Drop the repeated word "that" in two places.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-9-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "and".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-8-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "to" in two places.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-7-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "down".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-6-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "the" in two places.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-5-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "pages".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-4-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "the".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-3-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "a".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-2-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The macro is not used anywhere, so remove the definition.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200723231544.17274-4-nivedita@alum.mit.edu
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The macro is not used anywhere, so remove the definition.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200723231544.17274-3-nivedita@alum.mit.edu
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the doubled word "for" in a comment.
Fix spello of "incremented".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/b04aa2e4-7c95-12f0-599d-43d07fb28134@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the doubled word "in" in a comment.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/3af7ed91-ad62-8445-40a4-9e07a64b9523@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the doubled word "is" in a comment to "it is".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/ad605959-0083-4794-8d31-6b073300dd6f@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the doubled words "to" and "the".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: SeongJae Park <sjpark@amazon.de>
Link: http://lkml.kernel.org/r/d9fae8d6-0d60-4d52-9385-3199ee98de49@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the doubled words "used" and "by".
Drop the repeated acronym "TLB" and make several other fixes around it.
(capital letters, spellos)
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: SeongJae Park <sjpark@amazon.de>
Link: http://lkml.kernel.org/r/2bb6e13e-44df-4920-52d9-4d3539945f73@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When onlining a first memory block in a zone, pcp lists are not updated
thus pcp struct will have the default setting of ->high = 0,->batch = 1.
This means till the second memory block in a zone(if it have) is onlined
the pcp lists of this zone will not contain any pages because pcp's
->count is always greater than ->high thus free_pcppages_bulk() is called
to free batch size(=1) pages every time system wants to add a page to the
pcp list through free_unref_page().
To put this in a word, system is not using benefits offered by the pcp
lists when there is a single onlineable memory block in a zone. Correct
this by always updating the pcp lists when memory block is onlined.
Fixes: 1f522509c7 ("mem-hotplug: avoid multiple zones sharing same boot strapping boot_pageset")
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Link: http://lkml.kernel.org/r/1596372896-15336-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is to introduce a general dummy helper. memory_add_physaddr_to_nid()
is a fallback option to get the nid in case NUMA_NO_NID is detected.
After this patch, arm64/sh/s390 can simply use the general dummy version.
PowerPC/x86/ia64 will still use their specific version.
This is the preparation to set a fallback value for dev_dax->target_node.
Signed-off-by: Jia He <justin.he@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chuhong Yuan <hslester96@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Cc: Kaly Xin <Kaly.Xin@arm.com>
Link: http://lkml.kernel.org/r/20200710031619.18762-2-justin.he@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some of our servers spend significant time at kernel boot initializing
memory block sysfs directories and then creating symlinks between them and
the corresponding nodes. The slowness happens because the machines get
stuck with the smallest supported memory block size on x86 (128M), which
results in 16,288 directories to cover the 2T of installed RAM. The
search for each memory block is noticeable even with commit 4fb6eabf10
("drivers/base/memory.c: cache memory blocks in xarray to accelerate
lookup").
Commit 078eb6aa50 ("x86/mm/memory_hotplug: determine block size based on
the end of boot memory") chooses the block size based on alignment with
memory end. That addresses hotplug failures in qemu guests, but for bare
metal systems whose memory end isn't aligned to even the smallest size, it
leaves them at 128M.
Make kernels that aren't running on a hypervisor use the largest supported
size (2G) to minimize overhead on big machines. Kernel boot goes 7%
faster on the aforementioned servers, shaving off half a second.
[daniel.m.jordan@oracle.com: v3]
Link: http://lkml.kernel.org/r/20200714205450.945834-1-daniel.m.jordan@oracle.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20200609225451.3542648-1-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix W=1 compile warnings (invalid kerneldoc):
mm/mmu_notifier.c:187: warning: Function parameter or member 'interval_sub' not described in 'mmu_interval_read_bgin'
mm/mmu_notifier.c:708: warning: Function parameter or member 'subscription' not described in 'mmu_notifier_registr'
mm/mmu_notifier.c:708: warning: Excess function parameter 'mn' description in 'mmu_notifier_register'
mm/mmu_notifier.c:880: warning: Function parameter or member 'subscription' not described in 'mmu_notifier_put'
mm/mmu_notifier.c:880: warning: Excess function parameter 'mn' description in 'mmu_notifier_put'
mm/mmu_notifier.c:982: warning: Function parameter or member 'ops' not described in 'mmu_interval_notifier_insert'
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: http://lkml.kernel.org/r/20200728171109.28687-4-krzk@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current_gfp_context() converts a number of PF_MEMALLOC_* per-process
flags into the corresponding GFP_* flags for memory allocation. In that
function, current->flags is accessed 3 times. That may lead to duplicated
access of the same memory location.
This is not usually a problem with minimal debug config options on as the
compiler can optimize away the duplicated memory accesses. With most of
the debug config options on, however, that may not be the case. For
example, the x86-64 object size of the __need_fs_reclaim() in a debug
kernel that calls current_gfp_context() was 309 bytes. With this patch
applied, the object size is reduced to 202 bytes. This is a saving of 107
bytes and will probably be slightly faster too.
Use READ_ONCE() to access current->flags to prevent the compiler from
possibly accessing current->flags multiple times.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michel Lespinasse <walken@google.com>
Link: http://lkml.kernel.org/r/20200618212936.9776-1-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The routine cma_init_reserved_areas is designed to activate all
reserved cma areas. It quits when it first encounters an error.
This can leave some areas in a state where they are reserved but
not activated. There is no feedback to code which performed the
reservation. Attempting to allocate memory from areas in such a
state will result in a BUG.
Modify cma_init_reserved_areas to always attempt to activate all
areas. The called routine, cma_activate_area is responsible for
leaving the area in a valid state. No one is making active use
of returned error codes, so change the routine to void.
How to reproduce: This example uses kernelcore, hugetlb and cma
as an easy way to reproduce. However, this is a more general cma
issue.
Two node x86 VM 16GB total, 8GB per node
Kernel command line parameters, kernelcore=4G hugetlb_cma=8G
Related boot time messages,
hugetlb_cma: reserve 8192 MiB, up to 4096 MiB per node
cma: Reserved 4096 MiB at 0x0000000100000000
hugetlb_cma: reserved 4096 MiB on node 0
cma: Reserved 4096 MiB at 0x0000000300000000
hugetlb_cma: reserved 4096 MiB on node 1
cma: CMA area hugetlb could not be activated
# echo 8 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
...
Call Trace:
bitmap_find_next_zero_area_off+0x51/0x90
cma_alloc+0x1a5/0x310
alloc_fresh_huge_page+0x78/0x1a0
alloc_pool_huge_page+0x6f/0xf0
set_max_huge_pages+0x10c/0x250
nr_hugepages_store_common+0x92/0x120
? __kmalloc+0x171/0x270
kernfs_fop_write+0xc1/0x1a0
vfs_write+0xc7/0x1f0
ksys_write+0x5f/0xe0
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: c64be2bb1c ("drivers: add Contiguous Memory Allocator")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200730163123.6451-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once we enable CMA_DEBUGFS, we will get the below errors: directory
'cma-hugetlb' with parent 'cma' already present.
We should have different names for different CMA areas.
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200616223131.33828-3-song.bao.hua@hisilicon.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: fix the names of general cma and hugetlb cma", v2.
The current code of CMA can only work when users pass a const string as
name parameter. we need to fix the way to handle names in CMA. On the
other hand, to avoid name conflicts after enabling CMA_DEBUGFS, each
hugetlb should get a different CMA name.
This patch (of 2):
If users give a name saved in stack, the current code will generate magic
pointer. if users don't give a name(NULL), kasprintf() will always return
NULL as we are at the early stage. that means cma_init_reserved_mem()
will return -ENOMEM if users set name parameter as NULL.
[natechancellor@gmail.com: return cma->name directly in cma_get_name]
Link: https://github.com/ClangBuiltLinux/linux/issues/1063
Link: http://lkml.kernel.org/r/20200623015840.621964-1-natechancellor@gmail.com
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200616223131.33828-2-song.bao.hua@hisilicon.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some case the cma area could not be activated, but the cma_alloc be
used under this case, then the kernel will crash caused by NULL pointer
dereference.
Add bitmap valid check in cma_alloc to avoid this issue.
Signed-off-by: Jianqun Xu <jay.xu@rock-chips.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: http://lkml.kernel.org/r/20200615010123.15596-1-jay.xu@rock-chips.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add following new vmstat events which will help in validating THP
migration without split. Statistics reported through these new VM events
will help in performance debugging.
1. THP_MIGRATION_SUCCESS
2. THP_MIGRATION_FAILURE
3. THP_MIGRATION_SPLIT
In addition, these new events also update normal page migration statistics
appropriately via PGMIGRATE_SUCCESS and PGMIGRATE_FAILURE. While here,
this updates current trace event 'mm_migrate_pages' to accommodate now
available THP statistics.
[akpm@linux-foundation.org: s/hpage_nr_pages/thp_nr_pages/]
[ziy@nvidia.com: v2]
Link: http://lkml.kernel.org/r/C5E3C65C-8253-4638-9D3C-71A61858BB8B@nvidia.com
[anshuman.khandual@arm.com: s/thp_nr_pages/hpage_nr_pages/]
Link: http://lkml.kernel.org/r/1594287583-16568-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Link: http://lkml.kernel.org/r/1594080415-27924-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 3917c80280 ("thp: change CoW semantics for
anon-THP"), the CoW page fault of THP has been rewritten, debug_cow is not
used anymore. So, just remove it.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/1592270980-116062-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a migrate_vma_*() self test for mmap(MAP_SHARED) to verify that
!vma_anonymous() ranges won't be migrated.
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: "Bharata B Rao" <bharata@linux.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200710194840.7602-3-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20200709165711.26584-3-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/migrate: optimize migrate_vma_setup() for holes".
A simple optimization for migrate_vma_*() when the source vma is not an
anonymous vma and a new test case to exercise it.
This patch (of 2):
When migrating system memory to device private memory, if the source
address range is a valid VMA range and there is no memory or a zero page,
the source PFN array is marked as valid but with no PFN.
This lets the device driver allocate private memory and clear it, then
insert the new device private struct page into the CPU's page tables when
migrate_vma_pages() is called. migrate_vma_pages() only inserts the new
page if the VMA is an anonymous range.
There is no point in telling the device driver to allocate device private
memory and then not migrate the page. Instead, mark the source PFN array
entries as not migrating to avoid this overhead.
[rcampbell@nvidia.com: v2]
Link: http://lkml.kernel.org/r/20200710194840.7602-2-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: "Bharata B Rao" <bharata@linux.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200710194840.7602-1-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20200709165711.26584-1-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20200709165711.26584-2-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing
synchronization") requires callers of huge_pte_alloc to hold i_mmap_rwsem
in at least read mode. This is because the explicit locking in
huge_pmd_share (called by huge_pte_alloc) was removed. When restructuring
the code, the call to huge_pte_alloc in the else block at the beginning of
hugetlb_fault was missed.
Unfortunately, that else clause is exercised when there is no page table
entry. This will likely lead to a call to huge_pmd_share. If
huge_pmd_share thinks pmd sharing is possible, it will traverse the
mapping tree (i_mmap) without holding i_mmap_rwsem. If someone else is
modifying the tree, bad things such as addressing exceptions or worse
could happen.
Simply remove the else clause. It should have been removed previously.
The code following the else will call huge_pte_alloc with the appropriate
locking.
To prevent this type of issue in the future, add routines to assert that
i_mmap_rwsem is held, and call these routines in huge pmd sharing
routines.
Fixes: c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization")
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A.Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/e670f327-5cf9-1959-96e4-6dc7cc30d3d5@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
syzbot found issues with having hugetlbfs on a union/overlay as reported
in [1]. Due to the limitations (no write) and special functionality of
hugetlbfs, it does not work well in filesystem stacking. There are no
know use cases for hugetlbfs stacking. Rather than making modifications
to get hugetlbfs working in such environments, simply prevent stacking.
[1] https://lore.kernel.org/linux-mm/000000000000b4684e05a2968ca6@google.com/
Reported-by: syzbot+d6ec23007e951dadf3de@syzkaller.appspotmail.com
Suggested-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Colin Walters <walters@verbum.org>
Link: http://lkml.kernel.org/r/80f869aa-810d-ef6c-8888-b46cee135907@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the OOM killer finds a victim and tryies to kill it, if the victim is
already exiting, the task mm will be NULL and no process will be killed.
But the dump_header() has been already executed, so it will be strange to
dump so much information without killing a process. We'd better show some
helpful information to indicate why this happens.
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/20200721010127.17238-1-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The exported value includes oom_score_adj so the range is no [0, 1000] as
described in the previous section but rather [0, 2000]. Mention that fact
explicitly.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: http://lkml.kernel.org/r/20200709062603.18480-2-mhocko@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are at least two notes in the oom section. The 3% discount for root
processes is gone since d46078b288 ("mm, oom: remove 3% bonus for
CAP_SYS_ADMIN processes").
Likewise children of the selected oom victim are not sacrificed since
bbbe480297 ("mm, oom: remove 'prefer children over parent' heuristic")
Drop both of them.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: http://lkml.kernel.org/r/20200709062603.18480-1-mhocko@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently we found an issue on our production environment that when memcg
oom is triggered the oom killer doesn't chose the process with largest
resident memory but chose the first scanned process. Note that all
processes in this memcg have the same oom_score_adj, so the oom killer
should chose the process with largest resident memory.
Bellow is part of the oom info, which is enough to analyze this issue.
[7516987.983223] memory: usage 16777216kB, limit 16777216kB, failcnt 52843037
[7516987.983224] memory+swap: usage 16777216kB, limit 9007199254740988kB, failcnt 0
[7516987.983225] kmem: usage 301464kB, limit 9007199254740988kB, failcnt 0
[...]
[7516987.983293] [ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name
[7516987.983510] [ 5740] 0 5740 257 1 32768 0 -998 pause
[7516987.983574] [58804] 0 58804 4594 771 81920 0 -998 entry_point.bas
[7516987.983577] [58908] 0 58908 7089 689 98304 0 -998 cron
[7516987.983580] [58910] 0 58910 16235 5576 163840 0 -998 supervisord
[7516987.983590] [59620] 0 59620 18074 1395 188416 0 -998 sshd
[7516987.983594] [59622] 0 59622 18680 6679 188416 0 -998 python
[7516987.983598] [59624] 0 59624 1859266 5161 548864 0 -998 odin-agent
[7516987.983600] [59625] 0 59625 707223 9248 983040 0 -998 filebeat
[7516987.983604] [59627] 0 59627 416433 64239 774144 0 -998 odin-log-agent
[7516987.983607] [59631] 0 59631 180671 15012 385024 0 -998 python3
[7516987.983612] [61396] 0 61396 791287 3189 352256 0 -998 client
[7516987.983615] [61641] 0 61641 1844642 29089 946176 0 -998 client
[7516987.983765] [ 9236] 0 9236 2642 467 53248 0 -998 php_scanner
[7516987.983911] [42898] 0 42898 15543 838 167936 0 -998 su
[7516987.983915] [42900] 1000 42900 3673 867 77824 0 -998 exec_script_vr2
[7516987.983918] [42925] 1000 42925 36475 19033 335872 0 -998 python
[7516987.983921] [57146] 1000 57146 3673 848 73728 0 -998 exec_script_J2p
[7516987.983925] [57195] 1000 57195 186359 22958 491520 0 -998 python2
[7516987.983928] [58376] 1000 58376 275764 14402 290816 0 -998 rosmaster
[7516987.983931] [58395] 1000 58395 155166 4449 245760 0 -998 rosout
[7516987.983935] [58406] 1000 58406 18285584 3967322 37101568 0 -998 data_sim
[7516987.984221] oom-kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=3aa16c9482ae3a6f6b78bda68a55d32c87c99b985e0f11331cddf05af6c4d753,mems_allowed=0-1,oom_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184,task_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184/1f246a3eeea8f70bf91141eeaf1805346a666e225f823906485ea0b6c37dfc3d,task=pause,pid=5740,uid=0
[7516987.984254] Memory cgroup out of memory: Killed process 5740 (pause) total-vm:1028kB, anon-rss:4kB, file-rss:0kB, shmem-rss:0kB
[7516988.092344] oom_reaper: reaped process 5740 (pause), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
We can find that the first scanned process 5740 (pause) was killed, but
its rss is only one page. That is because, when we calculate the oom
badness in oom_badness(), we always ignore the negtive point and convert
all of these negtive points to 1. Now as oom_score_adj of all the
processes in this targeted memcg have the same value -998, the points of
these processes are all negtive value. As a result, the first scanned
process will be killed.
The oom_socre_adj (-998) in this memcg is set by kubelet, because it is a
a Guaranteed pod, which has higher priority to prevent from being killed
by system oom.
To fix this issue, we should make the calculation of oom point more
accurate. We can achieve it by convert the chosen_point from 'unsigned
long' to 'long'.
[cai@lca.pw: reported a issue in the previous version]
[mhocko@suse.com: fixed the issue reported by Cai]
[mhocko@suse.com: add the comment in proc_oom_score()]
[laoar.shao@gmail.com: v3]
Link: http://lkml.kernel.org/r/1594396651-9931-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/1594309987-9919-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previous implementatoin calls untagged_addr() before error check, while if
the error check failed and return EINVAL, the untagged_addr() call is just
useless work.
Signed-off-by: Wenchao Hao <haowenchao22@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200801090825.5597-1-haowenchao22@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix W=1 compile warnings (invalid kerneldoc):
mm/mempolicy.c:137: warning: Function parameter or member 'node' not described in 'numa_map_to_online_node'
mm/mempolicy.c:137: warning: Excess function parameter 'nid' description in 'numa_map_to_online_node'
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200728171109.28687-3-krzk@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no compact_defer_limit. It should be compact_defer_shift in
use. and add compact_order_failed explanation.
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Link: http://lkml.kernel.org/r/3bd60e1b-a74e-050d-ade4-6e8f54e00b92@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Proactive compaction uses per-node/zone "fragmentation score" which is
always in range [0, 100], so use unsigned type of these scores as well as
for related constants.
Signed-off-by: Nitin Gupta <nigupta@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200618010319.13159-1-nigupta@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix compile error when COMPACTION_HPAGE_ORDER is assigned to
HUGETLB_PAGE_ORDER. The correct way to check if this constant is defined
is to check for CONFIG_HUGETLBFS.
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Nitin Gupta <nigupta@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200623064544.25766-1-nigupta@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For some applications, we need to allocate almost all memory as hugepages.
However, on a running system, higher-order allocations can fail if the
memory is fragmented. Linux kernel currently does on-demand compaction as
we request more hugepages, but this style of compaction incurs very high
latency. Experiments with one-time full memory compaction (followed by
hugepage allocations) show that kernel is able to restore a highly
fragmented memory state to a fairly compacted memory state within <1 sec
for a 32G system. Such data suggests that a more proactive compaction can
help us allocate a large fraction of memory as hugepages keeping
allocation latencies low.
For a more proactive compaction, the approach taken here is to define a
new sysctl called 'vm.compaction_proactiveness' which dictates bounds for
external fragmentation which kcompactd tries to maintain.
The tunable takes a value in range [0, 100], with a default of 20.
Note that a previous version of this patch [1] was found to introduce too
many tunables (per-order extfrag{low, high}), but this one reduces them to
just one sysctl. Also, the new tunable is an opaque value instead of
asking for specific bounds of "external fragmentation", which would have
been difficult to estimate. The internal interpretation of this opaque
value allows for future fine-tuning.
Currently, we use a simple translation from this tunable to [low, high]
"fragmentation score" thresholds (low=100-proactiveness, high=low+10%).
The score for a node is defined as weighted mean of per-zone external
fragmentation. A zone's present_pages determines its weight.
To periodically check per-node score, we reuse per-node kcompactd threads,
which are woken up every 500 milliseconds to check the same. If a node's
score exceeds its high threshold (as derived from user-provided
proactiveness value), proactive compaction is started until its score
reaches its low threshold value. By default, proactiveness is set to 20,
which implies threshold values of low=80 and high=90.
This patch is largely based on ideas from Michal Hocko [2]. See also the
LWN article [3].
Performance data
================
System: x64_64, 1T RAM, 80 CPU threads.
Kernel: 5.6.0-rc3 + this patch
echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag
Before starting the driver, the system was fragmented from a userspace
program that allocates all memory and then for each 2M aligned section,
frees 3/4 of base pages using munmap. The workload is mainly anonymous
userspace pages, which are easy to move around. I intentionally avoided
unmovable pages in this test to see how much latency we incur when
hugepage allocations hit direct compaction.
1. Kernel hugepage allocation latencies
With the system in such a fragmented state, a kernel driver then allocates
as many hugepages as possible and measures allocation latency:
(all latency values are in microseconds)
- With vanilla 5.6.0-rc3
percentile latency
–––––––––– –––––––
5 7894
10 9496
25 12561
30 15295
40 18244
50 21229
60 27556
75 30147
80 31047
90 32859
95 33799
Total 2M hugepages allocated = 383859 (749G worth of hugepages out of 762G
total free => 98% of free memory could be allocated as hugepages)
- With 5.6.0-rc3 + this patch, with proactiveness=20
sysctl -w vm.compaction_proactiveness=20
percentile latency
–––––––––– –––––––
5 2
10 2
25 3
30 3
40 3
50 4
60 4
75 4
80 4
90 5
95 429
Total 2M hugepages allocated = 384105 (750G worth of hugepages out of 762G
total free => 98% of free memory could be allocated as hugepages)
2. JAVA heap allocation
In this test, we first fragment memory using the same method as for (1).
Then, we start a Java process with a heap size set to 700G and request the
heap to be allocated with THP hugepages. We also set THP to madvise to
allow hugepage backing of this heap.
/usr/bin/time
java -Xms700G -Xmx700G -XX:+UseTransparentHugePages -XX:+AlwaysPreTouch
The above command allocates 700G of Java heap using hugepages.
- With vanilla 5.6.0-rc3
17.39user 1666.48system 27:37.89elapsed
- With 5.6.0-rc3 + this patch, with proactiveness=20
8.35user 194.58system 3:19.62elapsed
Elapsed time remains around 3:15, as proactiveness is further increased.
Note that proactive compaction happens throughout the runtime of these
workloads. The situation of one-time compaction, sufficient to supply
hugepages for following allocation stream, can probably happen for more
extreme proactiveness values, like 80 or 90.
In the above Java workload, proactiveness is set to 20. The test starts
with a node's score of 80 or higher, depending on the delay between the
fragmentation step and starting the benchmark, which gives more-or-less
time for the initial round of compaction. As t he benchmark consumes
hugepages, node's score quickly rises above the high threshold (90) and
proactive compaction starts again, which brings down the score to the low
threshold level (80). Repeat.
bpftrace also confirms proactive compaction running 20+ times during the
runtime of this Java benchmark. kcompactd threads consume 100% of one of
the CPUs while it tries to bring a node's score within thresholds.
Backoff behavior
================
Above workloads produce a memory state which is easy to compact. However,
if memory is filled with unmovable pages, proactive compaction should
essentially back off. To test this aspect:
- Created a kernel driver that allocates almost all memory as hugepages
followed by freeing first 3/4 of each hugepage.
- Set proactiveness=40
- Note that proactive_compact_node() is deferred maximum number of times
with HPAGE_FRAG_CHECK_INTERVAL_MSEC of wait between each check
(=> ~30 seconds between retries).
[1] https://patchwork.kernel.org/patch/11098289/
[2] https://lore.kernel.org/linux-mm/20161230131412.GI13301@dhcp22.suse.cz/
[3] https://lwn.net/Articles/817905/
Signed-off-by: Nitin Gupta <nigupta@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Oleksandr Natalenko <oleksandr@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nitin Gupta <ngupta@nitingupta.dev>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Link: http://lkml.kernel.org/r/20200616204527.19185-1-nigupta@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The keys in smaps output are padded to fixed width with spaces. All
except for THPeligible that uses tabs (only since commit c06306696f
("mm: thp: fix false negative of shmem vma's THP eligibility")).
Unify the output formatting to save time debugging some naïve parsers.
(Part of the unification is also aligning FilePmdMapped with others.)
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200728083207.17531-1-mkoutny@suse.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that workingset detection is implemented for anonymous LRU, we don't
need large inactive list to allow detecting frequently accessed pages
before they are reclaimed, anymore. This effectively reverts the
temporary measure put in by commit "mm/vmscan: make active/inactive ratio
as 1:1 for anon lru".
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-7-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements workingset detection for anonymous LRU. All the
infrastructure is implemented by the previous patches so this patch just
activates the workingset detection by installing/retrieving the shadow
entry and adding refault calculation.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Workingset detection for anonymous page will be implemented in the
following patch and it requires to store the shadow entries into the
swapcache. This patch implements an infrastructure to store the shadow
entry in the swapcache.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/1595490560-15117-5-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To prepare the workingset detection for anon LRU, this patch splits
workingset event counters for refault, activate and restore into anon and
file variants, as well as the refaults counter in struct lruvec.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In current implementation, newly created or swap-in anonymous page is
started on active list. Growing active list results in rebalancing
active/inactive list so old pages on active list are demoted to inactive
list. Hence, the page on active list isn't protected at all.
Following is an example of this situation.
Assume that 50 hot pages on active list. Numbers denote the number of
pages on active/inactive list (active | inactive).
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (used-once) pages
50(uo) | 50(h)
3. workload: another 50 newly created (used-once) pages
50(uo) | 50(uo), swap-out 50(h)
This patch tries to fix this issue. Like as file LRU, newly created or
swap-in anonymous pages will be inserted to the inactive list. They are
promoted to active list if enough reference happens. This simple
modification changes the above example as following.
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (used-once) pages
50(h) | 50(uo)
3. workload: another 50 newly created (used-once) pages
50(h) | 50(uo), swap-out 50(uo)
As you can see, hot pages on active list would be protected.
Note that, this implementation has a drawback that the page cannot be
promoted and will be swapped-out if re-access interval is greater than the
size of inactive list but less than the size of total(active+inactive).
To solve this potential issue, following patch will apply workingset
detection similar to the one that's already applied to file LRU.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "workingset protection/detection on the anonymous LRU list", v7.
* PROBLEM
In current implementation, newly created or swap-in anonymous page is
started on the active list. Growing the active list results in
rebalancing active/inactive list so old pages on the active list are
demoted to the inactive list. Hence, hot page on the active list isn't
protected at all.
Following is an example of this situation.
Assume that 50 hot pages on active list and system can contain total 100
pages. Numbers denote the number of pages on active/inactive list (active
| inactive). (h) stands for hot pages and (uo) stands for used-once
pages.
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (used-once) pages
50(uo) | 50(h)
3. workload: another 50 newly created (used-once) pages
50(uo) | 50(uo), swap-out 50(h)
As we can see, hot pages are swapped-out and it would cause swap-in later.
* SOLUTION
Since this is what we want to avoid, this patchset implements workingset
protection. Like as the file LRU list, newly created or swap-in anonymous
page is started on the inactive list. Also, like as the file LRU list, if
enough reference happens, the page will be promoted. This simple
modification changes the above example as following.
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (used-once) pages
50(h) | 50(uo)
3. workload: another 50 newly created (used-once) pages
50(h) | 50(uo), swap-out 50(uo)
hot pages remains in the active list. :)
* EXPERIMENT
I tested this scenario on my test bed and confirmed that this problem
happens on current implementation. I also checked that it is fixed by
this patchset.
* SUBJECT
workingset detection
* PROBLEM
Later part of the patchset implements the workingset detection for the
anonymous LRU list. There is a corner case that workingset protection
could cause thrashing. If we can avoid thrashing by workingset detection,
we can get the better performance.
Following is an example of thrashing due to the workingset protection.
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (will be hot) pages
50(h) | 50(wh)
3. workload: another 50 newly created (used-once) pages
50(h) | 50(uo), swap-out 50(wh)
4. workload: 50 (will be hot) pages
50(h) | 50(wh), swap-in 50(wh)
5. workload: another 50 newly created (used-once) pages
50(h) | 50(uo), swap-out 50(wh)
6. repeat 4, 5
Without workingset detection, this kind of workload cannot be promoted and
thrashing happens forever.
* SOLUTION
Therefore, this patchset implements workingset detection. All the
infrastructure for workingset detecion is already implemented, so there is
not much work to do. First, extend workingset detection code to deal with
the anonymous LRU list. Then, make swap cache handles the exceptional
value for the shadow entry. Lastly, install/retrieve the shadow value
into/from the swap cache and check the refault distance.
* EXPERIMENT
I made a test program to imitates above scenario and confirmed that
problem exists. Then, I checked that this patchset fixes it.
My test setup is a virtual machine with 8 cpus and 6100MB memory. But,
the amount of the memory that the test program can use is about 280 MB.
This is because the system uses large ram-backed swap and large ramdisk to
capture the trace.
Test scenario is like as below.
1. allocate cold memory (512MB)
2. allocate hot-1 memory (96MB)
3. activate hot-1 memory (96MB)
4. allocate another hot-2 memory (96MB)
5. access cold memory (128MB)
6. access hot-2 memory (96MB)
7. repeat 5, 6
Since hot-1 memory (96MB) is on the active list, the inactive list can
contains roughly 190MB pages. hot-2 memory's re-access interval (96+128
MB) is more 190MB, so it cannot be promoted without workingset detection
and swap-in/out happens repeatedly. With this patchset, workingset
detection works and promotion happens. Therefore, swap-in/out occurs
less.
Here is the result. (average of 5 runs)
type swap-in swap-out
base 863240 989945
patch 681565 809273
As we can see, patched kernel do less swap-in/out.
* OVERALL TEST (ebizzy using modified random function)
ebizzy is the test program that main thread allocates lots of memory and
child threads access them randomly during the given times. Swap-in will
happen if allocated memory is larger than the system memory.
The random function that represents the zipf distribution is used to make
hot/cold memory. Hot/cold ratio is controlled by the parameter. If the
parameter is high, hot memory is accessed much larger than cold one. If
the parameter is low, the number of access on each memory would be
similar. I uses various parameters in order to show the effect of
patchset on various hot/cold ratio workload.
My test setup is a virtual machine with 8 cpus, 1024 MB memory and 5120 MB
ram swap.
Result format is as following.
param: 1-1024-0.1
- 1 (number of thread)
- 1024 (allocated memory size, MB)
- 0.1 (zipf distribution alpha,
0.1 works like as roughly uniform random,
1.3 works like as small portion of memory is hot and the others are cold)
pswpin: smaller is better
std: standard deviation
improvement: negative is better
* single thread
param pswpin std improvement
base 1-1024.0-0.1 14101983.40 79441.19
prot 1-1024.0-0.1 14065875.80 136413.01 ( -0.26 )
detect 1-1024.0-0.1 13910435.60 100804.82 ( -1.36 )
base 1-1024.0-0.7 7998368.80 43469.32
prot 1-1024.0-0.7 7622245.80 88318.74 ( -4.70 )
detect 1-1024.0-0.7 7618515.20 59742.07 ( -4.75 )
base 1-1024.0-1.3 1017400.80 38756.30
prot 1-1024.0-1.3 940464.60 29310.69 ( -7.56 )
detect 1-1024.0-1.3 945511.40 24579.52 ( -7.07 )
base 1-1280.0-0.1 22895541.40 50016.08
prot 1-1280.0-0.1 22860305.40 51952.37 ( -0.15 )
detect 1-1280.0-0.1 22705565.20 93380.35 ( -0.83 )
base 1-1280.0-0.7 13717645.60 46250.65
prot 1-1280.0-0.7 12935355.80 64754.43 ( -5.70 )
detect 1-1280.0-0.7 13040232.00 63304.00 ( -4.94 )
base 1-1280.0-1.3 1654251.40 4159.68
prot 1-1280.0-1.3 1522680.60 33673.50 ( -7.95 )
detect 1-1280.0-1.3 1599207.00 70327.89 ( -3.33 )
base 1-1536.0-0.1 31621775.40 31156.28
prot 1-1536.0-0.1 31540355.20 62241.36 ( -0.26 )
detect 1-1536.0-0.1 31420056.00 123831.27 ( -0.64 )
base 1-1536.0-0.7 19620760.60 60937.60
prot 1-1536.0-0.7 18337839.60 56102.58 ( -6.54 )
detect 1-1536.0-0.7 18599128.00 75289.48 ( -5.21 )
base 1-1536.0-1.3 2378142.40 20994.43
prot 1-1536.0-1.3 2166260.60 48455.46 ( -8.91 )
detect 1-1536.0-1.3 2183762.20 16883.24 ( -8.17 )
base 1-1792.0-0.1 40259714.80 90750.70
prot 1-1792.0-0.1 40053917.20 64509.47 ( -0.51 )
detect 1-1792.0-0.1 39949736.40 104989.64 ( -0.77 )
base 1-1792.0-0.7 25704884.40 69429.68
prot 1-1792.0-0.7 23937389.00 79945.60 ( -6.88 )
detect 1-1792.0-0.7 24271902.00 35044.30 ( -5.57 )
base 1-1792.0-1.3 3129497.00 32731.86
prot 1-1792.0-1.3 2796994.40 19017.26 ( -10.62 )
detect 1-1792.0-1.3 2886840.40 33938.82 ( -7.75 )
base 1-2048.0-0.1 48746924.40 50863.88
prot 1-2048.0-0.1 48631954.40 24537.30 ( -0.24 )
detect 1-2048.0-0.1 48509419.80 27085.34 ( -0.49 )
base 1-2048.0-0.7 32046424.40 78624.22
prot 1-2048.0-0.7 29764182.20 86002.26 ( -7.12 )
detect 1-2048.0-0.7 30250315.80 101282.14 ( -5.60 )
base 1-2048.0-1.3 3916723.60 24048.55
prot 1-2048.0-1.3 3490781.60 33292.61 ( -10.87 )
detect 1-2048.0-1.3 3585002.20 44942.04 ( -8.47 )
* multi thread
param pswpin std improvement
base 8-1024.0-0.1 16219822.60 329474.01
prot 8-1024.0-0.1 15959494.00 654597.45 ( -1.61 )
detect 8-1024.0-0.1 15773790.80 502275.25 ( -2.75 )
base 8-1024.0-0.7 9174107.80 537619.33
prot 8-1024.0-0.7 8571915.00 385230.08 ( -6.56 )
detect 8-1024.0-0.7 8489484.20 364683.00 ( -7.46 )
base 8-1024.0-1.3 1108495.60 83555.98
prot 8-1024.0-1.3 1038906.20 63465.20 ( -6.28 )
detect 8-1024.0-1.3 941817.80 32648.80 ( -15.04 )
base 8-1280.0-0.1 25776114.20 450480.45
prot 8-1280.0-0.1 25430847.00 465627.07 ( -1.34 )
detect 8-1280.0-0.1 25282555.00 465666.55 ( -1.91 )
base 8-1280.0-0.7 15218968.00 702007.69
prot 8-1280.0-0.7 13957947.80 492643.86 ( -8.29 )
detect 8-1280.0-0.7 14158331.20 238656.02 ( -6.97 )
base 8-1280.0-1.3 1792482.80 30512.90
prot 8-1280.0-1.3 1577686.40 34002.62 ( -11.98 )
detect 8-1280.0-1.3 1556133.00 22944.79 ( -13.19 )
base 8-1536.0-0.1 33923761.40 575455.85
prot 8-1536.0-0.1 32715766.20 300633.51 ( -3.56 )
detect 8-1536.0-0.1 33158477.40 117764.51 ( -2.26 )
base 8-1536.0-0.7 20628907.80 303851.34
prot 8-1536.0-0.7 19329511.20 341719.31 ( -6.30 )
detect 8-1536.0-0.7 20013934.00 385358.66 ( -2.98 )
base 8-1536.0-1.3 2588106.40 130769.20
prot 8-1536.0-1.3 2275222.40 89637.06 ( -12.09 )
detect 8-1536.0-1.3 2365008.40 124412.55 ( -8.62 )
base 8-1792.0-0.1 43328279.20 946469.12
prot 8-1792.0-0.1 41481980.80 525690.89 ( -4.26 )
detect 8-1792.0-0.1 41713944.60 406798.93 ( -3.73 )
base 8-1792.0-0.7 27155647.40 536253.57
prot 8-1792.0-0.7 24989406.80 502734.52 ( -7.98 )
detect 8-1792.0-0.7 25524806.40 263237.87 ( -6.01 )
base 8-1792.0-1.3 3260372.80 137907.92
prot 8-1792.0-1.3 2879187.80 63597.26 ( -11.69 )
detect 8-1792.0-1.3 2892962.20 33229.13 ( -11.27 )
base 8-2048.0-0.1 50583989.80 710121.48
prot 8-2048.0-0.1 49599984.40 228782.42 ( -1.95 )
detect 8-2048.0-0.1 50578596.00 660971.66 ( -0.01 )
base 8-2048.0-0.7 33765479.60 812659.55
prot 8-2048.0-0.7 30767021.20 462907.24 ( -8.88 )
detect 8-2048.0-0.7 32213068.80 211884.24 ( -4.60 )
base 8-2048.0-1.3 3941675.80 28436.45
prot 8-2048.0-1.3 3538742.40 76856.08 ( -10.22 )
detect 8-2048.0-1.3 3579397.80 58630.95 ( -9.19 )
As we can see, all the cases show improvement. Especially, test case with
zipf distribution 1.3 show more improvements. It means that if there is a
hot/cold tendency in anon pages, this patchset works better.
This patch (of 6):
Current implementation of LRU management for anonymous page has some
problems. Most important one is that it doesn't protect the workingset,
that is, pages on the active LRU list. Although, this problem will be
fixed in the following patchset, the preparation is required and this
patch does it.
What following patch does is to implement workingset protection. After
the following patchset, newly created or swap-in pages will start their
lifetime on the inactive list. If inactive list is too small, there is
not enough chance to be referenced and the page cannot become the
workingset.
In order to provide the newly anonymous or swap-in pages enough chance to
be referenced again, this patch makes active/inactive LRU ratio as 1:1.
This is just a temporary measure. Later patch in the series introduces
workingset detection for anonymous LRU that will be used to better decide
if pages should start on the active and inactive list. Afterwards this
patch is effectively reverted.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/1595490560-15117-1-git-send-email-iamjoonsoo.kim@lge.com
Link: http://lkml.kernel.org/r/1595490560-15117-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the reservation routine, we only check whether the cpuset meets the
memory allocation requirements. But we ignore the mempolicy of MPOL_BIND
case. If someone mmap hugetlb succeeds, but the subsequent memory
allocation may fail due to mempolicy restrictions and receives the SIGBUS
signal. This can be reproduced by the follow steps.
1) Compile the test case.
cd tools/testing/selftests/vm/
gcc map_hugetlb.c -o map_hugetlb
2) Pre-allocate huge pages. Suppose there are 2 numa nodes in the
system. Each node will pre-allocate one huge page.
echo 2 > /proc/sys/vm/nr_hugepages
3) Run test case(mmap 4MB). We receive the SIGBUS signal.
numactl --membind=3D0 ./map_hugetlb 4
With this patch applied, the mmap will fail in the step 3) and throw
"mmap: Cannot allocate memory".
[akpm@linux-foundation.org: include sched.h for `current']
Reported-by: Jianchao Guo <guojianchao@bytedance.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Baoquan He <bhe@redhat.com>
Link: http://lkml.kernel.org/r/20200728034938.14993-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>