Load Hit --      LLC  --- Load Dram ----
  # Index             Address  Node  PA cnt     Hitm    Total  LclHitm  RmtHitm  records    Loads   Stores    L1Hit   L1Miss       FB       L1       L2    LclHit  LclHitm  Ld Miss       Lcl       Rmt
  # .....  ..................  ....  ......  .......  .......  .......  .......  .......  .......  .......  .......  .......  .......  .......  .......  ........  .......  .......  ........  ........
  #
        0      0x55f07d580100     0    1499   85.89%      481      481        0     7243     3879     3364     2599      765      548     2615       66       169      481        0         0         0
        1      0x55f07d580080     0       1   13.93%       78       78        0      664      664        0        0        0      187      361       27        11       78        0         0         0
        2      0x55f07d5800c0     0       1    0.18%        1        1        0      405      405        0        0        0      131        0       10       263        1        0         0         0

After:

  #        ----------- Cacheline ----------      Tot  ------- Load Hitm -------    Total    Total    Total  ---- Stores ----  ----- Core Load Hit -----  - LLC Load Hit --  - RMT Load Hit --  --- Load Dram ----
  # Index             Address  Node  PA cnt     Hitm    Total  LclHitm  RmtHitm  records    Loads   Stores    L1Hit   L1Miss       FB       L1       L2    LclHit  LclHitm    RmtHit  RmtHitm       Lcl       Rmt
  # .....  ..................  ....  ......  .......  .......  .......  .......  .......  .......  .......  .......  .......  .......  .......  .......  ........  .......  ........  .......  ........  ........
  #
        0      0x55f07d580100     0    1499   85.89%      481      481        0     7243     3879     3364     2599      765      548     2615       66       169      481         0        0         0         0
        1      0x55f07d580080     0       1   13.93%       78       78        0      664      664        0        0        0      187      361       27        11       78         0        0         0         0
        2      0x55f07d5800c0     0       1    0.18%        1        1        0      405      405        0        0        0      131        0       10       263        1         0        0         0         0

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-9-leo.yan@linaro.org
2020-10-15 09:34:51 -03:00
Leo Yan
77c158698c perf c2c: Correct LLC load hit metrics
"rmt_hit" is accounted into two metrics: one is accounted into the
metrics "LLC Ld Miss" (see the function llc_miss() for calculation
"llcmiss"); and it's accounted into metrics "LLC Load Hit".  Thus,
for the literal meaning, it is contradictory that "rmt_hit" is
accounted for both "LLC Ld Miss" (LLC miss) and "LLC Load Hit"
(LLC hit).

Thus this is easily to introduce confusion: "LLC Load Hit" gives
impression that all items belong to it are LLC hit; in fact "rmt_hit"
is LLC miss and remote cache hit.

To give out clear semantics for metric "LLC Load Hit", "rmt_hit" is
moved out from it and changes "LLC Load Hit" to contain two items:

  LLC Load Hit = LLC's hit ("ld_llchit") + LLC's hitm ("lcl_hitm")

For output alignment, adjusts the header for "LLC Load Hit".

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-8-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15 09:34:51 -03:00
Leo Yan
ed626a3e52 perf c2c: Change header for LLC local hit
Replace the header string "Lcl" with "LclHit", which is more explicit
to express the event type is LLC local hit.

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-7-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15 09:34:49 -03:00
Leo Yan
0fbe2fe965 perf c2c: Use more explicit headers for HITM
Local and remote HITM use the headers 'Lcl' and 'Rmt' respectively,
suppose if we want to extend the tool to display these two dimensions
under any one metrics, users cannot understand the semantics if only
based on the header string 'Lcl' or 'Rmt'.

To explicit express the meaning for HITM items, this patch changes the
headers string as "LclHitm" and "RmtHitm", the strings are more readable
and this allows to extend metrics for using HITM items.

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-6-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15 09:34:47 -03:00
Leo Yan
fdd32d7e8e perf c2c: Change header from "LLC Load Hitm" to "Load Hitm"
The metrics "LLC Load Hitm" contains two items: one is "local Hitm" and
another is "remote Hitm".

"local Hitm" means: L3 HIT and was serviced by another processor core
with a cross core snoop where modified copies were found; it's no doubt
that "local Hitm" belongs to LLC access.

But for "remote Hitm", based on the code in util/mem-events, it's the
event for remote cache HIT and was serviced by another processor core
with modified copies.  Thus the remote Hitm is a remote cache's hit and
actually it's LLC load miss.

Now the display format gives users the impression that "local Hitm" and
"remote Hitm" both belong to the LLC load, but this is not the fact as
described.

This patch changes the header from "LLC Load Hitm" to "Load Hitm", this
can avoid the give the wrong impression that all Hitm belong to LLC.

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-5-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15 09:34:45 -03:00
Leo Yan
6d662d730d perf c2c: Organize metrics based on memory hierarchy
The metrics are not organized based on memory hierarchy, e.g. the tool
doesn't organize the metrics order based on memory nodes from the close
node (e.g. L1/L2 cache) to far node (e.g. L3 cache and DRAM).

To output metrics with more friendly form, this patch refines the
metrics order based on memory hierarchy:

  "Core Load Hit" => "LLC Load Hit" => "LLC Ld Miss" => "Load Dram"

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-4-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15 09:34:41 -03:00
Leo Yan
4f28641bde perf c2c: Display "Total Stores" as a standalone metrics
The total stores is displayed under the metrics "Store Reference", to
output the same format with total records and all loads, extract the
total stores number as a standalone metrics "Total Stores".

After this patch, the tool shows the summary numbers ("Total records",
"Total loads", "Total Stores") in the unified form.

Before:

  #        ----------- Cacheline ----------      Tot  ----- LLC Load Hitm -----    Total    Total  ---- Store Reference ----  --- Load Dram ----      LLC  ----- Core Load Hit -----  -- LLC Load Hit --
  # Index             Address  Node  PA cnt     Hitm    Total      Lcl      Rmt  records    Loads    Total    L1Hit   L1Miss       Lcl       Rmt  Ld Miss       FB       L1       L2       Llc       Rmt
  # .....  ..................  ....  ......  .......  .......  .......  .......  .......  .......  .......  .......  .......  ........  ........  .......  .......  .......  .......  ........  ........
  #
        0      0x55f07d580100     0    1499   85.89%      481      481        0     7243     3879     3364     2599      765         0         0        0      548     2615       66       169         0
        1      0x55f07d580080     0       1   13.93%       78       78        0      664      664        0        0        0         0         0        0      187      361       27        11         0
        2      0x55f07d5800c0     0       1    0.18%        1        1        0      405      405        0        0        0         0         0        0      131        0       10       263         0

After:

  #        ----------- Cacheline ----------      Tot  ----- LLC Load Hitm -----    Total    Total    Total  ---- Stores ----  --- Load Dram ----      LLC  ----- Core Load Hit -----  -- LLC Load Hit --
  # Index             Address  Node  PA cnt     Hitm    Total      Lcl      Rmt  records    Loads   Stores    L1Hit   L1Miss       Lcl       Rmt  Ld Miss       FB       L1       L2       Llc       Rmt
  # .....  ..................  ....  ......  .......  .......  .......  .......  .......  .......  .......  .......  .......  ........  ........  .......  .......  .......  .......  ........  ........
  #
        0      0x55f07d580100     0    1499   85.89%      481      481        0     7243     3879     3364     2599      765         0         0        0      548     2615       66       169         0
        1      0x55f07d580080     0       1   13.93%       78       78        0      664      664        0        0        0         0         0        0      187      361       27        11         0
        2      0x55f07d5800c0     0       1    0.18%        1        1        0      405      405        0        0        0         0         0        0      131        0       10       263         0

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-3-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15 09:34:36 -03:00
Leo Yan
b596e979c8 perf c2c: Display the total numbers continuously
To view the statistics with "breakdown" mode, it's good to show the
summary numbers for the total records, all stores and all loads, then
the sequential conlumns can be used to break into more detailed items.

To achieve this purpose, this patch displays the summary numbers for
records/stores/loads continuously and places them before breakdown
items, this can allow uses to easily read the summarized statistics.

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-2-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15 09:34:33 -03:00
Ian Rogers
f92993851f perf bench: Use condition variables in numa.
The existing approach to synchronization between threads in the numa
benchmark is unbalanced mutexes.

This synchronization causes thread sanitizer to warn of locks being
taken twice on a thread without an unlock, as well as unlocks with no
corresponding locks.

This change replaces the synchronization with more regular condition
variables.

While this fixes one class of thread sanitizer warnings, there still
remain warnings of data races due to threads reading and writing shared
memory without any atomics.

Committer testing:

  Basic run on a non-NUMA machine.

  # perf bench numa

          # List of available benchmarks for collection 'numa':

             mem: Benchmark for NUMA workloads
             all: Run all NUMA benchmarks

  # perf bench numa all
  # Running numa/mem benchmark...

   # Running main, "perf bench numa numa-mem"
   #
   # Running test on: Linux five 5.8.12-200.fc32.x86_64 #1 SMP Mon Sep 28 12:17:31 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
   #

   # Running RAM-bw-local, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp  1 --no-data_rand_walk"
           20.076 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.073 secs average thread-runtime
            0.190 % difference between max/avg runtime
          241.828 GB data processed, per thread
          241.828 GB data processed, total
            0.083 nsecs/byte/thread runtime
           12.045 GB/sec/thread speed
           12.045 GB/sec total speed

   # Running RAM-bw-local-NOTHP, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp  1 --no-data_rand_walk --thp -1"
           20.045 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.014 secs average thread-runtime
            0.111 % difference between max/avg runtime
          234.304 GB data processed, per thread
          234.304 GB data processed, total
            0.086 nsecs/byte/thread runtime
           11.689 GB/sec/thread speed
           11.689 GB/sec total speed

   # Running RAM-bw-remote, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 1 -s 20 -zZq --thp  1 --no-data_rand_walk"

  Test not applicable, system has only 1 nodes.

   # Running RAM-bw-local-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 0x2 -s 20 -zZq --thp  1 --no-data_rand_walk"
           20.138 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.121 secs average thread-runtime
            0.342 % difference between max/avg runtime
          135.961 GB data processed, per thread
          271.922 GB data processed, total
            0.148 nsecs/byte/thread runtime
            6.752 GB/sec/thread speed
           13.503 GB/sec total speed

   # Running RAM-bw-remote-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 1x2 -s 20 -zZq --thp  1 --no-data_rand_walk"

  Test not applicable, system has only 1 nodes.

   # Running RAM-bw-cross, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,8 -M 1,0 -s 20 -zZq --thp  1 --no-data_rand_walk"

  Test not applicable, system has only 1 nodes.

   # Running  1x3-convergence, "perf bench numa mem -p 1 -t 3 -P 512 -s 100 -zZ0qcm --thp  1"
            0.747 secs latency to NUMA-converge
            0.747 secs slowest (max) thread-runtime
            0.000 secs fastest (min) thread-runtime
            0.714 secs average thread-runtime
           50.000 % difference between max/avg runtime
            3.228 GB data processed, per thread
            9.683 GB data processed, total
            0.231 nsecs/byte/thread runtime
            4.321 GB/sec/thread speed
           12.964 GB/sec total speed

   # Running  1x4-convergence, "perf bench numa mem -p 1 -t 4 -P 512 -s 100 -zZ0qcm --thp  1"
            1.127 secs latency to NUMA-converge
            1.127 secs slowest (max) thread-runtime
            1.000 secs fastest (min) thread-runtime
            1.089 secs average thread-runtime
            5.624 % difference between max/avg runtime
            3.765 GB data processed, per thread
           15.062 GB data processed, total
            0.299 nsecs/byte/thread runtime
            3.342 GB/sec/thread speed
           13.368 GB/sec total speed

   # Running  1x6-convergence, "perf bench numa mem -p 1 -t 6 -P 1020 -s 100 -zZ0qcm --thp  1"
            1.003 secs latency to NUMA-converge
            1.003 secs slowest (max) thread-runtime
            0.000 secs fastest (min) thread-runtime
            0.889 secs average thread-runtime
           50.000 % difference between max/avg runtime
            2.141 GB data processed, per thread
           12.847 GB data processed, total
            0.469 nsecs/byte/thread runtime
            2.134 GB/sec/thread speed
           12.805 GB/sec total speed

   # Running  2x3-convergence, "perf bench numa mem -p 2 -t 3 -P 1020 -s 100 -zZ0qcm --thp  1"
            1.814 secs latency to NUMA-converge
            1.814 secs slowest (max) thread-runtime
            1.000 secs fastest (min) thread-runtime
            1.716 secs average thread-runtime
           22.440 % difference between max/avg runtime
            3.747 GB data processed, per thread
           22.483 GB data processed, total
            0.484 nsecs/byte/thread runtime
            2.065 GB/sec/thread speed
           12.393 GB/sec total speed

   # Running  3x3-convergence, "perf bench numa mem -p 3 -t 3 -P 1020 -s 100 -zZ0qcm --thp  1"
            2.065 secs latency to NUMA-converge
            2.065 secs slowest (max) thread-runtime
            1.000 secs fastest (min) thread-runtime
            1.947 secs average thread-runtime
           25.788 % difference between max/avg runtime
            2.855 GB data processed, per thread
           25.694 GB data processed, total
            0.723 nsecs/byte/thread runtime
            1.382 GB/sec/thread speed
           12.442 GB/sec total speed

   # Running  4x4-convergence, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp  1"
            1.912 secs latency to NUMA-converge
            1.912 secs slowest (max) thread-runtime
            1.000 secs fastest (min) thread-runtime
            1.775 secs average thread-runtime
           23.852 % difference between max/avg runtime
            1.479 GB data processed, per thread
           23.668 GB data processed, total
            1.293 nsecs/byte/thread runtime
            0.774 GB/sec/thread speed
           12.378 GB/sec total speed

   # Running  4x4-convergence-NOTHP, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp  1 --thp -1"
            1.783 secs latency to NUMA-converge
            1.783 secs slowest (max) thread-runtime
            1.000 secs fastest (min) thread-runtime
            1.633 secs average thread-runtime
           21.960 % difference between max/avg runtime
            1.345 GB data processed, per thread
           21.517 GB data processed, total
            1.326 nsecs/byte/thread runtime
            0.754 GB/sec/thread speed
           12.067 GB/sec total speed

   # Running  4x6-convergence, "perf bench numa mem -p 4 -t 6 -P 1020 -s 100 -zZ0qcm --thp  1"
            5.396 secs latency to NUMA-converge
            5.396 secs slowest (max) thread-runtime
            4.000 secs fastest (min) thread-runtime
            4.928 secs average thread-runtime
           12.937 % difference between max/avg runtime
            2.721 GB data processed, per thread
           65.306 GB data processed, total
            1.983 nsecs/byte/thread runtime
            0.504 GB/sec/thread speed
           12.102 GB/sec total speed

   # Running  4x8-convergence, "perf bench numa mem -p 4 -t 8 -P 512 -s 100 -zZ0qcm --thp  1"
            3.121 secs latency to NUMA-converge
            3.121 secs slowest (max) thread-runtime
            2.000 secs fastest (min) thread-runtime
            2.836 secs average thread-runtime
           17.962 % difference between max/avg runtime
            1.194 GB data processed, per thread
           38.192 GB data processed, total
            2.615 nsecs/byte/thread runtime
            0.382 GB/sec/thread speed
           12.236 GB/sec total speed

   # Running  8x4-convergence, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp  1"
            4.302 secs latency to NUMA-converge
            4.302 secs slowest (max) thread-runtime
            3.000 secs fastest (min) thread-runtime
            4.045 secs average thread-runtime
           15.133 % difference between max/avg runtime
            1.631 GB data processed, per thread
           52.178 GB data processed, total
            2.638 nsecs/byte/thread runtime
            0.379 GB/sec/thread speed
           12.128 GB/sec total speed

   # Running  8x4-convergence-NOTHP, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp  1 --thp -1"
            4.418 secs latency to NUMA-converge
            4.418 secs slowest (max) thread-runtime
            3.000 secs fastest (min) thread-runtime
            4.104 secs average thread-runtime
           16.045 % difference between max/avg runtime
            1.664 GB data processed, per thread
           53.254 GB data processed, total
            2.655 nsecs/byte/thread runtime
            0.377 GB/sec/thread speed
           12.055 GB/sec total speed

   # Running  3x1-convergence, "perf bench numa mem -p 3 -t 1 -P 512 -s 100 -zZ0qcm --thp  1"
            0.973 secs latency to NUMA-converge
            0.973 secs slowest (max) thread-runtime
            0.000 secs fastest (min) thread-runtime
            0.955 secs average thread-runtime
           50.000 % difference between max/avg runtime
            4.124 GB data processed, per thread
           12.372 GB data processed, total
            0.236 nsecs/byte/thread runtime
            4.238 GB/sec/thread speed
           12.715 GB/sec total speed

   # Running  4x1-convergence, "perf bench numa mem -p 4 -t 1 -P 512 -s 100 -zZ0qcm --thp  1"
            0.820 secs latency to NUMA-converge
            0.820 secs slowest (max) thread-runtime
            0.000 secs fastest (min) thread-runtime
            0.808 secs average thread-runtime
           50.000 % difference between max/avg runtime
            2.555 GB data processed, per thread
           10.220 GB data processed, total
            0.321 nsecs/byte/thread runtime
            3.117 GB/sec/thread speed
           12.468 GB/sec total speed

   # Running  8x1-convergence, "perf bench numa mem -p 8 -t 1 -P 512 -s 100 -zZ0qcm --thp  1"
            0.667 secs latency to NUMA-converge
            0.667 secs slowest (max) thread-runtime
            0.000 secs fastest (min) thread-runtime
            0.607 secs average thread-runtime
           50.000 % difference between max/avg runtime
            1.009 GB data processed, per thread
            8.069 GB data processed, total
            0.661 nsecs/byte/thread runtime
            1.512 GB/sec/thread speed
           12.095 GB/sec total speed

   # Running 16x1-convergence, "perf bench numa mem -p 16 -t 1 -P 256 -s 100 -zZ0qcm --thp  1"
            1.546 secs latency to NUMA-converge
            1.546 secs slowest (max) thread-runtime
            1.000 secs fastest (min) thread-runtime
            1.485 secs average thread-runtime
           17.664 % difference between max/avg runtime
            1.162 GB data processed, per thread
           18.594 GB data processed, total
            1.331 nsecs/byte/thread runtime
            0.752 GB/sec/thread speed
           12.025 GB/sec total speed

   # Running 32x1-convergence, "perf bench numa mem -p 32 -t 1 -P 128 -s 100 -zZ0qcm --thp  1"
            0.812 secs latency to NUMA-converge
            0.812 secs slowest (max) thread-runtime
            0.000 secs fastest (min) thread-runtime
            0.739 secs average thread-runtime
           50.000 % difference between max/avg runtime
            0.309 GB data processed, per thread
            9.874 GB data processed, total
            2.630 nsecs/byte/thread runtime
            0.380 GB/sec/thread speed
           12.166 GB/sec total speed

   # Running  2x1-bw-process, "perf bench numa mem -p 2 -t 1 -P 1024 -s 20 -zZ0q --thp  1"
           20.044 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.020 secs average thread-runtime
            0.109 % difference between max/avg runtime
          125.750 GB data processed, per thread
          251.501 GB data processed, total
            0.159 nsecs/byte/thread runtime
            6.274 GB/sec/thread speed
           12.548 GB/sec total speed

   # Running  3x1-bw-process, "perf bench numa mem -p 3 -t 1 -P 1024 -s 20 -zZ0q --thp  1"
           20.148 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.090 secs average thread-runtime
            0.367 % difference between max/avg runtime
           85.267 GB data processed, per thread
          255.800 GB data processed, total
            0.236 nsecs/byte/thread runtime
            4.232 GB/sec/thread speed
           12.696 GB/sec total speed

   # Running  4x1-bw-process, "perf bench numa mem -p 4 -t 1 -P 1024 -s 20 -zZ0q --thp  1"
           20.169 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.100 secs average thread-runtime
            0.419 % difference between max/avg runtime
           63.144 GB data processed, per thread
          252.576 GB data processed, total
            0.319 nsecs/byte/thread runtime
            3.131 GB/sec/thread speed
           12.523 GB/sec total speed

   # Running  8x1-bw-process, "perf bench numa mem -p 8 -t 1 -P  512 -s 20 -zZ0q --thp  1"
           20.175 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.107 secs average thread-runtime
            0.433 % difference between max/avg runtime
           31.267 GB data processed, per thread
          250.133 GB data processed, total
            0.645 nsecs/byte/thread runtime
            1.550 GB/sec/thread speed
           12.398 GB/sec total speed

   # Running  8x1-bw-process-NOTHP, "perf bench numa mem -p 8 -t 1 -P  512 -s 20 -zZ0q --thp  1 --thp -1"
           20.216 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.113 secs average thread-runtime
            0.535 % difference between max/avg runtime
           30.998 GB data processed, per thread
          247.981 GB data processed, total
            0.652 nsecs/byte/thread runtime
            1.533 GB/sec/thread speed
           12.266 GB/sec total speed

   # Running 16x1-bw-process, "perf bench numa mem -p 16 -t 1 -P 256 -s 20 -zZ0q --thp  1"
           20.234 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.174 secs average thread-runtime
            0.577 % difference between max/avg runtime
           15.377 GB data processed, per thread
          246.039 GB data processed, total
            1.316 nsecs/byte/thread runtime
            0.760 GB/sec/thread speed
           12.160 GB/sec total speed

   # Running  1x4-bw-thread, "perf bench numa mem -p 1 -t 4 -T 256 -s 20 -zZ0q --thp  1"
           20.040 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.028 secs average thread-runtime
            0.099 % difference between max/avg runtime
           66.832 GB data processed, per thread
          267.328 GB data processed, total
            0.300 nsecs/byte/thread runtime
            3.335 GB/sec/thread speed
           13.340 GB/sec total speed

   # Running  1x8-bw-thread, "perf bench numa mem -p 1 -t 8 -T 256 -s 20 -zZ0q --thp  1"
           20.064 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.034 secs average thread-runtime
            0.160 % difference between max/avg runtime
           32.911 GB data processed, per thread
          263.286 GB data processed, total
            0.610 nsecs/byte/thread runtime
            1.640 GB/sec/thread speed
           13.122 GB/sec total speed

   # Running 1x16-bw-thread, "perf bench numa mem -p 1 -t 16 -T 128 -s 20 -zZ0q --thp  1"
           20.092 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.052 secs average thread-runtime
            0.230 % difference between max/avg runtime
           16.131 GB data processed, per thread
          258.088 GB data processed, total
            1.246 nsecs/byte/thread runtime
            0.803 GB/sec/thread speed
           12.845 GB/sec total speed

   # Running 1x32-bw-thread, "perf bench numa mem -p 1 -t 32 -T 64 -s 20 -zZ0q --thp  1"
           20.099 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.063 secs average thread-runtime
            0.247 % difference between max/avg runtime
            7.962 GB data processed, per thread
          254.773 GB data processed, total
            2.525 nsecs/byte/thread runtime
            0.396 GB/sec/thread speed
           12.676 GB/sec total speed

   # Running  2x3-bw-process, "perf bench numa mem -p 2 -t 3 -P 512 -s 20 -zZ0q --thp  1"
           20.150 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.120 secs average thread-runtime
            0.372 % difference between max/avg runtime
           44.827 GB data processed, per thread
          268.960 GB data processed, total
            0.450 nsecs/byte/thread runtime
            2.225 GB/sec/thread speed
           13.348 GB/sec total speed

   # Running  4x4-bw-process, "perf bench numa mem -p 4 -t 4 -P 512 -s 20 -zZ0q --thp  1"
           20.258 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.168 secs average thread-runtime
            0.636 % difference between max/avg runtime
           17.079 GB data processed, per thread
          273.263 GB data processed, total
            1.186 nsecs/byte/thread runtime
            0.843 GB/sec/thread speed
           13.489 GB/sec total speed

   # Running  4x6-bw-process, "perf bench numa mem -p 4 -t 6 -P 512 -s 20 -zZ0q --thp  1"
           20.559 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.382 secs average thread-runtime
            1.359 % difference between max/avg runtime
           10.758 GB data processed, per thread
          258.201 GB data processed, total
            1.911 nsecs/byte/thread runtime
            0.523 GB/sec/thread speed
           12.559 GB/sec total speed

   # Running  4x8-bw-process, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp  1"
           20.744 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.516 secs average thread-runtime
            1.792 % difference between max/avg runtime
            8.069 GB data processed, per thread
          258.201 GB data processed, total
            2.571 nsecs/byte/thread runtime
            0.389 GB/sec/thread speed
           12.447 GB/sec total speed

   # Running  4x8-bw-process-NOTHP, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp  1 --thp -1"
           20.855 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.561 secs average thread-runtime
            2.050 % difference between max/avg runtime
            8.069 GB data processed, per thread
          258.201 GB data processed, total
            2.585 nsecs/byte/thread runtime
            0.387 GB/sec/thread speed
           12.381 GB/sec total speed

   # Running  3x3-bw-process, "perf bench numa mem -p 3 -t 3 -P 512 -s 20 -zZ0q --thp  1"
           20.134 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.077 secs average thread-runtime
            0.333 % difference between max/avg runtime
           28.091 GB data processed, per thread
          252.822 GB data processed, total
            0.717 nsecs/byte/thread runtime
            1.395 GB/sec/thread speed
           12.557 GB/sec total speed

   # Running  5x5-bw-process, "perf bench numa mem -p 5 -t 5 -P 512 -s 20 -zZ0q --thp  1"
           20.588 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.375 secs average thread-runtime
            1.427 % difference between max/avg runtime
           10.177 GB data processed, per thread
          254.436 GB data processed, total
            2.023 nsecs/byte/thread runtime
            0.494 GB/sec/thread speed
           12.359 GB/sec total speed

   # Running 2x16-bw-process, "perf bench numa mem -p 2 -t 16 -P 512 -s 20 -zZ0q --thp  1"
           20.657 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.429 secs average thread-runtime
            1.589 % difference between max/avg runtime
            8.170 GB data processed, per thread
          261.429 GB data processed, total
            2.528 nsecs/byte/thread runtime
            0.395 GB/sec/thread speed
           12.656 GB/sec total speed

   # Running 1x32-bw-process, "perf bench numa mem -p 1 -t 32 -P 2048 -s 20 -zZ0q --thp  1"
           22.981 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           21.996 secs average thread-runtime
            6.486 % difference between max/avg runtime
            8.863 GB data processed, per thread
          283.606 GB data processed, total
            2.593 nsecs/byte/thread runtime
            0.386 GB/sec/thread speed
           12.341 GB/sec total speed

   # Running numa02-bw, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp  1"
           20.047 secs slowest (max) thread-runtime
           19.000 secs fastest (min) thread-runtime
           20.026 secs average thread-runtime
            2.611 % difference between max/avg runtime
            8.441 GB data processed, per thread
          270.111 GB data processed, total
            2.375 nsecs/byte/thread runtime
            0.421 GB/sec/thread speed
           13.474 GB/sec total speed

   # Running numa02-bw-NOTHP, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp  1 --thp -1"
           20.088 secs slowest (max) thread-runtime
           19.000 secs fastest (min) thread-runtime
           20.025 secs average thread-runtime
            2.709 % difference between max/avg runtime
            8.411 GB data processed, per thread
          269.142 GB data processed, total
            2.388 nsecs/byte/thread runtime
            0.419 GB/sec/thread speed
           13.398 GB/sec total speed

   # Running numa01-bw-thread, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp  1"
           20.293 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.175 secs average thread-runtime
            0.721 % difference between max/avg runtime
            7.918 GB data processed, per thread
          253.374 GB data processed, total
            2.563 nsecs/byte/thread runtime
            0.390 GB/sec/thread speed
           12.486 GB/sec total speed

   # Running numa01-bw-thread-NOTHP, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp  1 --thp -1"
           20.411 secs slowest (max) thread-runtime
           20.000 secs fastest (min) thread-runtime
           20.226 secs average thread-runtime
            1.006 % difference between max/avg runtime
            7.931 GB data processed, per thread
          253.778 GB data processed, total
            2.574 nsecs/byte/thread runtime
            0.389 GB/sec/thread speed
           12.434 GB/sec total speed

  #

Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lore.kernel.org/r/20201012161611.366482-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 14:24:53 -03:00
John Garry
caf7f9685d perf jevents: Fix event code for events referencing std arch events
The event code for events referencing std arch events is incorrectly
evaluated in json_events().

The issue is that je.event is evaluated properly from try_fixup(), but
later NULLified from the real_event() call, as "event" may be NULL.

Fix by setting "event" same je.event in try_fixup().

Also remove support for overwriting event code for events using std arch
events, as it is not used.

Signed-off-by: John Garry <john.garry@huawei.com>
Reviewed-By: Kajol Jain<kjain@linux.ibm.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/1602170368-11892-1-git-send-email-john.garry@huawei.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:43:31 -03:00
Jin Yao
2a09a84c72 perf diff: Support hot streams comparison
This patch enables perf-diff with "--stream" option.

"--stream": Enable hot streams comparison

Now let's see example.

perf record -b ...      Generate perf.data.old with branch data
perf record -b ...      Generate perf.data with branch data
perf diff --stream

[ Matched hot streams ]

hot chain pair 1:
            cycles: 1, hits: 27.77%                  cycles: 1, hits: 9.24%
        ---------------------------              --------------------------
                      main div.c:39                           main div.c:39
                      main div.c:44                           main div.c:44

hot chain pair 2:
           cycles: 34, hits: 20.06%                cycles: 27, hits: 16.98%
        ---------------------------              --------------------------
          __random_r random_r.c:360               __random_r random_r.c:360
          __random_r random_r.c:388               __random_r random_r.c:388
          __random_r random_r.c:388               __random_r random_r.c:388
          __random_r random_r.c:380               __random_r random_r.c:380
          __random_r random_r.c:357               __random_r random_r.c:357
              __random random.c:293                   __random random.c:293
              __random random.c:293                   __random random.c:293
              __random random.c:291                   __random random.c:291
              __random random.c:291                   __random random.c:291
              __random random.c:291                   __random random.c:291
              __random random.c:288                   __random random.c:288
                     rand rand.c:27                          rand rand.c:27
                     rand rand.c:26                          rand rand.c:26
                           rand@plt                                rand@plt
                           rand@plt                                rand@plt
              compute_flag div.c:25                   compute_flag div.c:25
              compute_flag div.c:22                   compute_flag div.c:22
                      main div.c:40                           main div.c:40
                      main div.c:40                           main div.c:40
                      main div.c:39                           main div.c:39

hot chain pair 3:
             cycles: 9, hits: 4.48%                  cycles: 6, hits: 4.51%
        ---------------------------              --------------------------
          __random_r random_r.c:360               __random_r random_r.c:360
          __random_r random_r.c:388               __random_r random_r.c:388
          __random_r random_r.c:388               __random_r random_r.c:388
          __random_r random_r.c:380               __random_r random_r.c:380

[ Hot streams in old perf data only ]

hot chain 1:
            cycles: 18, hits: 6.75%
         --------------------------
          __random_r random_r.c:360
          __random_r random_r.c:388
          __random_r random_r.c:388
          __random_r random_r.c:380
          __random_r random_r.c:357
              __random random.c:293
              __random random.c:293
              __random random.c:291
              __random random.c:291
              __random random.c:291
              __random random.c:288
                     rand rand.c:27
                     rand rand.c:26
                           rand@plt
                           rand@plt
              compute_flag div.c:25
              compute_flag div.c:22
                      main div.c:40

hot chain 2:
            cycles: 29, hits: 2.78%
         --------------------------
              compute_flag div.c:22
                      main div.c:40
                      main div.c:40
                      main div.c:39

[ Hot streams in new perf data only ]

hot chain 1:
                                                     cycles: 4, hits: 4.54%
                                                 --------------------------
                                                              main div.c:42
                                                      compute_flag div.c:28

hot chain 2:
                                                     cycles: 5, hits: 3.51%
                                                 --------------------------
                                                              main div.c:39
                                                              main div.c:44
                                                              main div.c:42
                                                      compute_flag div.c:28

Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-8-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:34:48 -03:00
Jin Yao
5bbd6bad3b perf streams: Report hot streams
We show the streams separately. They are divided into different sections.

1. "Matched hot streams"

2. "Hot streams in old perf data only"

3. "Hot streams in new perf data only".

For each stream, we report the cycles and hot percent (hits%).

For example,

     cycles: 2, hits: 4.08%
 --------------------------
              main div.c:42
      compute_flag div.c:28

Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-7-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:34:26 -03:00
Jin Yao
28904f4dce perf streams: Calculate the sum of total streams hits
We have used callchain_node->hit to measure the hot level of one stream.
This patch calculates the sum of hits of total streams.

Thus in next patch, we can use following formula to report hot percent
for one stream.

hot percent = callchain_node->hit / sum of total hits

Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-6-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:34:06 -03:00
Jin Yao
fa79aa6485 perf streams: Link stream pair
In previous patch, we have created an evsel_streams for one event, and
top N hottest streams will be saved in a stream array in evsel_streams.

This patch compares total streams among two evsel_streams.

Once two streams are fully matched, they will be linked as a pair. From
the pair, we can know which streams are matched.

Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-5-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:32:36 -03:00
Jin Yao
47ef8398c3 perf streams: Compare two streams
Stream is the branch history which is aggregated by the branch records
from perf samples. Now we support the callchain as stream.

If the callchain entries of one stream are fully matched with the
callchain entries of another stream, we think two streams are matched.

For example,

   cycles: 1, hits: 26.80%                 cycles: 1, hits: 27.30%
   -----------------------                 -----------------------
             main div.c:39                           main div.c:39
             main div.c:44                           main div.c:44

Above two streams are matched (we don't consider the case that source
code is changed).

The matching logic is, compare the chain string first. If it's not
matched, fallback to dso address comparison.

Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-4-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:31:56 -03:00
Jin Yao
dd1d841810 perf streams: Get the evsel_streams by evsel_idx
In previous patch, we have created evsel_streams array.

This patch returns the specified evsel_streams according to the
evsel_idx.

Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-3-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:30:13 -03:00
Jin Yao
480accbb17 perf streams: Introduce branch history "streams"
We define a stream as the branch history which is aggregated by the
branch records from perf samples. For example, the callchains aggregated
from the branch records are considered as streams.  By browsing the hot
stream, we can understand the hot code path.

Now we only support the callchain for stream. For measuring the hot
level for a stream, we use the callchain_node->hit, higher is hotter.

There may be many callchains sampled so we only focus on the top N
hottest callchains. N is a user defined parameter or predefined default
value (nr_streams_max).

This patch creates an evsel_streams array per event, and saves the top N
hottest streams in a stream array.

So now we can get the per-event top N hottest streams.

Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-2-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:27:28 -03:00
Andi Kleen
6556a75bec perf intel-pt: Improve PT documentation slightly
Document the higher level --insn-trace etc. perf script options.

Include the howto how to build xed into the manpage

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Link: http://lore.kernel.org/lkml/20201014035346.4772-1-andi@firstfloor.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 13:14:40 -03:00
Andi Kleen
0997a2662f perf tools: Add support for exclusive groups/events
Peter suggested that using the exclusive mode in perf could avoid some
problems with bad scheduling of groups. Exclusive is implemented in the
kernel, but wasn't exposed by the perf tool, so hard to use without
custom low level API users.

Add support for marking groups or events with :e for exclusive in the
perf tool.  The implementation is basically the same as the existing
pinned attribute.

Committer testing:

  # perf test "parse event"
   6: Parse event definition strings                                  : Ok
  # perf test -v "parse event" |& grep :u*e
  running test 56 'instructions:uep'
  running test 57 '{cycles,cache-misses,branch-misses}:e'
  #
  #
  # grep "model name" -m1 /proc/cpuinfo
  model name	: AMD Ryzen 9 3900X 12-Core Processor
  #
  # perf stat -a -e '{cycles,cache-misses,branch-misses}:e' sleep 1

   Performance counter stats for 'system wide':

       <not counted>      cycles                                                        (0.00%)
       <not counted>      cache-misses                                                  (0.00%)
       <not counted>      branch-misses                                                 (0.00%)

         1.001269893 seconds time elapsed

  Some events weren't counted. Try disabling the NMI watchdog:
  	echo 0 > /proc/sys/kernel/nmi_watchdog
  	perf stat ...
  	echo 1 > /proc/sys/kernel/nmi_watchdog
  # echo 0 > /proc/sys/kernel/nmi_watchdog
  # perf stat -a -e '{cycles,cache-misses,branch-misses}:e' sleep 1

   Performance counter stats for 'system wide':

       1,298,663,141      cycles
          30,962,215      cache-misses
           5,325,150      branch-misses

         1.001474934 seconds time elapsed

  #
  # The output for asking for precise events on AMD needs to improve, it
  # supposedly works only for system wide or per CPU
  #
  # perf stat -a -e '{cycles,cache-misses,branch-misses}:uep' sleep 1
  Error:
  The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (cycles).
  /bin/dmesg | grep -i perf may provide additional information.

  # perf stat -a -e '{cycles,cache-misses,branch-misses}:ue' sleep 1

   Performance counter stats for 'system wide':

         746,363,126      cycles
          16,881,611      cache-misses
           2,871,259      branch-misses

         1.001636066 seconds time elapsed

  #

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20201014144255.22699-1-andi@firstfloor.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 12:24:28 -03:00
Jiri Olsa
78b2c50c5d perf test: Add build id shell test
Add a test for the build id cache that adds a binary with sha1 and md5
build ids and verifies it's added properly.

The test updates build id cache with 'perf record' and 'perf buildid-cache -a'.

Committer testing:

  # perf test "build id"
  82: build id cache operations                                       : Ok
  #
  # perf test -v "build id"
  82: build id cache operations                                       :
  --- start ---
  test child forked, pid 447218
  test binaries: /tmp/perf.ex.SHA1.B8I /tmp/perf.ex.MD5.7Nv
  Adding d1abc1eb7568358cf23c959566f23462461834d1 /tmp/perf.ex.SHA1.B8I: Ok
  build id: d1abc1eb7568358cf23c959566f23462461834d1
  link: /tmp/perf.debug.sS2/.build-id/d1/abc1eb7568358cf23c959566f23462461834d1
  file: /tmp/perf.debug.sS2/.build-id/d1/../../tmp/perf.ex.SHA1.B8I/d1abc1eb7568358cf23c959566f23462461834d1/elf
  OK for /tmp/perf.ex.SHA1.B8I
  Adding a50e350e97c43b4708d09bcd85ebfff7 /tmp/perf.ex.MD5.7Nv: Ok
  build id: a50e350e97c43b4708d09bcd85ebfff7
  link: /tmp/perf.debug.IuW/.build-id/a5/0e350e97c43b4708d09bcd85ebfff7
  file: /tmp/perf.debug.IuW/.build-id/a5/../../tmp/perf.ex.MD5.7Nv/a50e350e97c43b4708d09bcd85ebfff7/elf
  OK for /tmp/perf.ex.MD5.7Nv
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 0.034 MB /tmp/perf.data.xrH ]
  build id: d1abc1eb7568358cf23c959566f23462461834d1
  link: /tmp/perf.debug.eGR/.build-id/d1/abc1eb7568358cf23c959566f23462461834d1
  file: /tmp/perf.debug.eGR/.build-id/d1/../../tmp/perf.ex.SHA1.B8I/d1abc1eb7568358cf23c959566f23462461834d1/elf
  OK for /tmp/perf.ex.SHA1.B8I
  [ perf record: Woken up 2 times to write data ]
  [ perf record: Captured and wrote 0.034 MB /tmp/perf.data.cbE ]
  build id: a50e350e97c43b4708d09bcd85ebfff7
  link: /tmp/perf.debug.82t/.build-id/a5/0e350e97c43b4708d09bcd85ebfff7
  file: /tmp/perf.debug.82t/.build-id/a5/../../tmp/perf.ex.MD5.7Nv/a50e350e97c43b4708d09bcd85ebfff7/elf
  OK for /tmp/perf.ex.MD5.7Nv
  test child finished with 0
  ---- end ----
  build id cache operations: Ok
  #

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-10-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 11:28:52 -03:00
Jiri Olsa
e9ad94381c perf tools: Align buildid list output for short build ids
With shorter md5 build ids we need to align their paths properly with
other build ids:

  $ perf buildid-list
  17f4e448cc746582ea1881528deb549f7fdb3fd5 [kernel.kallsyms]
  a50e350e97c43b4708d09bcd85ebfff7         .../tools/perf/buildid-ex-md5
  1805c738c8f3ec0f47b7ea09080c28f34d18a82b /usr/lib64/ld-2.31.so
  $

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-9-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 11:28:52 -03:00
Jiri Olsa
b0a323c7f0 perf tools: Add size to 'struct perf_record_header_build_id'
We do not store size with build ids in perf data, but there's enough
space to do it. Adding misc bit PERF_RECORD_MISC_BUILD_ID_SIZE to mark
build id event with size.

With this fix the dso with md5 build id will have correct build id data
and will be usable for debuginfod processing if needed (coming in
following patches).

Committer notes:

Use %zu with size_t to fix this error on 32-bit arches:

  util/header.c: In function '__event_process_build_id':
  util/header.c:2105:3: error: format '%lu' expects argument of type 'long unsigned int', but argument 6 has type 'size_t' [-Werror=format=]
     pr_debug("build id event received for %s: %s [%lu]\n",
     ^

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-8-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 11:28:12 -03:00
Jiri Olsa
39be8d0115 perf tools: Pass build_id object to dso__build_id_equal()
Passing build_id object to dso__build_id_equal(), so we can properly
check build id with different size than sha1.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-7-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 09:25:36 -03:00
Jiri Olsa
8dfdf440d3 perf tools: Pass build_id object to dso__set_build_id()
Passing build_id object to dso__set_build_id(), so it's easier
to initialize dos's build id object.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-6-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 08:46:42 -03:00
Jiri Olsa
bf5411695a perf tools: Pass build_id object to build_id__sprintf()
Passing build_id object to build_id__sprintf function, so it can operate
with the proper size of build id.

This will create proper md5 build id readable names,
like following:

  a50e350e97c43b4708d09bcd85ebfff7

instead of:

  a50e350e97c43b4708d09bcd85ebfff700000000

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-5-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 08:46:22 -03:00
Jiri Olsa
3ff1b8c8cc perf tools: Pass build id object to sysfs__read_build_id()
Passing build id object to sysfs__read_build_id function, so it can
populate the size of the build_id object.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-4-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 08:46:02 -03:00
Jiri Olsa
f766819cd5 perf tools: Pass build_id object to filename__read_build_id()
Pass a build_id object to filename__read_build_id function, so it can
populate the size of the build_id object.

Changing filename__read_build_id() code for both ELF/non-ELF code.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-3-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 08:45:16 -03:00
Jiri Olsa
0aba7f036a perf tools: Use build_id object in dso
Replace build_id byte array with struct build_id object and all the code
that references it.

The objective is to carry size together with build id array, so it's
better to keep both together.

This is preparatory change for following patches, and there's no
functional change.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20201013192441.1299447-2-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14 08:44:47 -03:00
Arnaldo Carvalho de Melo
79bbbabd22 perf config: Export the perf_config_from_file() function
We'll use it to ask for extra config files to be loaded, profile like
stuff that will be used first to make 'perf trace' mimic 'strace' output
via a 'perf strace' command that just sets up 'perf trace' output.

At some point it'll be used for regression tests, where we'll run some
simple commands like:

  perf strace ls > perf-strace.output
  strace ls > strace.output

And then do some mutable syscall arg aware diff like tool to deal with
arguments for things like mmap, that change at each execution, to be
first ignored and then properly tracked when used accoss multiple
syscalls.

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 17:03:19 -03:00
James Clark
79373082fa perf python: Autodetect python3 binary
Some distros don't come with python2 and only have python3 available.
This causes the "'import perf' in python" self test to fail.

This change adds python3 to the list of possible python versions
that are autodetected but maintains the priorities for
'python2' and 'python' detection. Python3 has the lowest priority.

Committer notes:

On a fedora system without python2 packages the 'perf test python'
continues to work:

  # python2
  bash: python2: command not found...
  Similar command is: 'python'
  # rpm -qa | grep python2
  #

That "Similar command" gives the clue:

  # rpm -qf /usr/bin/python
  python-unversioned-command-3.8.5-5.fc32.noarch
  # rpm -ql python-unversioned-command
  /usr/bin/python
  /usr/share/man/man1/python.1.gz
  #

With it in place the 'python' binary is found and perf builds the python
binding using python3:

  # perf test -v python
  19: 'import perf' in python                                         :
  --- start ---
  test child forked, pid 379988
  python usage test: "echo "import sys ; sys.path.append('/tmp/build/perf/python'); import perf" | '/usr/bin/python' "
  test child finished with 0
  ---- end ----
  'import perf' in python: Ok
  #

Looking at that path:

  # ls -la /tmp/build/perf/python
  total 1864
  drwxrwxr-x.  2 acme acme      60 Oct 13 16:20 .
  drwxrwxr-x. 18 acme acme    4420 Oct 13 16:28 ..
  -rwxrwxr-x.  1 acme acme 1907216 Oct 13 16:28 perf.cpython-38-x86_64-linux-gnu.so
  #

And:

  # ldd ~/bin/perf | grep python
  	libpython3.8.so.1.0 => /lib64/libpython3.8.so.1.0 (0x00007f5471187000)
  #

As soon as we remove it:

  # rpm -e python-unversioned-command-3.8.5-5.fc32.noarch
  # hash -r
  # python
  bash: python: command not found...
  Install package 'python-unversioned-command' to provide command 'python'? [N/y] n
  #

And rebuilding perf now doesn't find python in the system:

  make: Entering directory '/home/acme/git/perf/tools/perf'
    BUILD:   Doing 'make -j24' parallel build
  <SNIP>
  Makefile.config:786: No python interpreter was found: disables Python support - please install python-devel/python-dev
  <SNIP>

After this patch:

  $ rpm -qi python-unversioned-command
  package python-unversioned-command is not installed
  $
  $ python
  bash: python: command not found...
  Install package 'python-unversioned-command' to provide command 'python'? [N/y] ^C
  $
  $ m
  make: Entering directory '/home/acme/git/perf/tools/perf'
    BUILD:   Doing 'make -j24' parallel build
  <SNIP>
    CC       /tmp/build/perf/tests/attr.o
    CC       /tmp/build/perf/tests/python-use.o
    DESCEND  plugins
    GEN      /tmp/build/perf/python/perf.so
    INSTALL  trace_plugins
    LD       /tmp/build/perf/tests/perf-in.o
    LD       /tmp/build/perf/perf-in.o
    LINK     /tmp/build/perf/perf
  <SNIP>
  make: Leaving directory '/home/acme/git/perf/tools/perf'
  19: 'import perf' in python                                         : Ok
  $ ldd ~/bin/perf | grep python
  	libpython3.8.so.1.0 => /lib64/libpython3.8.so.1.0 (0x00007f2c8c708000)
  $ ls -la /tmp/build/perf/python
  total 1864
  drwxrwxr-x.  2 acme acme      60 Oct 13 16:20 .
  drwxrwxr-x. 18 acme acme    4420 Oct 13 16:31 ..
  -rwxrwxr-x.  1 acme acme 1907216 Oct 13 16:31 perf.cpython-38-x86_64-linux-gnu.so
  $

Signed-off-by: James Clark <james.clark@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
LPU-Reference: 20201005080645.6588-1-james.clark@arm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 16:25:57 -03:00
Arnaldo Carvalho de Melo
0fd0f00fdb perf tests: Show python test script in verbose mode
To help figure out where it is getting the binding.

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 16:22:03 -03:00
Vasily Gorbik
6cf4ecf5c5 perf build: Allow nested externs to enable BUILD_BUG() usage
Currently BUILD_BUG() macro is expanded to smth like the following:

   do {
           extern void __compiletime_assert_0(void)
                   __attribute__((error("BUILD_BUG failed")));
           if (!(!(1)))
                   __compiletime_assert_0();
   } while (0);

If used in a function body this obviously would produce build errors
with -Wnested-externs and -Werror.

To enable BUILD_BUG() usage in tools/arch/x86/lib/insn.c which perf
includes in intel-pt-decoder, build perf without -Wnested-externs.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au> # build tested
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lore.kernel.org/lkml/patch-1.thread-251403.git-2514037e9477.your-ad-here.call-01602244460-ext-7088@work.hours
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 16:07:24 -03:00
Jiri Slaby
f3013f7ed4 perf trace: Fix off by ones in memset() after realloc() in arches using libaudit
'perf trace ls' started crashing after commit d21cb73a90 on
!HAVE_SYSCALL_TABLE_SUPPORT configs (armv7l here) like this:

  0  strlen () at ../sysdeps/arm/armv6t2/strlen.S:126
  1  0xb6800780 in __vfprintf_internal (s=0xbeff9908, s@entry=0xbeff9900, format=0xa27160 "]: %s()", ap=..., mode_flags=<optimized out>) at vfprintf-internal.c:1688
  ...
  5  0x0056ecdc in fprintf (__fmt=0xa27160 "]: %s()", __stream=<optimized out>) at /usr/include/bits/stdio2.h:100
  6  trace__sys_exit (trace=trace@entry=0xbeffc710, evsel=evsel@entry=0xd968d0, event=<optimized out>, sample=sample@entry=0xbeffc3e8) at builtin-trace.c:2475
  7  0x00566d40 in trace__handle_event (sample=0xbeffc3e8, event=<optimized out>, trace=0xbeffc710) at builtin-trace.c:3122
  ...
  15 main (argc=2, argv=0xbefff6e8) at perf.c:538

It is because memset in trace__read_syscall_info zeroes wrong memory:

1) when initializing for the first time, it does not reset the last id.

2) in other cases, it resets the last id of previous buffer.

ad 1) it causes the crash above as sc->name used in the fprintf above
      contains garbage.

ad 2) it sets nonexistent from true back to false for id 11 here. Not
      sure, what the consequences are.

So fix it by introducing a special case for the initial initialization
and do the right +1 in both cases.

Fixes: d21cb73a90 ("perf trace: Grow the syscall table as needed when using libaudit")
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20201001093419.15761-1-jslaby@suse.cz
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 13:57:41 -03:00
Leo Yan
edac75a2f8 perf c2c: Update usage for showing memory events
Since commit b027cc6fdf ("perf c2c: Fix 'perf c2c record -e list' to
show the default events used"), "perf c2c" tool can show the memory
events properly, it's no reason to still suggest user to use the
command "perf mem record -e list" for showing events.

This patch updates the usage for showing memory events with command
"perf c2c record -e list".

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: Ian Rogers <irogers@google.com>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lore.kernel.org/r/20201011121022.22409-1-leo.yan@linaro.org
2020-10-13 13:15:38 -03:00
Arnaldo Carvalho de Melo
dbaa1b3d9a Merge branch 'perf/urgent' into perf/core
To pick fixes that missed v5.9.

Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 13:02:20 -03:00
Tzvetomir Stoyanov (VMware)
a41c32105c tools lib traceevent: Hide non API functions
There are internal library functions, which are not declared as a static.
They are used inside the library from different files. Hide them from
the library users, as they are not part of the API.
These functions are made hidden and are renamed without the prefix "tep_":
 tep_free_plugin_paths
 tep_peek_char
 tep_buffer_init
 tep_get_input_buf_ptr
 tep_get_input_buf
 tep_read_token
 tep_free_token
 tep_free_event
 tep_free_format_field
 __tep_parse_format

Link: https://lore.kernel.org/linux-trace-devel/e4afdd82deb5e023d53231bb13e08dca78085fb0.camel@decadent.org.uk/
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: linux-trace-devel@vger.kernel.org
Link: http://lore.kernel.org/lkml/20200930110733.280534-1-tz.stoyanov@gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 11:47:38 -03:00
Joel Fernandes (Google)
dc000c4593 perf sched: Show start of latency as well
The 'perf sched latency' tool is really useful at showing worst-case
latencies that task encountered since wakeup. However it shows only the
end of the latency. Often times the start of a latency is interesting as
it can show what else was going on at the time to cause the latency. I
certainly myself spending a lot of time backtracking to the start of the
latency in "perf sched script" which wastes a lot of time.

This patch therefore adds a new column "Max delay start". Considering
this, also rename "Maximum delay at" to "Max delay end" as its easier to
understand.

Example of the new output:

  ----------------------------------------------------------------------------------------------------------------------------------
   Task                  | Runtime ms  | Switches | Avg delay ms  | Max delay ms   | Max delay start         | Max delay end       |
  ----------------------------------------------------------------------------------------------------------------------------------
   MediaScannerSer:11936 |  651.296 ms |    67978 | avg: 0.113 ms | max: 77.250 ms | max start: 477.691360 s | max end: 477.768610 s
   audio@2.0-servi:(3)   |    0.000 ms |     3440 | avg: 0.034 ms | max: 72.267 ms | max start: 477.697051 s | max end: 477.769318 s
   AudioOut_1D:8112      |    0.000 ms |     2588 | avg: 0.083 ms | max: 64.020 ms | max start: 477.710740 s | max end: 477.774760 s
   Time-limited te:14973 | 7966.090 ms |    24807 | avg: 0.073 ms | max: 15.563 ms | max start: 477.162746 s | max end: 477.178309 s
   surfaceflinger:8049   |    9.680 ms |      603 | avg: 0.063 ms | max: 13.275 ms | max start: 476.931791 s | max end: 476.945067 s
   HeapTaskDaemon:(3)    | 1588.830 ms |     7040 | avg: 0.065 ms | max:  6.880 ms | max start: 473.666043 s | max end: 473.672922 s
   mount-passthrou:(3)   | 1370.809 ms |    68904 | avg: 0.011 ms | max:  6.524 ms | max start: 478.090630 s | max end: 478.097154 s
   ReferenceQueueD:(3)   |   11.794 ms |     1725 | avg: 0.014 ms | max:  6.521 ms | max start: 476.119782 s | max end: 476.126303 s
   writer:14077          |   18.410 ms |     1427 | avg: 0.036 ms | max:  6.131 ms | max start: 474.169675 s | max end: 474.175805 s

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20200925235634.4089867-1-joel@joelfernandes.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 11:01:42 -03:00
Sandipan Das
70830f974e perf vendor events: Fix typos in power8 PMU events
This replaces the incorrectly spelled word "localtion" with "location"
in some power8 PMU event descriptions.

Fixes: 2a81fa3bb5 ("perf vendor events: Add power8 PMU events")
Signed-off-by: Sandipan Das <sandipan@linux.ibm.com>
Reviewed-by: Kajol Jain <kjain@linux.ibm.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Link: http://lore.kernel.org/lkml/20201012050205.328523-1-sandipan@linux.ibm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 11:01:42 -03:00
Namhyung Kim
bf7ef5ddb0 perf bench: Run inject-build-id with --buildid-all option too
For comparison, it now runs the benchmark twice - one if regular -b and
another for --buildid-all.

  $ perf bench internals inject-build-id
  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 21.002 msec (+- 0.172 msec)
    Average time per event: 2.059 usec (+- 0.017 usec)
    Average memory usage: 8169 KB (+- 0 KB)
    Average build-id-all injection took: 19.543 msec (+- 0.124 msec)
    Average time per event: 1.916 usec (+- 0.012 usec)
    Average memory usage: 7348 KB (+- 0 KB)

Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Ian Rogers <irogers@google.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201012070214.2074921-7-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 11:01:42 -03:00
Namhyung Kim
27c9c3424f perf inject: Add --buildid-all option
Like 'perf record', we can even more speedup build-id processing by just
using all DSOs.  Then we don't need to look at all the sample events
anymore.  The following patch will update 'perf bench' to show the result
of the --buildid-all option too.

Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Original-patch-by: Stephane Eranian <eranian@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201012070214.2074921-6-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 11:01:42 -03:00
Namhyung Kim
e7b60c5a0c perf inject: Do not load map/dso when injecting build-id
No need to load symbols in a DSO when injecting build-id.  I guess the
reason was to check the DSO is a special file like anon files.  Use some
helper functions in map.c to check them before reading build-id.  Also
pass sample event's cpumode to a new build-id event.

It brought a speedup in the benchmark of 25 -> 21 msec on my laptop.
Also the memory usage (Max RSS) went down by ~200 KB.

  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 21.389 msec (+- 0.138 msec)
    Average time per event: 2.097 usec (+- 0.014 usec)
    Average memory usage: 8225 KB (+- 0 KB)

Committer notes:

Before:

  $ perf stat -r5 perf bench internals inject-build-id > /dev/null

   Performance counter stats for 'perf bench internals inject-build-id' (5 runs):

            4,020.56 msec task-clock:u              #    1.271 CPUs utilized            ( +-  0.74% )
                   0      context-switches:u        #    0.000 K/sec
                   0      cpu-migrations:u          #    0.000 K/sec
             123,354      page-faults:u             #    0.031 M/sec                    ( +-  0.81% )
       7,119,951,568      cycles:u                  #    1.771 GHz                      ( +-  1.74% )  (83.27%)
         230,086,969      stalled-cycles-frontend:u #    3.23% frontend cycles idle     ( +-  1.97% )  (83.41%)
       1,168,298,765      stalled-cycles-backend:u  #   16.41% backend cycles idle      ( +-  1.13% )  (83.44%)
      11,173,083,669      instructions:u            #    1.57  insn per cycle
                                                    #    0.10  stalled cycles per insn  ( +-  1.58% )  (83.31%)
       2,413,908,936      branches:u                #  600.392 M/sec                    ( +-  1.69% )  (83.26%)
          46,576,289      branch-misses:u           #    1.93% of all branches          ( +-  2.20% )  (83.31%)

              3.1638 +- 0.0309 seconds time elapsed  ( +-  0.98% )

  $

After:

  $ perf stat -r5 perf bench internals inject-build-id > /dev/null

   Performance counter stats for 'perf bench internals inject-build-id' (5 runs):

            2,379.94 msec task-clock:u              #    1.473 CPUs utilized            ( +-  0.18% )
                   0      context-switches:u        #    0.000 K/sec
                   0      cpu-migrations:u          #    0.000 K/sec
              62,584      page-faults:u             #    0.026 M/sec                    ( +-  0.07% )
       2,372,389,668      cycles:u                  #    0.997 GHz                      ( +-  0.29% )  (83.14%)
         106,937,862      stalled-cycles-frontend:u #    4.51% frontend cycles idle     ( +-  4.89% )  (83.20%)
         581,697,915      stalled-cycles-backend:u  #   24.52% backend cycles idle      ( +-  0.71% )  (83.47%)
       3,659,692,199      instructions:u            #    1.54  insn per cycle
                                                    #    0.16  stalled cycles per insn  ( +-  0.10% )  (83.63%)
         791,372,961      branches:u                #  332.518 M/sec                    ( +-  0.27% )  (83.39%)
          10,648,083      branch-misses:u           #    1.35% of all branches          ( +-  0.22% )  (83.16%)

             1.61570 +- 0.00172 seconds time elapsed  ( +-  0.11% )

  $

Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Original-patch-by: Stephane Eranian <eranian@google.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201012070214.2074921-5-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 11:01:37 -03:00
Namhyung Kim
336c95b297 perf inject: Enter namespace when reading build-id
It should be in a proper mnt namespace when accessing the file.

I think this had no problem since the build-id was actually read from
map__load() -> dso__load() already.  But I'd like to change it in the
following commit.

Acked-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20201012070214.2074921-4-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 10:59:42 -03:00
Namhyung Kim
2946ecedd0 perf inject: Add missing callbacks in perf_tool
I found some events (like PERF_RECORD_CGROUP) are not copied by perf
inject due to the missing callbacks.  Let's add them.

While at it, I've changed the order of the callbacks to match with
struct perf_tool so that we can compare them easily.

Acked-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20201012070214.2074921-3-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 10:59:42 -03:00
Namhyung Kim
0bf02a0d80 perf bench: Add build-id injection benchmark
Sometimes I can see that 'perf record' piped with 'perf inject' take a
long time processing build-ids.

So introduce a inject-build-id benchmark to the internals benchmark
suite to measure its overhead regularly.

It runs the 'perf inject' command internally and feeds the given number
of synthesized events (MMAP2 + SAMPLE basically).

  Usage: perf bench internals inject-build-id <options>

    -i, --iterations <n>  Number of iterations used to compute average (default: 100)
    -m, --nr-mmaps <n>    Number of mmap events for each iteration (default: 100)
    -n, --nr-samples <n>  Number of sample events per mmap event (default: 100)
    -v, --verbose         be more verbose (show iteration count, DSO name, etc)

By default, it measures average processing time of 100 MMAP2 events
and 10000 SAMPLE events.  Below is a result on my laptop.

  $ perf bench internals inject-build-id
  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 25.789 msec (+- 0.202 msec)
    Average time per event: 2.528 usec (+- 0.020 usec)
    Average memory usage: 8411 KB (+- 7 KB)

Committer testing:

  $ perf bench
  Usage:
  	perf bench [<common options>] <collection> <benchmark> [<options>]

          # List of all available benchmark collections:

           sched: Scheduler and IPC benchmarks
         syscall: System call benchmarks
             mem: Memory access benchmarks
            numa: NUMA scheduling and MM benchmarks
           futex: Futex stressing benchmarks
           epoll: Epoll stressing benchmarks
       internals: Perf-internals benchmarks
             all: All benchmarks

  $ perf bench internals

          # List of available benchmarks for collection 'internals':

      synthesize: Benchmark perf event synthesis
  kallsyms-parse: Benchmark kallsyms parsing
  inject-build-id: Benchmark build-id injection

  $ perf bench internals inject-build-id
  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 14.202 msec (+- 0.059 msec)
    Average time per event: 1.392 usec (+- 0.006 usec)
    Average memory usage: 12650 KB (+- 10 KB)
    Average build-id-all injection took: 12.831 msec (+- 0.071 msec)
    Average time per event: 1.258 usec (+- 0.007 usec)
    Average memory usage: 11895 KB (+- 10 KB)
  $

  $ perf stat -r5 perf bench internals inject-build-id
  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 14.380 msec (+- 0.056 msec)
    Average time per event: 1.410 usec (+- 0.006 usec)
    Average memory usage: 12608 KB (+- 11 KB)
    Average build-id-all injection took: 11.889 msec (+- 0.064 msec)
    Average time per event: 1.166 usec (+- 0.006 usec)
    Average memory usage: 11838 KB (+- 10 KB)
  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 14.246 msec (+- 0.065 msec)
    Average time per event: 1.397 usec (+- 0.006 usec)
    Average memory usage: 12744 KB (+- 10 KB)
    Average build-id-all injection took: 12.019 msec (+- 0.066 msec)
    Average time per event: 1.178 usec (+- 0.006 usec)
    Average memory usage: 11963 KB (+- 10 KB)
  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 14.321 msec (+- 0.067 msec)
    Average time per event: 1.404 usec (+- 0.007 usec)
    Average memory usage: 12690 KB (+- 10 KB)
    Average build-id-all injection took: 11.909 msec (+- 0.041 msec)
    Average time per event: 1.168 usec (+- 0.004 usec)
    Average memory usage: 11938 KB (+- 10 KB)
  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 14.287 msec (+- 0.059 msec)
    Average time per event: 1.401 usec (+- 0.006 usec)
    Average memory usage: 12864 KB (+- 10 KB)
    Average build-id-all injection took: 11.862 msec (+- 0.058 msec)
    Average time per event: 1.163 usec (+- 0.006 usec)
    Average memory usage: 12103 KB (+- 10 KB)
  # Running 'internals/inject-build-id' benchmark:
    Average build-id injection took: 14.402 msec (+- 0.053 msec)
    Average time per event: 1.412 usec (+- 0.005 usec)
    Average memory usage: 12876 KB (+- 10 KB)
    Average build-id-all injection took: 11.826 msec (+- 0.061 msec)
    Average time per event: 1.159 usec (+- 0.006 usec)
    Average memory usage: 12111 KB (+- 10 KB)

   Performance counter stats for 'perf bench internals inject-build-id' (5 runs):

            4,267.48 msec task-clock:u              #    1.502 CPUs utilized            ( +-  0.14% )
                   0      context-switches:u        #    0.000 K/sec
                   0      cpu-migrations:u          #    0.000 K/sec
             102,092      page-faults:u             #    0.024 M/sec                    ( +-  0.08% )
       3,894,589,578      cycles:u                  #    0.913 GHz                      ( +-  0.19% )  (83.49%)
         140,078,421      stalled-cycles-frontend:u #    3.60% frontend cycles idle     ( +-  0.77% )  (83.34%)
         948,581,189      stalled-cycles-backend:u  #   24.36% backend cycles idle      ( +-  0.46% )  (83.25%)
       5,835,587,719      instructions:u            #    1.50  insn per cycle
                                                    #    0.16  stalled cycles per insn  ( +-  0.21% )  (83.24%)
       1,267,423,636      branches:u                #  296.996 M/sec                    ( +-  0.22% )  (83.12%)
          17,484,290      branch-misses:u           #    1.38% of all branches          ( +-  0.12% )  (83.55%)

             2.84176 +- 0.00222 seconds time elapsed  ( +-  0.08% )

  $

Acked-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20201012070214.2074921-2-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-13 10:59:42 -03:00
Namhyung Kim
bef69bd7cf perf stat: Fix out of bounds CPU map access when handling armv8_pmu events
It was reported that 'perf stat' crashed when using with armv8_pmu (CPU)
events with the task mode.  As 'perf stat' uses an empty cpu map for
task mode but armv8_pmu has its own cpu mask, it has confused which map
it should use when accessing file descriptors and this causes segfaults:

  (gdb) bt
  #0  0x0000000000603fc8 in perf_evsel__close_fd_cpu (evsel=<optimized out>,
      cpu=<optimized out>) at evsel.c:122
  #1  perf_evsel__close_cpu (evsel=evsel@entry=0x716e950, cpu=7) at evsel.c:156
  #2  0x00000000004d4718 in evlist__close (evlist=0x70a7cb0) at util/evlist.c:1242
  #3  0x0000000000453404 in __run_perf_stat (argc=3, argc@entry=1, argv=0x30,
      argv@entry=0xfffffaea2f90, run_idx=119, run_idx@entry=1701998435)
      at builtin-stat.c:929
  #4  0x0000000000455058 in run_perf_stat (run_idx=1701998435, argv=0xfffffaea2f90,
      argc=1) at builtin-stat.c:947
  #5  cmd_stat (argc=1, argv=0xfffffaea2f90) at builtin-stat.c:2357
  #6  0x00000000004bb888 in run_builtin (p=p@entry=0x9764b8 <commands+288>,
      argc=argc@entry=4, argv=argv@entry=0xfffffaea2f90) at perf.c:312
  #7  0x00000000004bbb54 in handle_internal_command (argc=argc@entry=4,
      argv=argv@entry=0xfffffaea2f90) at perf.c:364
  #8  0x0000000000435378 in run_argv (argcp=<synthetic pointer>,
      argv=<synthetic pointer>) at perf.c:408
  #9  main (argc=4, argv=0xfffffaea2f90) at perf.c:538

To fix this, I simply used the given cpu map unless the evsel actually
is not a system-wide event (like uncore events).

Fixes: 7736627b86 ("perf stat: Use affinity for closing file descriptors")
Reported-by: Wei Li <liwei391@huawei.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Tested-by: Barry Song <song.bao.hua@hisilicon.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lore.kernel.org/lkml/20201007081311.1831003-1-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-07 09:57:58 -03:00
Jiri Olsa
6fcd5ddc3b perf python scripting: Fix printable strings in python3 scripts
Hagen reported broken strings in python3 tracepoint scripts:

  make PYTHON=python3
  perf record -e sched:sched_switch -a -- sleep 5
  perf script --gen-script py
  perf script -s ./perf-script.py

  [..]
  sched__sched_switch      7 563231.759525792        0 swapper   prev_comm=bytearray(b'swapper/7\x00\x00\x00\x00\x00\x00\x00'), prev_pid=0, prev_prio=120, prev_state=, next_comm=bytearray(b'mutex-thread-co\x00'),

The problem is in the is_printable_array function that does not take the
zero byte into account and claim such string as not printable, so the
code will create byte array instead of string.

Committer testing:

After this fix:

sched__sched_switch 3 484522.497072626  1158680 kworker/3:0-eve  prev_comm=kworker/3:0, prev_pid=1158680, prev_prio=120, prev_state=I, next_comm=swapper/3, next_pid=0, next_prio=120
Sample: {addr=0, cpu=3, datasrc=84410401, datasrc_decode=N/A|SNP N/A|TLB N/A|LCK N/A, ip=18446744071841817196, period=1, phys_addr=0, pid=1158680, tid=1158680, time=484522497072626, transaction=0, values=[(0, 0)], weight=0}

sched__sched_switch 4 484522.497085610  1225814 perf             prev_comm=perf, prev_pid=1225814, prev_prio=120, prev_state=, next_comm=migration/4, next_pid=30, next_prio=0
Sample: {addr=0, cpu=4, datasrc=84410401, datasrc_decode=N/A|SNP N/A|TLB N/A|LCK N/A, ip=18446744071841817196, period=1, phys_addr=0, pid=1225814, tid=1225814, time=484522497085610, transaction=0, values=[(0, 0)], weight=0}

Fixes: 249de6e074 ("perf script python: Fix string vs byte array resolving")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Petlan <mpetlan@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lore.kernel.org/lkml/20200928201135.3633850-1-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-01 12:10:56 -03:00
Arnaldo Carvalho de Melo
388968d864 perf trace: Use the autogenerated mmap 'prot' string/id table
No change in behaviour:

  # perf trace -e mmap sleep 1
       0.000 ( 0.009 ms): sleep/751870 mmap(len: 143317, prot: READ, flags: PRIVATE, fd: 3)                  = 0x7fa96d0f7000
       0.028 ( 0.004 ms): sleep/751870 mmap(len: 8192, prot: READ|WRITE, flags: PRIVATE|ANONYMOUS)           = 0x7fa96d0f5000
       0.037 ( 0.005 ms): sleep/751870 mmap(len: 1872744, prot: READ, flags: PRIVATE|DENYWRITE, fd: 3)       = 0x7fa96cf2b000
       0.044 ( 0.011 ms): sleep/751870 mmap(addr: 0x7fa96cf50000, len: 1376256, prot: READ|EXEC, flags: PRIVATE|FIXED|DENYWRITE, fd: 3, off: 0x25000) = 0x7fa96cf50000
       0.056 ( 0.007 ms): sleep/751870 mmap(addr: 0x7fa96d0a0000, len: 307200, prot: READ, flags: PRIVATE|FIXED|DENYWRITE, fd: 3, off: 0x175000) = 0x7fa96d0a0000
       0.064 ( 0.007 ms): sleep/751870 mmap(addr: 0x7fa96d0eb000, len: 24576, prot: READ|WRITE, flags: PRIVATE|FIXED|DENYWRITE, fd: 3, off: 0x1bf000) = 0x7fa96d0eb000
       0.075 ( 0.005 ms): sleep/751870 mmap(addr: 0x7fa96d0f1000, len: 13160, prot: READ|WRITE, flags: PRIVATE|FIXED|ANONYMOUS) = 0x7fa96d0f1000
       0.253 ( 0.005 ms): sleep/751870 mmap(len: 218049136, prot: READ, flags: PRIVATE, fd: 3)               = 0x7fa95ff38000
  #
  #
  # set -o vi
  # strace -e mmap sleep 1
  mmap(NULL, 143317, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f333bd83000
  mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f333bd81000
  mmap(NULL, 1872744, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f333bbb7000
  mmap(0x7f333bbdc000, 1376256, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x25000) = 0x7f333bbdc000
  mmap(0x7f333bd2c000, 307200, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x175000) = 0x7f333bd2c000
  mmap(0x7f333bd77000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1bf000) = 0x7f333bd77000
  mmap(0x7f333bd7d000, 13160, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f333bd7d000
  mmap(NULL, 218049136, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f332ebc4000
  +++ exited with 0 +++
  #

And you can as well tweak 'perf trace's output to more closely match
strace's:

  # perf config trace.show_arg_names=no
  # perf config trace.show_duration=no
  # perf config trace.show_prefix=yes
  # perf config trace.show_timestamp=no
  # perf config trace.show_zeros=yes
  # perf config trace.no_inherit=yes
  # perf trace -e mmap sleep 1
  mmap(NULL, 143317, PROT_READ, MAP_PRIVATE, 3, 0)                      = 0x7f0d287ca000
  mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS)     = 0x7f0d287c8000
  mmap(NULL, 1872744, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0)       = 0x7f0d285fe000
  mmap(0x7f0d28623000, 1376256, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x25000) = 0x7f0d28623000
  mmap(0x7f0d28773000, 307200, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x175000) = 0x7f0d28773000
  mmap(0x7f0d287be000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1bf000) = 0x7f0d287be000
  mmap(0x7f0d287c4000, 13160, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS) = 0x7f0d287c4000
  mmap(NULL, 218049136, PROT_READ, MAP_PRIVATE, 3, 0)                   = 0x7f0d1b60b000
  #

  # perf config | grep ^trace
  trace.show_arg_names=no
  trace.show_duration=no
  trace.show_prefix=yes
  trace.show_timestamp=no
  trace.show_zeros=yes
  trace.no_inherit=yes
  #

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-01 11:35:01 -03:00
Arnaldo Carvalho de Melo
08fc476214 tools beauty: Add script to generate table of mmap's 'prot' argument
Will be wired up in the following csets:

  $ tools/perf/trace/beauty/mmap_prot.sh
  static const char *mmap_prot[] = {
  	[ilog2(0x1) + 1] = "READ",
  #ifndef PROT_READ
  #define PROT_READ 0x1
  #endif
  	[ilog2(0x2) + 1] = "WRITE",
  #ifndef PROT_WRITE
  #define PROT_WRITE 0x2
  #endif
  	[ilog2(0x4) + 1] = "EXEC",
  #ifndef PROT_EXEC
  #define PROT_EXEC 0x4
  #endif
  	[ilog2(0x8) + 1] = "SEM",
  #ifndef PROT_SEM
  #define PROT_SEM 0x8
  #endif
  	[ilog2(0x01000000) + 1] = "GROWSDOWN",
  #ifndef PROT_GROWSDOWN
  #define PROT_GROWSDOWN 0x01000000
  #endif
  	[ilog2(0x02000000) + 1] = "GROWSUP",
  #ifndef PROT_GROWSUP
  #define PROT_GROWSUP 0x02000000
  #endif
  };
  $
  $
  $
  $ tools/perf/trace/beauty/mmap_prot.sh alpha
  static const char *mmap_prot[] = {
  	[ilog2(0x4) + 1] = "EXEC",
  #ifndef PROT_EXEC
  #define PROT_EXEC 0x4
  #endif
  	[ilog2(0x01000000) + 1] = "GROWSDOWN",
  #ifndef PROT_GROWSDOWN
  #define PROT_GROWSDOWN 0x01000000
  #endif
  	[ilog2(0x02000000) + 1] = "GROWSUP",
  #ifndef PROT_GROWSUP
  #define PROT_GROWSUP 0x02000000
  #endif
  	[ilog2(0x1) + 1] = "READ",
  #ifndef PROT_READ
  #define PROT_READ 0x1
  #endif
  	[ilog2(0x8) + 1] = "SEM",
  #ifndef PROT_SEM
  #define PROT_SEM 0x8
  #endif
  	[ilog2(0x2) + 1] = "WRITE",
  #ifndef PROT_WRITE
  #define PROT_WRITE 0x2
  #endif
  };
  $

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-01 11:14:22 -03:00
Arnaldo Carvalho de Melo
61693228b6 perf beauty mmap_flags: Conditionaly define the mmap flags
So that in older systems we get it in the mmap flags scnprintf routines:

  $ tools/perf/trace/beauty/mmap_flags.sh  | head -9 2> /dev/null
  static const char *mmap_flags[] = {
  	[ilog2(0x40) + 1] = "32BIT",
  #ifndef MAP_32BIT
  #define MAP_32BIT 0x40
  #endif
  	[ilog2(0x01) + 1] = "SHARED",
  #ifndef MAP_SHARED
  #define MAP_SHARED 0x01
  #endif
  $

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-09-30 09:34:20 -03:00
Arnaldo Carvalho de Melo
9012e3dda2 perf trace beauty: Add script to autogenerate mremap's flags args string/id table
It'll also conditionally generate the defines, so that if we don't have
those when building a new tool tarball in an older systems, we get
those, and we need them sometimes in the actual scnprintf routine, such
as when checking if a flags means we have an extra arg, like with
MREMAP_FIXED.

  $ tools/perf/trace/beauty/mremap_flags.sh
  static const char *mremap_flags[] = {
  	[ilog2(1) + 1] = "MAYMOVE",
  #ifndef MREMAP_MAYMOVE
  #define MREMAP_MAYMOVE 1
  #endif
  	[ilog2(2) + 1] = "FIXED",
  #ifndef MREMAP_FIXED
  #define MREMAP_FIXED 2
  #endif
  	[ilog2(4) + 1] = "DONTUNMAP",
  #ifndef MREMAP_DONTUNMAP
  #define MREMAP_DONTUNMAP 4
  #endif
  };
  $

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-09-29 18:07:27 -03:00