In bch_mca_scan(), the number of shrinking btree node is calculated
by code like this,
unsigned long nr = sc->nr_to_scan;
nr /= c->btree_pages;
nr = min_t(unsigned long, nr, mca_can_free(c));
variable sc->nr_to_scan is number of objects (here is bcache B+tree
nodes' number) to shrink, and pointer variable sc is sent from memory
management code as parametr of a callback.
If sc->nr_to_scan is smaller than c->btree_pages, after the above
calculation, variable 'nr' will be 0 and nothing will be shrunk. It is
frequeently observed that only 1 or 2 is set to sc->nr_to_scan and make
nr to be zero. Then bch_mca_scan() will do nothing more then acquiring
and releasing mutex c->bucket_lock.
This patch checkes whether nr is 0 after the above calculation, if 0
is the result then set 1 to variable 'n'. Then at least bch_mca_scan()
will try to shrink a single B+tree node.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For writeback mode, if there is no regular I/O request for a while,
the writeback rate will be set to the maximum value (1TB/s for now).
This is good for most of the storage workload, but there are still
people don't what the maximum writeback rate in I/O idle time.
This patch adds a sysfs interface file idle_max_writeback_rate to
permit people to disable maximum writeback rate. Then the minimum
writeback rate can be advised by writeback_rate_minimum in the
bcache device's sysfs interface.
Reported-by: Christian Balzer <chibi@gol.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds code comments in bch_btree_leaf_dirty() to explain
why w->journal should always reference the eldest journal pin of
all the writing bkeys in the btree node. To make the bcache journal
code to be easier to be understood.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bcache_allocator can call the following:
bch_allocator_thread()
-> bch_prio_write()
-> bch_bucket_alloc()
-> wait on &ca->set->bucket_wait
But the wake up event on bucket_wait is supposed to come from
bch_allocator_thread() itself => deadlock:
[ 1158.490744] INFO: task bcache_allocato:15861 blocked for more than 10 seconds.
[ 1158.495929] Not tainted 5.3.0-050300rc3-generic #201908042232
[ 1158.500653] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1158.504413] bcache_allocato D 0 15861 2 0x80004000
[ 1158.504419] Call Trace:
[ 1158.504429] __schedule+0x2a8/0x670
[ 1158.504432] schedule+0x2d/0x90
[ 1158.504448] bch_bucket_alloc+0xe5/0x370 [bcache]
[ 1158.504453] ? wait_woken+0x80/0x80
[ 1158.504466] bch_prio_write+0x1dc/0x390 [bcache]
[ 1158.504476] bch_allocator_thread+0x233/0x490 [bcache]
[ 1158.504491] kthread+0x121/0x140
[ 1158.504503] ? invalidate_buckets+0x890/0x890 [bcache]
[ 1158.504506] ? kthread_park+0xb0/0xb0
[ 1158.504510] ret_from_fork+0x35/0x40
Fix by making the call to bch_prio_write() non-blocking, so that
bch_allocator_thread() never waits on itself.
Moreover, make sure to wake up the garbage collector thread when
bch_prio_write() is failing to allocate buckets.
BugLink: https://bugs.launchpad.net/bugs/1784665
BugLink: https://bugs.launchpad.net/bugs/1796292
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds simple code comments for bch_keylist_pop() and
bch_keylist_pop_front() in bset.c, to make the code more easier to
be understand.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In request.c:bch_data_insert_keys(), there is code comment for a piece
of dead code. This patch deletes the dead code and its code comment
since they are useless in practice.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Previous code only returns "Not a bcache superblock" for both bcache
super block offset and magic error. This patch addss more accurate error
messages,
- for super block unmatched offset:
"Not a bcache superblock (bad offset)"
- for super block unmatched magic number:
"Not a bcache superblock (bad magic)"
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit cafe563591 ("bcache: A block layer cache") leads to the
following static checker warning:
./drivers/md/bcache/super.c:770 bcache_device_free()
warn: variable dereferenced before check 'd->disk' (see line 766)
drivers/md/bcache/super.c
762 static void bcache_device_free(struct bcache_device *d)
763 {
764 lockdep_assert_held(&bch_register_lock);
765
766 pr_info("%s stopped", d->disk->disk_name);
^^^^^^^^^
Unchecked dereference.
767
768 if (d->c)
769 bcache_device_detach(d);
770 if (d->disk && d->disk->flags & GENHD_FL_UP)
^^^^^^^
Check too late.
771 del_gendisk(d->disk);
772 if (d->disk && d->disk->queue)
773 blk_cleanup_queue(d->disk->queue);
774 if (d->disk) {
775 ida_simple_remove(&bcache_device_idx,
776 first_minor_to_idx(d->disk->first_minor));
777 put_disk(d->disk);
778 }
779
It is not 100% sure that the gendisk struct of bcache device will always
be there, the warning makes sense when there is problem in block core.
This patch tries to remove the static checking warning by checking
d->disk to avoid NULL pointer deferences.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fix a lost wake-up problem caused by the race between
mca_cannibalize_lock and bch_cannibalize_unlock.
Consider two processes, A and B. Process A is executing
mca_cannibalize_lock, while process B takes c->btree_cache_alloc_lock
and is executing bch_cannibalize_unlock. The problem happens that after
process A executes cmpxchg and will execute prepare_to_wait. In this
timeslice process B executes wake_up, but after that process A executes
prepare_to_wait and set the state to TASK_INTERRUPTIBLE. Then process A
goes to sleep but no one will wake up it. This problem may cause bcache
device to dead.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Fifo structure journal.pin is implemented by a cycle buffer, if the back
index reaches highest location of the cycle buffer, it will be swapped
to 0. Once the swapping happens, it means a smaller fifo index might be
associated to a newer journal entry. So the btree node with oldest
journal entry won't be selected in bch_btree_leaf_dirty() to reference
the dirty B+tree leaf node. This problem may cause bcache journal won't
protect unflushed oldest B+tree dirty leaf node in power failure, and
this B+tree leaf node is possible to beinconsistent after reboot from
power failure.
This patch fixes the fifo index comparing logic in journal_pin_cmp(),
to avoid potential corrupted B+tree leaf node when the back index of
journal pin is swapped.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl1/no0QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmo9EACFXMbdNmEEUMyRSdOkVLlr7ZlTyQi1tLpB
YESDPxdBfybzpi0qa8JSaysGIfvSkSjmSAqBqrWPmASOSOL6CK4bbA4fTYbgPplk
XeHUdgGiG34oCQUn8Xil5reYaTm7I6LQWnWTpVa5fIhAyUYaGJL+987ykoGmpQmB
Dvf3YSc+8H0RTp9PCMVd6UCGPkZbVlLImGad3PF5ULvTEaE4RCXC2aiAgh0p1l5A
J2CkRZ+/mio3zN2O4YN7VdPGfr1Wo1iZ834xbIGLegv1miHXagFk7jwTcC7zIt5t
oSnJnqIg3iCe7SpWt4Bkzw/zy/2UqaspifbCMgw8vychlViVRUHFO5h85Yboo7kQ
OMLEQPcwjm6dTHv5h1iXF9LW1O7NoiYmmgvApU9uOo1HUrl1X7PZ3JEfUsVHxkOO
T4D5igf0Krsl1eAbiwEUQzy7vFZ8PlRHqrHgK+fkyotzHu1BJR7OQkYygEfGFOB/
EfMxplGDpmibYGuWCwDX2bPAmLV3SPUQENReHrfPJRDt5TD1UkFpVGv/PLLhbr0p
cLYI78DKpDSigBpVMmwq5nTYpnex33eyDTTA8C0sakcsdzdmU5qv30y3wm4nTiep
f6gZo6IMXwRg/rCgVVrd9SKQAr/8wEzVlsDW3qyi2pVT8sHIgm0tFv7paihXGdDV
xsKgmTrQQQ==
=Qt+h
-----END PGP SIGNATURE-----
Merge tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- Two NVMe pull requests:
- ana log parse fix from Anton
- nvme quirks support for Apple devices from Ben
- fix missing bio completion tracing for multipath stack devices
from Hannes and Mikhail
- IP TOS settings for nvme rdma and tcp transports from Israel
- rq_dma_dir cleanups from Israel
- tracing for Get LBA Status command from Minwoo
- Some nvme-tcp cleanups from Minwoo, Potnuri and Myself
- Some consolidation between the fabrics transports for handling
the CAP register
- reset race with ns scanning fix for fabrics (move fabrics
commands to a dedicated request queue with a different lifetime
from the admin request queue)."
- controller reset and namespace scan races fixes
- nvme discovery log change uevent support
- naming improvements from Keith
- multiple discovery controllers reject fix from James
- some regular cleanups from various people
- Series fixing (and re-fixing) null_blk debug printing and nr_devices
checks (André)
- A few pull requests from Song, with fixes from Andy, Guoqing,
Guilherme, Neil, Nigel, and Yufen.
- REQ_OP_ZONE_RESET_ALL support (Chaitanya)
- Bio merge handling unification (Christoph)
- Pick default elevator correctly for devices with special needs
(Damien)
- Block stats fixes (Hou)
- Timeout and support devices nbd fixes (Mike)
- Series fixing races around elevator switching and device add/remove
(Ming)
- sed-opal cleanups (Revanth)
- Per device weight support for BFQ (Fam)
- Support for blk-iocost, a new model that can properly account cost of
IO workloads. (Tejun)
- blk-cgroup writeback fixes (Tejun)
- paride queue init fixes (zhengbin)
- blk_set_runtime_active() cleanup (Stanley)
- Block segment mapping optimizations (Bart)
- lightnvm fixes (Hans/Minwoo/YueHaibing)
- Various little fixes and cleanups
* tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits)
null_blk: format pr_* logs with pr_fmt
null_blk: match the type of parameter nr_devices
null_blk: do not fail the module load with zero devices
block: also check RQF_STATS in blk_mq_need_time_stamp()
block: make rq sector size accessible for block stats
bfq: Fix bfq linkage error
raid5: use bio_end_sector in r5_next_bio
raid5: remove STRIPE_OPS_REQ_PENDING
md: add feature flag MD_FEATURE_RAID0_LAYOUT
md/raid0: avoid RAID0 data corruption due to layout confusion.
raid5: don't set STRIPE_HANDLE to stripe which is in batch list
raid5: don't increment read_errors on EILSEQ return
nvmet: fix a wrong error status returned in error log page
nvme: send discovery log page change events to userspace
nvme: add uevent variables for controller devices
nvme: enable aen regardless of the presence of I/O queues
nvme-fabrics: allow discovery subsystems accept a kato
nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery()
nvme: Remove redundant assignment of cq vector
nvme: Assign subsys instance from first ctrl
...
The race was when a thread using closure_sync() notices cl->s->done == 1
before the thread calling closure_put() calls wake_up_process(). Then,
it's possible for that thread to return and exit just before
wake_up_process() is called - so we're trying to wake up a process that
no longer exists.
rcu_read_lock() is sufficient to protect against this, as there's an rcu
barrier somewhere in the process teardown path.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Acked-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The copy_to_user() function returns the number of bytes remaining to be
copied, but the intention here was to return -EFAULT if the copy fails.
Fixes: cafe563591 ("bcache: A block layer cache")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Read /sys/fs/bcache/<uuid>/cacheN/priority_stats can take very long
time with huge cache after long run.
Signed-off-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Tested-by: Heitor Alves de Siqueira <halves@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
memory malloced in bch_cached_dev_run() and should be freed before
leaving from the error handling cases, otherwise it will cause
memory leak.
Fixes: 0b13efecf5 ("bcache: add return value check to bch_cached_dev_run()")
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now we have counters for how many times jouranl is reclaimed, how many
times cached dirty btree nodes are flushed, but we don't know how many
jouranl buckets are really reclaimed.
This patch adds reclaimed_journal_buckets into struct cache_set, this
is an increasing only counter, to tell how many journal buckets are
reclaimed since cache set runs. From all these three counters (reclaim,
reclaimed_journal_buckets, flush_write), we can have idea how well
current journal space reclaim code works.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch improves performance for btree_flush_write() in following
ways,
- Use another spinlock journal.flush_write_lock to replace the very
hot journal.lock. We don't have to use journal.lock here, selecting
candidate btree nodes takes a lot of time, hold journal.lock here will
block other jouranling threads and drop the overall I/O performance.
- Only select flushing btree node from c->btree_cache list. When the
machine has a large system memory, mca cache may have a huge number of
cached btree nodes. Iterating all the cached nodes will take a lot
of CPU time, and most of the nodes on c->btree_cache_freeable and
c->btree_cache_freed lists are cleared and have need to flush. So only
travel mca list c->btree_cache to select flushing btree node should be
enough for most of the cases.
- Don't iterate whole c->btree_cache list, only reversely select first
BTREE_FLUSH_NR btree nodes to flush. Iterate all btree nodes from
c->btree_cache and select the oldest journal pin btree nodes consumes
huge number of CPU cycles if the list is huge (push and pop a node
into/out of a heap is expensive). The last several dirty btree nodes
on the tail of c->btree_cache list are earlest allocated and cached
btree nodes, they are relative to the oldest journal pin btree nodes.
Therefore only flushing BTREE_FLUSH_NR btree nodes from tail of
c->btree_cache probably includes the oldest journal pin btree nodes.
In my testing, the above change decreases 50%+ CPU consumption when
journal space is full. Some times IOPS drops to 0 for 5-8 seconds,
comparing blocking I/O for 120+ seconds in previous code, this is much
better. Maybe there is room to improve in future, but at this momment
the fix looks fine and performs well in my testing.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is a race between mca_reap(), btree_node_free() and journal code
btree_flush_write(), which results very rare and strange deadlock or
panic and are very hard to reproduce.
Let me explain how the race happens. In btree_flush_write() one btree
node with oldest journal pin is selected, then it is flushed to cache
device, the select-and-flush is a two steps operation. Between these two
steps, there are something may happen inside the race window,
- The selected btree node was reaped by mca_reap() and allocated to
other requesters for other btree node.
- The slected btree node was selected, flushed and released by mca
shrink callback bch_mca_scan().
When btree_flush_write() tries to flush the selected btree node, firstly
b->write_lock is held by mutex_lock(). If the race happens and the
memory of selected btree node is allocated to other btree node, if that
btree node's write_lock is held already, a deadlock very probably
happens here. A worse case is the memory of the selected btree node is
released, then all references to this btree node (e.g. b->write_lock)
will trigger NULL pointer deference panic.
This race was introduced in commit cafe563591 ("bcache: A block layer
cache"), and enlarged by commit c4dc2497d5 ("bcache: fix high CPU
occupancy during journal"), which selected 128 btree nodes and flushed
them one-by-one in a quite long time period.
Such race is not easy to reproduce before. On a Lenovo SR650 server with
48 Xeon cores, and configure 1 NVMe SSD as cache device, a MD raid0
device assembled by 3 NVMe SSDs as backing device, this race can be
observed around every 10,000 times btree_flush_write() gets called. Both
deadlock and kernel panic all happened as aftermath of the race.
The idea of the fix is to add a btree flag BTREE_NODE_journal_flush. It
is set when selecting btree nodes, and cleared after btree nodes
flushed. Then when mca_reap() selects a btree node with this bit set,
this btree node will be skipped. Since mca_reap() only reaps btree node
without BTREE_NODE_journal_flush flag, such race is avoided.
Once corner case should be noticed, that is btree_node_free(). It might
be called in some error handling code path. For example the following
code piece from btree_split(),
2149 err_free2:
2150 bkey_put(b->c, &n2->key);
2151 btree_node_free(n2);
2152 rw_unlock(true, n2);
2153 err_free1:
2154 bkey_put(b->c, &n1->key);
2155 btree_node_free(n1);
2156 rw_unlock(true, n1);
At line 2151 and 2155, the btree node n2 and n1 are released without
mac_reap(), so BTREE_NODE_journal_flush also needs to be checked here.
If btree_node_free() is called directly in such error handling path,
and the selected btree node has BTREE_NODE_journal_flush bit set, just
delay for 1 us and retry again. In this case this btree node won't
be skipped, just retry until the BTREE_NODE_journal_flush bit cleared,
and free the btree node memory.
Fixes: cafe563591 ("bcache: A block layer cache")
Signed-off-by: Coly Li <colyli@suse.de>
Reported-and-tested-by: kbuild test robot <lkp@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In struct cache_set, retry_flush_write is added for commit c4dc2497d5
("bcache: fix high CPU occupancy during journal") which is reverted in
previous patch.
Now it is useless anymore, and this patch removes it from bcache code.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When accessing or modifying BTREE_NODE_dirty bit, it is not always
necessary to acquire b->write_lock. In bch_btree_cache_free() and
mca_reap() acquiring b->write_lock is necessary, and this patch adds
comments to explain why mutex_lock(&b->write_lock) is necessary for
checking or clearing BTREE_NODE_dirty bit there.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_btree_cache_free() and btree_node_free(), BTREE_NODE_dirty is
always set no matter btree node is dirty or not. The code looks like
this,
if (btree_node_dirty(b))
btree_complete_write(b, btree_current_write(b));
clear_bit(BTREE_NODE_dirty, &b->flags);
Indeed if btree_node_dirty(b) returns false, it means BTREE_NODE_dirty
bit is cleared, then it is unnecessary to clear the bit again.
This patch only clears BTREE_NODE_dirty when btree_node_dirty(b) is
true (the bit is set), to save a few CPU cycles.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit c4dc2497d5.
This patch enlarges a race between normal btree flush code path and
flush_btree_write(), which causes deadlock when journal space is
exhausted. Reverts this patch makes the race window from 128 btree
nodes to only 1 btree nodes.
Fixes: c4dc2497d5 ("bcache: fix high CPU occupancy during journal")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Tang Junhui <tang.junhui.linux@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 6268dc2c47.
This patch depends on commit c4dc2497d5 ("bcache: fix high CPU
occupancy during journal") which is reverted in previous patch. So
revert this one too.
Fixes: 6268dc2c47 ("bcache: free heap cache_set->flush_btree in bch_journal_free")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When cache set starts, bch_btree_check() will check all bkeys on cache
device by calculating the checksum. This operation will consume a huge
number of system memory if there are a lot of data cached. Since bcache
uses its own mca cache to maintain all its read-in btree nodes, and only
releases the cache space when system memory manage code starts to shrink
caches. Then before memory manager code to call the mca cache shrinker
callback, bcache mca cache will compete memory resource with user space
application, which may have nagive effect to performance of user space
workloads (e.g. data base, or I/O service of distributed storage node).
This patch tries to call bcache mca shrinker routine to proactively
release mca cache memory, to decrease the memory pressure of system and
avoid negative effort of the overall system I/O performance.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In journal_read_bucket() when setting ja->seq[bucket_index], there might
be potential case that a later non-maximum overwrites a better sequence
number to ja->seq[bucket_index]. This patch adds a check to make sure
that ja->seq[bucket_index] will be only set a new value if it is bigger
then current value.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more code comments in journal_read_bucket(), this is an
effort to make the code to be more understandable.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When enable lockdep and reboot system with a writeback mode bcache
device, the following potential deadlock warning is reported by lockdep
engine.
[ 101.536569][ T401] kworker/2:2/401 is trying to acquire lock:
[ 101.538575][ T401] 00000000bbf6e6c7 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 101.542054][ T401]
[ 101.542054][ T401] but task is already holding lock:
[ 101.544587][ T401] 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 101.548386][ T401]
[ 101.548386][ T401] which lock already depends on the new lock.
[ 101.548386][ T401]
[ 101.551874][ T401]
[ 101.551874][ T401] the existing dependency chain (in reverse order) is:
[ 101.555000][ T401]
[ 101.555000][ T401] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 101.557860][ T401] process_one_work+0x277/0x640
[ 101.559661][ T401] worker_thread+0x39/0x3f0
[ 101.561340][ T401] kthread+0x125/0x140
[ 101.562963][ T401] ret_from_fork+0x3a/0x50
[ 101.564718][ T401]
[ 101.564718][ T401] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 101.567701][ T401] lock_acquire+0xb4/0x1c0
[ 101.569651][ T401] flush_workqueue+0xae/0x4c0
[ 101.571494][ T401] drain_workqueue+0xa9/0x180
[ 101.573234][ T401] destroy_workqueue+0x17/0x250
[ 101.575109][ T401] cached_dev_free+0x44/0x120 [bcache]
[ 101.577304][ T401] process_one_work+0x2a4/0x640
[ 101.579357][ T401] worker_thread+0x39/0x3f0
[ 101.581055][ T401] kthread+0x125/0x140
[ 101.582709][ T401] ret_from_fork+0x3a/0x50
[ 101.584592][ T401]
[ 101.584592][ T401] other info that might help us debug this:
[ 101.584592][ T401]
[ 101.588355][ T401] Possible unsafe locking scenario:
[ 101.588355][ T401]
[ 101.590974][ T401] CPU0 CPU1
[ 101.592889][ T401] ---- ----
[ 101.594743][ T401] lock((work_completion)(&cl->work)#2);
[ 101.596785][ T401] lock((wq_completion)bcache_writeback_wq);
[ 101.600072][ T401] lock((work_completion)(&cl->work)#2);
[ 101.602971][ T401] lock((wq_completion)bcache_writeback_wq);
[ 101.605255][ T401]
[ 101.605255][ T401] *** DEADLOCK ***
[ 101.605255][ T401]
[ 101.608310][ T401] 2 locks held by kworker/2:2/401:
[ 101.610208][ T401] #0: 00000000cf2c7d17 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 101.613709][ T401] #1: 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 101.617480][ T401]
[ 101.617480][ T401] stack backtrace:
[ 101.619539][ T401] CPU: 2 PID: 401 Comm: kworker/2:2 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1
[ 101.623225][ T401] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 101.627210][ T401] Workqueue: events cached_dev_free [bcache]
[ 101.629239][ T401] Call Trace:
[ 101.630360][ T401] dump_stack+0x85/0xcb
[ 101.631777][ T401] print_circular_bug+0x19a/0x1f0
[ 101.633485][ T401] __lock_acquire+0x16cd/0x1850
[ 101.635184][ T401] ? __lock_acquire+0x6a8/0x1850
[ 101.636863][ T401] ? lock_acquire+0xb4/0x1c0
[ 101.638421][ T401] ? find_held_lock+0x34/0xa0
[ 101.640015][ T401] lock_acquire+0xb4/0x1c0
[ 101.641513][ T401] ? flush_workqueue+0x87/0x4c0
[ 101.643248][ T401] flush_workqueue+0xae/0x4c0
[ 101.644832][ T401] ? flush_workqueue+0x87/0x4c0
[ 101.646476][ T401] ? drain_workqueue+0xa9/0x180
[ 101.648303][ T401] drain_workqueue+0xa9/0x180
[ 101.649867][ T401] destroy_workqueue+0x17/0x250
[ 101.651503][ T401] cached_dev_free+0x44/0x120 [bcache]
[ 101.653328][ T401] process_one_work+0x2a4/0x640
[ 101.655029][ T401] worker_thread+0x39/0x3f0
[ 101.656693][ T401] ? process_one_work+0x640/0x640
[ 101.658501][ T401] kthread+0x125/0x140
[ 101.660012][ T401] ? kthread_create_worker_on_cpu+0x70/0x70
[ 101.661985][ T401] ret_from_fork+0x3a/0x50
[ 101.691318][ T401] bcache: bcache_device_free() bcache0 stopped
Here is how the above potential deadlock may happen in reboot/shutdown
code path,
1) bcache_reboot() is called firstly in the reboot/shutdown code path,
then in bcache_reboot(), bcache_device_stop() is called.
2) bcache_device_stop() sets BCACHE_DEV_CLOSING on d->falgs, then call
closure_queue(&d->cl) to invoke cached_dev_flush(). And in turn
cached_dev_flush() calls cached_dev_free() via closure_at()
3) In cached_dev_free(), after stopped writebach kthread
dc->writeback_thread, the kwork dc->writeback_write_wq is stopping by
destroy_workqueue().
4) Inside destroy_workqueue(), drain_workqueue() is called. Inside
drain_workqueue(), flush_workqueue() is called. Then wq->lockdep_map
is acquired by lock_map_acquire() in flush_workqueue(). After the
lock acquired the rest part of flush_workqueue() just wait for the
workqueue to complete.
5) Now we look back at writeback thread routine bch_writeback_thread(),
in the main while-loop, write_dirty() is called via continue_at() in
read_dirty_submit(), which is called via continue_at() in while-loop
level called function read_dirty(). Inside write_dirty() it may be
re-called on workqueeu dc->writeback_write_wq via continue_at().
It means when the writeback kthread is stopped in cached_dev_free()
there might be still one kworker queued on dc->writeback_write_wq
to execute write_dirty() again.
6) Now this kworker is scheduled on dc->writeback_write_wq to run by
process_one_work() (which is called by worker_thread()). Before
calling the kwork routine, wq->lockdep_map is acquired.
7) But wq->lockdep_map is acquired already in step 4), so a A-A lock
(lockdep terminology) scenario happens.
Indeed on multiple cores syatem, the above deadlock is very rare to
happen, just as the code comments in process_one_work() says,
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for
single-threaded
2265 * workqueues), so hiding them isn't a problem.
But it is still good to fix such lockdep warning, even no one running
bcache on single core system.
The fix is simple. This patch solves the above potential deadlock by,
- Do not destroy workqueue dc->writeback_write_wq in cached_dev_free().
- Flush and destroy dc->writeback_write_wq in writebach kthread routine
bch_writeback_thread(), where after quit the thread main while-loop
and before cached_dev_put() is called.
By this fix, dc->writeback_write_wq will be stopped and destroy before
the writeback kthread stopped, so the chance for a A-A locking on
wq->lockdep_map is disappeared, such A-A deadlock won't happen
any more.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When enable lockdep engine, a lockdep warning can be observed when
reboot or shutdown system,
[ 3142.764557][ T1] bcache: bcache_reboot() Stopping all devices:
[ 3142.776265][ T2649]
[ 3142.777159][ T2649] ======================================================
[ 3142.780039][ T2649] WARNING: possible circular locking dependency detected
[ 3142.782869][ T2649] 5.2.0-rc4-lp151.20-default+ #1 Tainted: G W
[ 3142.785684][ T2649] ------------------------------------------------------
[ 3142.788479][ T2649] kworker/3:67/2649 is trying to acquire lock:
[ 3142.790738][ T2649] 00000000aaf02291 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 3142.794678][ T2649]
[ 3142.794678][ T2649] but task is already holding lock:
[ 3142.797402][ T2649] 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.801462][ T2649]
[ 3142.801462][ T2649] which lock already depends on the new lock.
[ 3142.801462][ T2649]
[ 3142.805277][ T2649]
[ 3142.805277][ T2649] the existing dependency chain (in reverse order) is:
[ 3142.808902][ T2649]
[ 3142.808902][ T2649] -> #2 (&bch_register_lock){+.+.}:
[ 3142.812396][ T2649] __mutex_lock+0x7a/0x9d0
[ 3142.814184][ T2649] cached_dev_free+0x17/0x120 [bcache]
[ 3142.816415][ T2649] process_one_work+0x2a4/0x640
[ 3142.818413][ T2649] worker_thread+0x39/0x3f0
[ 3142.820276][ T2649] kthread+0x125/0x140
[ 3142.822061][ T2649] ret_from_fork+0x3a/0x50
[ 3142.823965][ T2649]
[ 3142.823965][ T2649] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 3142.827244][ T2649] process_one_work+0x277/0x640
[ 3142.829160][ T2649] worker_thread+0x39/0x3f0
[ 3142.830958][ T2649] kthread+0x125/0x140
[ 3142.832674][ T2649] ret_from_fork+0x3a/0x50
[ 3142.834915][ T2649]
[ 3142.834915][ T2649] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 3142.838121][ T2649] lock_acquire+0xb4/0x1c0
[ 3142.840025][ T2649] flush_workqueue+0xae/0x4c0
[ 3142.842035][ T2649] drain_workqueue+0xa9/0x180
[ 3142.844042][ T2649] destroy_workqueue+0x17/0x250
[ 3142.846142][ T2649] cached_dev_free+0x52/0x120 [bcache]
[ 3142.848530][ T2649] process_one_work+0x2a4/0x640
[ 3142.850663][ T2649] worker_thread+0x39/0x3f0
[ 3142.852464][ T2649] kthread+0x125/0x140
[ 3142.854106][ T2649] ret_from_fork+0x3a/0x50
[ 3142.855880][ T2649]
[ 3142.855880][ T2649] other info that might help us debug this:
[ 3142.855880][ T2649]
[ 3142.859663][ T2649] Chain exists of:
[ 3142.859663][ T2649] (wq_completion)bcache_writeback_wq --> (work_completion)(&cl->work)#2 --> &bch_register_lock
[ 3142.859663][ T2649]
[ 3142.865424][ T2649] Possible unsafe locking scenario:
[ 3142.865424][ T2649]
[ 3142.868022][ T2649] CPU0 CPU1
[ 3142.869885][ T2649] ---- ----
[ 3142.871751][ T2649] lock(&bch_register_lock);
[ 3142.873379][ T2649] lock((work_completion)(&cl->work)#2);
[ 3142.876399][ T2649] lock(&bch_register_lock);
[ 3142.879727][ T2649] lock((wq_completion)bcache_writeback_wq);
[ 3142.882064][ T2649]
[ 3142.882064][ T2649] *** DEADLOCK ***
[ 3142.882064][ T2649]
[ 3142.885060][ T2649] 3 locks held by kworker/3:67/2649:
[ 3142.887245][ T2649] #0: 00000000e774cdd0 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.890815][ T2649] #1: 00000000f7df89da ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.894884][ T2649] #2: 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.898797][ T2649]
[ 3142.898797][ T2649] stack backtrace:
[ 3142.900961][ T2649] CPU: 3 PID: 2649 Comm: kworker/3:67 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1
[ 3142.904789][ T2649] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 3142.909168][ T2649] Workqueue: events cached_dev_free [bcache]
[ 3142.911422][ T2649] Call Trace:
[ 3142.912656][ T2649] dump_stack+0x85/0xcb
[ 3142.914181][ T2649] print_circular_bug+0x19a/0x1f0
[ 3142.916193][ T2649] __lock_acquire+0x16cd/0x1850
[ 3142.917936][ T2649] ? __lock_acquire+0x6a8/0x1850
[ 3142.919704][ T2649] ? lock_acquire+0xb4/0x1c0
[ 3142.921335][ T2649] ? find_held_lock+0x34/0xa0
[ 3142.923052][ T2649] lock_acquire+0xb4/0x1c0
[ 3142.924635][ T2649] ? flush_workqueue+0x87/0x4c0
[ 3142.926375][ T2649] flush_workqueue+0xae/0x4c0
[ 3142.928047][ T2649] ? flush_workqueue+0x87/0x4c0
[ 3142.929824][ T2649] ? drain_workqueue+0xa9/0x180
[ 3142.931686][ T2649] drain_workqueue+0xa9/0x180
[ 3142.933534][ T2649] destroy_workqueue+0x17/0x250
[ 3142.935787][ T2649] cached_dev_free+0x52/0x120 [bcache]
[ 3142.937795][ T2649] process_one_work+0x2a4/0x640
[ 3142.939803][ T2649] worker_thread+0x39/0x3f0
[ 3142.941487][ T2649] ? process_one_work+0x640/0x640
[ 3142.943389][ T2649] kthread+0x125/0x140
[ 3142.944894][ T2649] ? kthread_create_worker_on_cpu+0x70/0x70
[ 3142.947744][ T2649] ret_from_fork+0x3a/0x50
[ 3142.970358][ T2649] bcache: bcache_device_free() bcache0 stopped
Here is how the deadlock happens.
1) bcache_reboot() calls bcache_device_stop(), then inside
bcache_device_stop() BCACHE_DEV_CLOSING bit is set on d->flags.
Then closure_queue(&d->cl) is called to invoke cached_dev_flush().
2) In cached_dev_flush(), cached_dev_free() is called by continu_at().
3) In cached_dev_free(), when stopping the writeback kthread of the
cached device by kthread_stop(), dc->writeback_thread will be waken
up to quite the kthread while-loop, then cached_dev_put() is called
in bch_writeback_thread().
4) Calling cached_dev_put() in writeback kthread may drop dc->count to
0, then dc->detach kworker is scheduled, which is initialized as
cached_dev_detach_finish().
5) Inside cached_dev_detach_finish(), the last line of code is to call
closure_put(&dc->disk.cl), which drops the last reference counter of
closrure dc->disk.cl, then the callback cached_dev_flush() gets
called.
Now cached_dev_flush() is called for second time in the code path, the
first time is in step 2). And again bch_register_lock will be acquired
again, and a A-A lock (lockdep terminology) is happening.
The root cause of the above A-A lock is in cached_dev_free(), mutex
bch_register_lock is held before stopping writeback kthread and other
kworkers. Fortunately now we have variable 'bcache_is_reboot', which may
prevent device registration or unregistration during reboot/shutdown
time, so it is unncessary to hold bch_register_lock such early now.
This is how this patch fixes the reboot/shutdown time A-A lock issue:
After moving mutex_lock(&bch_register_lock) to a later location where
before atomic_read(&dc->running) in cached_dev_free(), such A-A lock
problem can be solved without any reboot time registration race.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now there is variable bcache_is_reboot to prevent device register or
unregister during reboot, it is unncessary to still hold mutex lock
bch_register_lock before stopping writeback_rate_update kworker and
writeback kthread. And if the stopping kworker or kthread holding
bch_register_lock inside their routine (we used to have such problem
in writeback thread, thanks to Junhui Wang fixed it), it is very easy
to introduce deadlock during reboot/shutdown procedure.
Therefore in this patch, the location to acquire bch_register_lock is
moved to the location before calling calc_cached_dev_sectors(). Which
is later then original location in cached_dev_detach_finish().
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It is quite frequently to observe deadlock in bcache_reboot() happens
and hang the system reboot process. The reason is, in bcache_reboot()
when calling bch_cache_set_stop() and bcache_device_stop() the mutex
bch_register_lock is held. But in the process to stop cache set and
bcache device, bch_register_lock will be acquired again. If this mutex
is held here, deadlock will happen inside the stopping process. The
aftermath of the deadlock is, whole system reboot gets hung.
The fix is to avoid holding bch_register_lock for the following loops
in bcache_reboot(),
list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
bch_cache_set_stop(c);
list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
bcache_device_stop(&dc->disk);
A module range variable 'bcache_is_reboot' is added, it sets to true
in bcache_reboot(). In register_bcache(), if bcache_is_reboot is checked
to be true, reject the registration by returning -EBUSY immediately.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_cached_dev_attach() after bch_cached_dev_writeback_start()
called, the wrireback kthread and writeback rate update kworker of the
cached device are created, if the following bch_cached_dev_run()
failed, bch_cached_dev_attach() will return with -ENOMEM without
stopping the writeback related kthread and kworker.
This patch stops writeback kthread and writeback rate update kworker
before returning -ENOMEM if bch_cached_dev_run() returns error.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 9baf30972b ("bcache: fix for gc and write-back race") added a
new work queue dc->writeback_write_wq, but forgot to destroy it in the
error condition when creating dc->writeback_thread failed.
This patch destroys dc->writeback_write_wq if kthread_create() returns
error pointer to dc->writeback_thread, then a memory leak is avoided.
Fixes: 9baf30972b ("bcache: fix for gc and write-back race")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_cached_dev_files[] from driver/md/bcache/sysfs.c, sysfs_errors is
incorrectly inserted in. The correct entry should be sysfs_io_errors.
This patch fixes the problem and now I/O errors of cached device can be
read from /sys/block/bcache<N>/bcache/io_errors.
Fixes: c7b7bd0740 ("bcache: add io_disable to struct cached_dev")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If a bcache device is in dirty state and its cache set is not
registered, this bcache device will not appear in /dev/bcache<N>,
and there is no way to stop it or remove the bcache kernel module.
This is an as-designed behavior, but sometimes people has to reboot
whole system to release or stop the pending backing device.
This sysfs interface may remove such pending bcache devices when
write anything into the sysfs file manually.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The purpose of following code in bset_search_tree() is to avoid a branch
instruction,
994 if (likely(f->exponent != 127))
995 n = j * 2 + (((unsigned int)
996 (f->mantissa -
997 bfloat_mantissa(search, f))) >> 31);
998 else
999 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
1000 ? j * 2
1001 : j * 2 + 1;
This piece of code is not very clear to understand, even when I tried to
add code comment for it, I made mistake. This patch removes the implict
bit operation and uses explicit branch to calculate next location in
binary tree search.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In previous bcache patches for Linux v5.2, the failure code path of
run_cache_set() is tested and fixed. So now the following comment
line can be removed from run_cache_set(),
/* XXX: test this, it's broken */
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more error message in bch_cached_dev_run() to indicate
the exact reason why an error value is returned. Please notice when
printing out the "is running already" message, pr_info() is used here,
because in this case also -EBUSY is returned, the bcache device can
continue to attach to the cache devince and run, so it won't be an
error level message in kernel message.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more error message for attaching cached device, this is
helpful to debug code failure during bache device start up.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more accurate error message for specific
ssyfs_create_link() call, to help debugging failure during
bcache device start tup.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When too many I/O errors happen on cache set and CACHE_SET_IO_DISABLE
bit is set, bch_journal() may continue to work because the journaling
bkey might be still in write set yet. The caller of bch_journal() may
believe the journal still work but the truth is in-memory journal write
set won't be written into cache device any more. This behavior may
introduce potential inconsistent metadata status.
This patch checks CACHE_SET_IO_DISABLE bit at the head of bch_journal(),
if the bit is set, bch_journal() returns NULL immediately to notice
caller to know journal does not work.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If CACHE_SET_IO_DISABLE of a cache set flag is set by too many I/O
errors, currently allocator routines can still continue allocate
space which may introduce inconsistent metadata state.
This patch checkes CACHE_SET_IO_DISABLE bit in following allocator
routines,
- bch_bucket_alloc()
- __bch_bucket_alloc_set()
Once CACHE_SET_IO_DISABLE is set on cache set, the allocator routines
may reject allocation request earlier to avoid potential inconsistent
metadata.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Function bch_btree_keys_init() initializes b->set[].size and
b->set[].data to zero. As the code comments indicates, these code indeed
is unncessary, because both struct btree_keys and struct bset_tree are
nested embedded into struct btree, when struct btree is filled with 0
bits by kzalloc() in mca_bucket_alloc(), b->set[].size and
b->set[].data are initialized to 0 (a.k.a NULL) already.
This patch removes the redundant code, and add comments in
bch_btree_keys_init() and mca_bucket_alloc() to explain why it's safe.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds return value check to bch_cached_dev_run(), now if there
is error happens inside bch_cached_dev_run(), it can be catched.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The arrays (of strings) that are passed to __sysfs_match_string() are
static, so use sysfs_match_string() which does an implicit ARRAY_SIZE()
over these arrays.
Functionally, this doesn't change anything.
The change is more cosmetic.
It only shrinks the static arrays by 1 byte each.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In function bset_search_tree(), when p >= t->size, t->tree[0] will be
prefetched by the following code piece,
974 unsigned int p = n << 4;
975
976 p &= ((int) (p - t->size)) >> 31;
977
978 prefetch(&t->tree[p]);
The purpose of the above code is to avoid a branch instruction, but
when p >= t->size, prefetch(&t->tree[0]) has no positive performance
contribution at all. This patch avoids the unncessary prefetch by only
calling prefetch() when p < t->size.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When backing device super block is written by bch_write_bdev_super(),
the bio complete callback write_bdev_super_endio() simply ignores I/O
status. Indeed such write request also contribute to backing device
health status if the request failed.
This patch checkes bio->bi_status in write_bdev_super_endio(), if there
is error, bch_count_backing_io_errors() will be called to count an I/O
error to dc->io_errors.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When md raid device (e.g. raid456) is used as backing device, read-ahead
requests on a degrading and recovering md raid device might be failured
immediately by md raid code, but indeed this md raid array can still be
read or write for normal I/O requests. Therefore such failed read-ahead
request are not real hardware failure. Further more, after degrading and
recovering accomplished, read-ahead requests will be handled by md raid
array again.
For such condition, I/O failures of read-ahead requests don't indicate
real health status (because normal I/O still be served), they should not
be counted into I/O error counter dc->io_errors.
Since there is no simple way to detect whether the backing divice is a
md raid device, this patch simply ignores I/O failures for read-ahead
bios on backing device, to avoid bogus backing device failure on a
degrading md raid array.
Suggested-and-tested-by: Thorsten Knabe <linux@thorsten-knabe.de>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When cache_set_flush() is called for too many I/O errors detected on
cache device and the cache set is retiring, inside the function it
doesn't make sense to flushing cached btree nodes from c->btree_cache
because CACHE_SET_IO_DISABLE is set on c->flags already and all I/Os
onto cache device will be rejected.
This patch checks in cache_set_flush() that whether CACHE_SET_IO_DISABLE
is set. If yes, then avoids to flush the cached btree nodes to reduce
more time and make cache set retiring more faster.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 6147305c73.
Although this patch helps the failed bcache device to stop faster when
too many I/O errors detected on corresponding cached device, setting
CACHE_SET_IO_DISABLE bit to cache set c->flags was not a good idea. This
operation will disable all I/Os on cache set, which means other attached
bcache devices won't work neither.
Without this patch, the failed bcache device can also be stopped
eventually if internal I/O accomplished (e.g. writeback). Therefore here
I revert it.
Fixes: 6147305c73 ("bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()")
Reported-by: Yong Li <mr.liyong@qq.com>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When everything is OK in bch_journal_read(), finally the return value
is returned by,
return ret;
which assumes ret will be 0 here. This assumption is wrong when all
journal buckets as are full and filled with valid journal entries. In
such cache the last location referencess read_bucket() sets 'ret' to
1, which means new jset added into jset list. The jset list is list
'journal' in caller run_cache_set().
Return 1 to run_cache_set() means something wrong and the cache set
won't start, but indeed everything is OK.
This patch changes the line at end of bch_journal_read() to directly
return 0 since everything if verything is good. Then a bogus error
is fixed.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When gc is running, user space I/O processes may wait inside
bcache code, so no new I/O coming. Indeed this is not a real idle
time, maximum writeback rate should not be set in such situation.
Otherwise a faster writeback thread may compete locks with gc thread
and makes garbage collection slower, which results a longer I/O
freeze period.
This patch checks c->gc_mark_valid in set_at_max_writeback_rate(). If
c->gc_mark_valid is 0 (gc running), set_at_max_writeback_rate() returns
false, then update_writeback_rate() will not set writeback rate to
maximum value even c->idle_counter reaches an idle threshold.
Now writeback thread won't interfere gc thread performance.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When people set a writeback percent via sysfs file,
/sys/block/bcache<N>/bcache/writeback_percent
current code directly sets BCACHE_DEV_WB_RUNNING to dc->disk.flags
and schedules kworker dc->writeback_rate_update.
If there is no cache set attached to, the writeback kernel thread is
not running indeed, running dc->writeback_rate_update does not make
sense and may cause NULL pointer deference when reference cache set
pointer inside update_writeback_rate().
This patch checks whether the cache set point (dc->disk.c) is NULL in
sysfs interface handler, and only set BCACHE_DEV_WB_RUNNING and
schedule dc->writeback_rate_update when dc->disk.c is not NULL (it
means the cache device is attached to a cache set).
This problem might be introduced from initial bcache commit, but
commit 3fd47bfe55 ("bcache: stop dc->writeback_rate_update properly")
changes part of the original code piece, so I add 'Fixes: 3fd47bfe55b0'
to indicate from which commit this patch can be applied.
Fixes: 3fd47bfe55 ("bcache: stop dc->writeback_rate_update properly")
Reported-by: Bjørn Forsman <bjorn.forsman@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Bjørn Forsman <bjorn.forsman@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Recently people report bcache code compiled with gcc9 is broken, one of
the buggy behavior I observe is that two adjacent 4KB I/Os should merge
into one but they don't. Finally it turns out to be a stack corruption
caused by macro PRECEDING_KEY().
See how PRECEDING_KEY() is defined in bset.h,
437 #define PRECEDING_KEY(_k) \
438 ({ \
439 struct bkey *_ret = NULL; \
440 \
441 if (KEY_INODE(_k) || KEY_OFFSET(_k)) { \
442 _ret = &KEY(KEY_INODE(_k), KEY_OFFSET(_k), 0); \
443 \
444 if (!_ret->low) \
445 _ret->high--; \
446 _ret->low--; \
447 } \
448 \
449 _ret; \
450 })
At line 442, _ret points to address of a on-stack variable combined by
KEY(), the life range of this on-stack variable is in line 442-446,
once _ret is returned to bch_btree_insert_key(), the returned address
points to an invalid stack address and this address is overwritten in
the following called bch_btree_iter_init(). Then argument 'search' of
bch_btree_iter_init() points to some address inside stackframe of
bch_btree_iter_init(), exact address depends on how the compiler
allocates stack space. Now the stack is corrupted.
Fixes: 0eacac2203 ("bcache: PRECEDING_KEY()")
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Rolf Fokkens <rolf@rolffokkens.nl>
Reviewed-by: Pierre JUHEN <pierre.juhen@orange.fr>
Tested-by: Shenghui Wang <shhuiw@foxmail.com>
Tested-by: Pierre JUHEN <pierre.juhen@orange.fr>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Nix <nix@esperi.org.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add SPDX license identifiers to all Make/Kconfig files which:
- Have no license information of any form
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We only have two callers that need the integer loop iterator, and they
can easily maintain it themselves.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Use a variable containing the buffer address instead of the to be
removed integer iterator from bio_for_each_segment_all.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 95f18c9d13 ("bcache: avoid potential memleak of list of
journal_replay(s) in the CACHE_SYNC branch of run_cache_set") forgets
to remove the original define of LIST_HEAD(journal), which makes
the change no take effect. This patch removes redundant variable
LIST_HEAD(journal) from run_cache_set(), to make Shenghui's fix
working.
Fixes: 95f18c9d13 ("bcache: avoid potential memleak of list of journal_replay(s) in the CACHE_SYNC branch of run_cache_set")
Reported-by: Juha Aatrokoski <juha.aatrokoski@aalto.fi>
Cc: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In the CACHE_SYNC branch of run_cache_set(), LIST_HEAD(journal) is used
to collect journal_replay(s) and filled by bch_journal_read().
If all goes well, bch_journal_replay() will release the list of
jounal_replay(s) at the end of the branch.
If something goes wrong, code flow will jump to the label "err:" and leave
the list unreleased.
This patch will release the list of journal_replay(s) in the case of
error detected.
v1 -> v2:
* Move the release code to the location after label 'err:' to
simply the change.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Elements of keylist should be accessed before the list is freed.
Move bch_keylist_free() calling after the while loop to avoid wrong
content accessed.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
journal replay failed with messages:
Sep 10 19:10:43 ceph kernel: bcache: error on
bb379a64-e44e-4812-b91d-a5599871a3b1: bcache: journal entries
2057493-2057567 missing! (replaying 2057493-2076601), disabling
caching
The reason is in journal_reclaim(), when discard is enabled, we send
discard command and reclaim those journal buckets whose seq is old
than the last_seq_now, but before we write a journal with last_seq_now,
the machine is restarted, so the journal with the last_seq_now is not
written to the journal bucket, and the last_seq_wrote in the newest
journal is old than last_seq_now which we expect to be, so when we doing
replay, journals from last_seq_wrote to last_seq_now are missing.
It's hard to write a journal immediately after journal_reclaim(),
and it harmless if those missed journal are caused by discarding
since those journals are already wrote to btree node. So, if miss
seqs are started from the beginning journal, we treat it as normal,
and only print a message to show the miss journal, and point out
it maybe caused by discarding.
Patch v2 add a judgement condition to ignore the missed journal
only when discard enabled as Coly suggested.
(Coly Li: rebase the patch with other changes in bch_journal_replay())
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Tested-by: Dennis Schridde <devurandom@gmx.net>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch tries to release mutex bch_register_lock early, to give
chance to stop cache set and bcache device early.
This patch also expends time out of stopping all bcache device from
2 seconds to 10 seconds, because stopping writeback rate update worker
may delay for 5 seconds, 2 seconds is not enough.
After this patch applied, stopping bcache devices during system reboot
or shutdown is very hard to be observed any more.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add code comments to explain which call back function might be called
for the closure_queue(). This is an effort to make code to be more
understandable for readers.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add comments to explain why in register_bcache() blkdev_put() won't
be called in two location. Add comments to explain why blkdev_put()
must be called in register_cache() when cache_alloc() failed.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds return value to register_bdev(). Then if failure happens
inside register_bdev(), its caller register_bcache() may detect and
handle the failure more properly.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When failure happens inside bch_journal_replay(), calling
cache_set_err_on() and handling the failure in async way is not a good
idea. Because after bch_journal_replay() returns, registering code will
continue to execute following steps, and unregistering code triggered
by cache_set_err_on() is running in same time. First it is unnecessary
to handle failure and unregister cache set in an async way, second there
might be potential race condition to run register and unregister code
for same cache set.
So in this patch, if failure happens in bch_journal_replay(), we don't
call cache_set_err_on(), and just print out the same error message to
kernel message buffer, then return -EIO immediately caller. Then caller
can detect such failure and handle it in synchrnozied way.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Bcache has several routines to release resources in implicit way, they
are called when the associated kobj released. This patch adds code
comments to notice when and which release callback will be called,
- When dc->disk.kobj released:
void bch_cached_dev_release(struct kobject *kobj)
- When d->kobj released:
void bch_flash_dev_release(struct kobject *kobj)
- When c->kobj released:
void bch_cache_set_release(struct kobject *kobj)
- When ca->kobj released
void bch_cache_release(struct kobject *kobj)
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently run_cache_set() has no return value, if there is failure in
bch_journal_replay(), the caller of run_cache_set() has no idea about
such failure and just continue to execute following code after
run_cache_set(). The internal failure is triggered inside
bch_journal_replay() and being handled in async way. This behavior is
inefficient, while failure handling inside bch_journal_replay(), cache
register code is still running to start the cache set. Registering and
unregistering code running as same time may introduce some rare race
condition, and make the code to be more hard to be understood.
This patch adds return value to run_cache_set(), and returns -EIO if
bch_journal_rreplay() fails. Then caller of run_cache_set() may detect
such failure and stop registering code flow immedidately inside
register_cache_set().
If journal replay fails, run_cache_set() can report error immediately
to register_cache_set(). This patch makes the failure handling for
bch_journal_replay() be in synchronized way, easier to understand and
debug, and avoid poetential race condition for register-and-unregister
in same time.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In journal_reclaim() ja->cur_idx of each cache will be update to
reclaim available journal buckets. Variable 'int n' is used to count how
many cache is successfully reclaimed, then n is set to c->journal.key
by SET_KEY_PTRS(). Later in journal_write_unlocked(), a for_each_cache()
loop will write the jset data onto each cache.
The problem is, if all jouranl buckets on each cache is full, the
following code in journal_reclaim(),
529 for_each_cache(ca, c, iter) {
530 struct journal_device *ja = &ca->journal;
531 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
532
533 /* No space available on this device */
534 if (next == ja->discard_idx)
535 continue;
536
537 ja->cur_idx = next;
538 k->ptr[n++] = MAKE_PTR(0,
539 bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
540 ca->sb.nr_this_dev);
541 }
542
543 bkey_init(k);
544 SET_KEY_PTRS(k, n);
If there is no available bucket to reclaim, the if() condition at line
534 will always true, and n remains 0. Then at line 544, SET_KEY_PTRS()
will set KEY_PTRS field of c->journal.key to 0.
Setting KEY_PTRS field of c->journal.key to 0 is wrong. Because in
journal_write_unlocked() the journal data is written in following loop,
649 for (i = 0; i < KEY_PTRS(k); i++) {
650-671 submit journal data to cache device
672 }
If KEY_PTRS field is set to 0 in jouranl_reclaim(), the journal data
won't be written to cache device here. If system crahed or rebooted
before bkeys of the lost journal entries written into btree nodes, data
corruption will be reported during bcache reload after rebooting the
system.
Indeed there is only one cache in a cache set, there is no need to set
KEY_PTRS field in journal_reclaim() at all. But in order to keep the
for_each_cache() logic consistent for now, this patch fixes the above
problem by not setting 0 KEY_PTRS of journal key, if there is no bucket
available to reclaim.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
'int ret' is defined as a local variable inside macro read_bucket().
Since this macro is called multiple times, and following patches will
use a 'int ret' variable in bch_journal_read(), this patch moves
definition of 'int ret' from macro read_bucket() to range of function
bch_journal_read().
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are a few nits in this function. They could in theory all
be separate patches, but that's probably taking small commits
too far.
1) I added a brief comment saying what it does.
2) I like to declare pointer parameters "const" where possible
for documentation reasons.
3) It uses bitmap_weight(&rand, BITS_PER_LONG) to compute the Hamming
weight of a 32-bit random number (giving a random integer with
mean 16 and variance 8). Passing by reference in a 64-bit variable
is silly; just use hweight32().
4) Its helper function fract_exp_two is unnecessarily tangled.
Gcc can optimize the multiply by (1 << x) to a shift, but it can
be written in a much more straightforward way at the cost of one
more bit of internal precision. Some analysis reveals that this
bit is always available.
This shrinks the object code for fract_exp_two(x, 6) from 23 bytes:
0000000000000000 <foo1>:
0: 89 f9 mov %edi,%ecx
2: c1 e9 06 shr $0x6,%ecx
5: b8 01 00 00 00 mov $0x1,%eax
a: d3 e0 shl %cl,%eax
c: 83 e7 3f and $0x3f,%edi
f: d3 e7 shl %cl,%edi
11: c1 ef 06 shr $0x6,%edi
14: 01 f8 add %edi,%eax
16: c3 retq
To 19:
0000000000000017 <foo2>:
17: 89 f8 mov %edi,%eax
19: 83 e0 3f and $0x3f,%eax
1c: 83 c0 40 add $0x40,%eax
1f: 89 f9 mov %edi,%ecx
21: c1 e9 06 shr $0x6,%ecx
24: d3 e0 shl %cl,%eax
26: c1 e8 06 shr $0x6,%eax
29: c3 retq
(Verified with 0 <= frac_bits <= 8, 0 <= x < 16<<frac_bits;
both versions produce the same output.)
5) And finally, the call to bch_get_congested() in check_should_bypass()
is separated from the use of the value by multiple tests which
could moot the need to compute it. Move the computation down to
where it's needed. This also saves a local register to hold the
computed value.
Signed-off-by: George Spelvin <lkml@sdf.org>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch uses kmemdup_nul to create a NUL-terminated string from
dc->sb.label. This is better than open coding it.
With this, we can move env[2] initialization into env[] array to make
code more elegant.
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
clang has identified a code path in which it thinks a
variable may be unused:
drivers/md/bcache/alloc.c:333:4: error: variable 'bucket' is used uninitialized whenever 'if' condition is false
[-Werror,-Wsometimes-uninitialized]
fifo_pop(&ca->free_inc, bucket);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/md/bcache/util.h:219:27: note: expanded from macro 'fifo_pop'
#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
^~~~~~~~~~~~~~~~~~~~~~~~~
drivers/md/bcache/util.h:189:6: note: expanded from macro 'fifo_pop_front'
if (_r) { \
^~
drivers/md/bcache/alloc.c:343:46: note: uninitialized use occurs here
allocator_wait(ca, bch_allocator_push(ca, bucket));
^~~~~~
drivers/md/bcache/alloc.c:287:7: note: expanded from macro 'allocator_wait'
if (cond) \
^~~~
drivers/md/bcache/alloc.c:333:4: note: remove the 'if' if its condition is always true
fifo_pop(&ca->free_inc, bucket);
^
drivers/md/bcache/util.h:219:27: note: expanded from macro 'fifo_pop'
#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
^
drivers/md/bcache/util.h:189:2: note: expanded from macro 'fifo_pop_front'
if (_r) { \
^
drivers/md/bcache/alloc.c:331:15: note: initialize the variable 'bucket' to silence this warning
long bucket;
^
This cannot happen in practice because we only enter the loop
if there is at least one element in the list.
Slightly rearranging the code makes this clearer to both the
reader and the compiler, which avoids the warning.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
To get the amount of unused buckets in sysfs_priority_stats, the code
count the buckets which GC_SECTORS_USED is zero. It's correct and should
not be overwritten by the count of buckets which prio is zero.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The bio from upper layer is considered completed when bio_complete()
returns. In most scenarios bio_complete() is called in search_free(),
but when read miss happens, the bio_compete() is called when backing
device reading completed, while the struct search is still in use until
cache inserting finished.
If someone stops the bcache device just then, the device may be closed
and released, but after cache inserting finished the struct search will
access a freed struct cached_dev.
This patch add the reference of bcache device before bio_complete() when
read miss happens, and put it after the search is not used.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch introduces one extra iterator variable to bio_for_each_segment_all(),
then we can allow bio_for_each_segment_all() to iterate over multi-page bvec.
Given it is just one mechannical & simple change on all bio_for_each_segment_all()
users, this patch does tree-wide change in one single patch, so that we can
avoid to use a temporary helper for this conversion.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bch_bio_alloc_pages() is always called on one new bio, so it is safe
to access the bvec table directly. Given it is the only kind of this
case, open code the bvec table access since bio_for_each_segment_all()
will be changed to support for iterating over multipage bvec.
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In 'commit 752f66a75a ("bcache: use REQ_PRIO to indicate bio for
metadata")' REQ_META is replaced by REQ_PRIO to indicate metadata bio.
This assumption is not always correct, e.g. XFS uses REQ_META to mark
metadata bio other than REQ_PRIO. This is why Nix noticed that bcache
does not cache metadata for XFS after the above commit.
Thanks to Dave Chinner, he explains the difference between REQ_META and
REQ_PRIO from view of file system developer. Here I quote part of his
explanation from mailing list,
REQ_META is used for metadata. REQ_PRIO is used to communicate to
the lower layers that the submitter considers this IO to be more
important that non REQ_PRIO IO and so dispatch should be expedited.
IOWs, if the filesystem considers metadata IO to be more important
that user data IO, then it will use REQ_PRIO | REQ_META rather than
just REQ_META.
Then it seems bios with REQ_META or REQ_PRIO should both be cached for
performance optimation, because they are all probably low I/O latency
demand by upper layer (e.g. file system).
So in this patch, when we want to decide whether to bypass the cache,
REQ_META and REQ_PRIO are both checked. Then both metadata and
high priority I/O requests will be handled properly.
Reported-by: Nix <nix@esperi.org.uk>
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Andre Noll <maan@tuebingen.mpg.de>
Tested-by: Nix <nix@esperi.org.uk>
Cc: stable@vger.kernel.org
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cache set sysfs entry io_error_halflife is used to set c->error_decay.
c->error_decay is in type unsigned int, and it is converted by
strtoul_or_return(), therefore overflow to c->error_decay is possible
for a large input value.
This patch fixes the overflow by using strtoul_safe_clamp() to convert
input string to an unsigned long value in range [0, UINT_MAX], then
divides by 88 and set it to c->error_decay.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
c->error_limit is in type unsigned int, it is set via cache set sysfs
file io_error_limit. Inside the bcache code, input string is converted
by strtoul_or_return() and set the converted value to c->error_limit.
Because the converted value is unsigned long, and c->error_limit is
unsigned int, if the input is large enought, overflow will happen to
c->error_limit.
This patch uses sysfs_strtoul_clamp() to convert input string, and set
the range in [0, UINT_MAX] to avoid the potential overflow.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
c->journal_delay_ms is in type unsigned short, it is set via sysfs
interface and converted by sysfs_strtoul() from input string to
unsigned short value. Therefore overflow to unsigned short might be
happen when the converted value exceed USHRT_MAX. e.g. writing
65536 into sysfs file journal_delay_ms, c->journal_delay_ms is set to
0.
This patch uses sysfs_strtoul_clamp() to convert the input string and
limit value range in [0, USHRT_MAX], to avoid the input overflow.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
dc->writeback_rate_minimum is type unsigned integer variable, it is set
via sysfs interface, and converte from input string to unsigned integer
by d_strtoul_nonzero(). When the converted input value is larger than
UINT_MAX, overflow to unsigned integer happens.
This patch fixes the overflow by using sysfs_strotoul_clamp() to
convert input string and limit the value in range [1, UINT_MAX], then
the overflow can be avoided.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Current code already uses d_strtoul_nonzero() to convert input string
to an unsigned integer, to make sure writeback_rate_p_term_inverse
won't be zero value. But overflow may happen when converting input
string to an unsigned integer value by d_strtoul_nonzero(), then
dc->writeback_rate_p_term_inverse can still be set to 0 even if the
sysfs file input value is not zero, e.g. 4294967296 (a.k.a UINT_MAX+1).
If dc->writeback_rate_p_term_inverse is set to 0, it might cause a
dev-zero error in following code from __update_writeback_rate(),
int64_t proportional_scaled =
div_s64(error, dc->writeback_rate_p_term_inverse);
This patch replaces d_strtoul_nonzero() by sysfs_strtoul_clamp() and
limit the value range in [1, UINT_MAX]. Then the unsigned integer
overflow and dev-zero error can be avoided.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
dc->writeback_rate_i_term_inverse can be set via sysfs interface. It is
in type unsigned int, and convert from input string by d_strtoul(). The
problem is d_strtoul() does not check valid range of the input, if
4294967296 is written into sysfs file writeback_rate_i_term_inverse,
an overflow of unsigned integer will happen and value 0 is set to
dc->writeback_rate_i_term_inverse.
In writeback.c:__update_writeback_rate(), there are following lines of
code,
integral_scaled = div_s64(dc->writeback_rate_integral,
dc->writeback_rate_i_term_inverse);
If dc->writeback_rate_i_term_inverse is set to 0 via sysfs interface,
a div-zero error might be triggered in the above code.
Therefore we need to add a range limitation in the sysfs interface,
this is what this patch does, use sysfs_stroul_clamp() to replace
d_strtoul() and restrict the input range in [1, UINT_MAX].
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Sysfs file writeback_delay is used to configure dc->writeback_delay
which is type unsigned int. But bcache code uses sysfs_strtoul() to
convert the input string, therefore it might be overflowed if the input
value is too large. E.g. input value is 4294967296 but indeed 0 is
set to dc->writeback_delay.
This patch uses sysfs_strtoul_clamp() to convert the input string and
set the result value range in [0, UINT_MAX] to avoid such unsigned
integer overflow.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When setting bcache parameters via sysfs, there are some variables are
defined as bit-field value. Current bcache code in sysfs.c uses either
d_strtoul() or sysfs_strtoul() to convert the input string to unsigned
integer value and set it to the corresponded bit-field value.
The problem is, the bit-field value only takes the lowest bit of the
converted value. If input is 2, the expected value (like bool value)
of the bit-field value should be 1, but indeed it is 0.
The following sysfs files for bit-field variables have such problem,
bypass_torture_test, for dc->bypass_torture_test
writeback_metadata, for dc->writeback_metadata
writeback_running, for dc->writeback_running
verify, for c->verify
key_merging_disabled, for c->key_merging_disabled
gc_always_rewrite, for c->gc_always_rewrite
btree_shrinker_disabled,for c->shrinker_disabled
copy_gc_enabled, for c->copy_gc_enabled
This patch uses sysfs_strtoul_bool() to set such bit-field variables,
then if the converted value is non-zero, the bit-field variables will
be set to 1, like setting a bool value like expensive_debug_checks.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When setting bool values via sysfs interface, e.g. writeback_metadata,
if writing 1 into writeback_metadata file, dc->writeback_metadata is
set to 1, but if writing 2 into the file, dc->writeback_metadata is
0. This is misleading, a better result should be 1 for all non-zero
input value.
It is because dc->writeback_metadata is a bit-field variable, and
current code simply use d_strtoul() to convert a string into integer
and takes the lowest bit value. To fix such error, we need a routine
to convert the input string into unsigned integer, and set target
variable to 1 if the converted integer is non-zero.
This patch introduces a new macro called sysfs_strtoul_bool(), it can
be used to convert input string into bool value, we can use it to set
bool value for bit-field vairables.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
People may set sequential_cutoff of a cached device via sysfs file,
but current code does not check input value overflow. E.g. if value
4294967295 (UINT_MAX) is written to file sequential_cutoff, its value
is 4GB, but if 4294967296 (UINT_MAX + 1) is written into, its value
will be 0. This is an unexpected behavior.
This patch replaces d_strtoi_h() by sysfs_strtoul_clamp() to convert
input string to unsigned integer value, and limit its range in
[0, UINT_MAX]. Then the input overflow can be fixed.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cache set congested threshold values congested_read_threshold_us and
congested_write_threshold_us can be set via sysfs interface. These
two values are 'unsigned int' type, but sysfs interface uses strtoul
to convert input string. So if people input a large number like
9999999999, the value indeed set is 1410065407, which is not expected
behavior.
This patch replaces sysfs_strtoul() by sysfs_strtoul_clamp() when
convert input string to unsigned int value, and set value range in
[0, UINT_MAX], to avoid the above integer overflow errors.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently sysfs_strtoul_clamp() is defined as,
82 #define sysfs_strtoul_clamp(file, var, min, max) \
83 do { \
84 if (attr == &sysfs_ ## file) \
85 return strtoul_safe_clamp(buf, var, min, max) \
86 ?: (ssize_t) size; \
87 } while (0)
The problem is, if bit width of var is less then unsigned long, min and
max may not protect var from integer overflow, because overflow happens
in strtoul_safe_clamp() before checking min and max.
To fix such overflow in sysfs_strtoul_clamp(), to make min and max take
effect, this patch adds an unsigned long variable, and uses it to macro
strtoul_safe_clamp() to convert an unsigned long value in range defined
by [min, max]. Then assign this value to var. By this method, if bit
width of var is less than unsigned long, integer overflow won't happen
before min and max are checking.
Now sysfs_strtoul_clamp() can properly handle smaller data type like
unsigned int, of cause min and max should be defined in range of
unsigned int too.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Stale && dirty keys can be produced in the follow way:
After writeback in write_dirty_finish(), dirty keys k1 will
replace by clean keys k2
==>ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
==>btree_insert_fn(struct btree_op *b_op, struct btree *b)
==>static int bch_btree_insert_node(struct btree *b,
struct btree_op *op,
struct keylist *insert_keys,
atomic_t *journal_ref,
Then two steps:
A) update k1 to k2 in btree node memory;
bch_btree_insert_keys(b, op, insert_keys, replace_key)
B) Write the bset(contains k2) to cache disk by a 30s delay work
bch_btree_leaf_dirty(b, journal_ref).
But before the 30s delay work write the bset to cache device,
these things happened:
A) GC works, and reclaim the bucket k2 point to;
B) Allocator works, and invalidate the bucket k2 point to,
and increase the gen of the bucket, and place it into free_inc
fifo;
C) Until now, the 30s delay work still does not finish work,
so in the disk, the key still is k1, it is dirty and stale
(its gen is smaller than the gen of the bucket). and then the
machine power off suddenly happens;
D) When the machine power on again, after the btree reconstruction,
the stale dirty key appear.
In bch_extent_bad(), when expensive_debug_checks is off, it would
treat the dirty key as good even it is stale keys, and it would
cause bellow probelms:
A) In read_dirty() it would cause machine crash:
BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
B) It could be worse when reads hits stale dirty keys, it would
read old incorrect data.
This patch tolerate the existence of these stale && dirty keys,
and treat them as bad key in bch_extent_bad().
(Coly Li: fix indent which was modified by sender's email client)
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is a hunk of code that is indented one level too deep, fix this
by removing the extra tabs.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When there are multiple bcache devices, after a reboot the name of
bcache devices may change (e.g. current /dev/bcache1 was /dev/bcache0
before reboot). Therefore we need the backing device UUID (sb.uuid) to
identify each bcache device.
Backing device uuid can be found by program bcache-super-show, but
directly exporting backing_dev_uuid by sysfs file
/sys/block/bcache<?>/bcache/backing_dev_uuid is a much simpler method.
With backing_dev_uuid, and partition uuids from /dev/disk/by-partuuid/,
now we can identify each bcache device and its partitions conveniently.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch export dc->backing_dev_name to sysfs file
/sys/block/bcache<?>/bcache/backing_dev_name, then people or user space
tools may know the backing device name of this bcache device.
Of cause it can be done by parsing sysfs links, but this method can be
much simpler to find the link between bcache device and backing device.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In stats.c:bch_cache_accounting_clear(), a hard coded number '7' is
used in memset(). It is because in struct cache_stats, there are 7
atomic_t type members. This is not good when new members added into
struct stats, the hard coded number will only clear part of memory.
This patch replaces 'sizeof(unsigned long) * 7' by more generic
'sizeof(struct cache_stats))', to avoid potential error if new
member added into struct cache_stats.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Sometimes flush journal may be very frequent, so it's useful to dump
number of keys every time write journal.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Because CUTOFF_WRITEBACK is defined as 40, so before the changes of
dynamic cutoff writeback values, writeback_percent is limited to [0,
CUTOFF_WRITEBACK]. Any value larger than CUTOFF_WRITEBACK will be fixed
up to 40.
Now cutof writeback limit is a dynamic value bch_cutoff_writeback, so
the range of writeback_percent can be a more flexible range as [0,
bch_cutoff_writeback]. The flexibility is, it can be expended to a
larger or smaller range than [0, 40], depends on how value
bch_cutoff_writeback is specified.
The default value is still strongly recommended to most of users for
most of workloads. But for people who want to do research on bcache
writeback perforamnce tuning, they may have chance to specify more
flexible writeback_percent in range [0, 70].
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently the cutoff writeback and cutoff writeback sync thresholds are
defined by CUTOFF_WRITEBACK (40) and CUTOFF_WRITEBACK_SYNC (70) as
static values. Most of time these they work fine, but when people want
to do research on bcache writeback mode performance tuning, there is no
chance to modify the soft and hard cutoff writeback values.
This patch introduces two module parameters bch_cutoff_writeback_sync
and bch_cutoff_writeback which permit people to tune the values when
loading bcache.ko. If they are not specified by module loading, current
values CUTOFF_WRITEBACK_SYNC and CUTOFF_WRITEBACK will be used as
default and nothing changes.
When people want to tune this two values,
- cutoff_writeback can be set in range [1, 70]
- cutoff_writeback_sync can be set in range [1, 90]
- cutoff_writeback always <= cutoff_writeback_sync
The default values are strongly recommended to most of users for most of
workloads. Anyway, if people wants to take their own risk to do research
on new writeback cutoff tuning for their own workload, now they can make
it.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch moves MODULE_AUTHOR and MODULE_LICENSE to end of super.c, and
add MODULE_DESCRIPTION("Bcache: a Linux block layer cache").
This is preparation for adding module parameters.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The option gc_after_writeback is disabled by default, because garbage
collection will discard SSD data which drops cached data.
Echo 1 into /sys/fs/bcache/<UUID>/internal/gc_after_writeback will
enable this option, which wakes up gc thread when writeback accomplished
and all cached data is clean.
This option is helpful for people who cares writing performance more. In
heavy writing workload, all cached data can be clean only happens when
writeback thread cleans all cached data in I/O idle time. In such
situation a following gc running may help to shrink bcache B+ tree and
discard more clean data, which may be helpful for future writing
requests.
If you are not sure whether this is helpful for your own workload,
please leave it as disabled by default.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Garbage collection thread starts to work when c->sectors_to_gc is
negative value, otherwise nothing will happen even the gc thread is
woken up by wake_up_gc().
force_wake_up_gc() sets c->sectors_to_gc to -1 before calling
wake_up_gc(), then gc thread may have chance to run if no one else sets
c->sectors_to_gc to a positive value before gc_should_run().
This routine can be called where the gc thread is woken up and required
to run in force.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
"echo 1 > writeback_running" marks writeback_running even if no
writeback kthread created as "d_strtoul(writeback_running)" will simply
set dc-> writeback_running without checking the existence of
dc->writeback_thread.
Add check for setting writeback_running via sysfs: if no writeback
kthread available, reject setting to 1.
v2 -> v3:
* Make message on wrong assignment more clear.
* Print name of bcache device instead of name of backing device.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A fresh backing device is not attached to any cache_set, and
has no writeback kthread created until first attached to some
cache_set.
But bch_cached_dev_writeback_init run
"
dc->writeback_running = true;
WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING,
&dc->disk.flags));
"
for any newly formatted backing devices.
For a fresh standalone backing device, we can get something like
following even if no writeback kthread created:
------------------------
/sys/block/bcache0/bcache# cat writeback_running
1
/sys/block/bcache0/bcache# cat writeback_rate_debug
rate: 512.0k/sec
dirty: 0.0k
target: 0.0k
proportional: 0.0k
integral: 0.0k
change: 0.0k/sec
next io: -15427384ms
The none ZERO fields are misleading as no alive writeback kthread yet.
Set dc->writeback_running false as no writeback thread created in
bch_cached_dev_writeback_init().
We have writeback thread created and woken up in bch_cached_dev_writeback
_start(). Set dc->writeback_running true before bch_writeback_queue()
called, as a writeback thread will check if dc->writeback_running is true
before writing back dirty data, and hung if false detected.
After the change, we can get the following output for a fresh standalone
backing device:
-----------------------
/sys/block/bcache0/bcache$ cat writeback_running
0
/sys/block/bcache0/bcache# cat writeback_rate_debug
rate: 0.0k/sec
dirty: 0.0k
target: 0.0k
proportional: 0.0k
integral: 0.0k
change: 0.0k/sec
next io: 0ms
v1 -> v2:
Set dc->writeback_running before bch_writeback_queue() called,
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We have struct cached_dev allocated by kzalloc in register_bcache(),
which initializes all the fields of cached_dev with 0s. And commit
ce4c3e19e5 ("bcache: Replace bch_read_string_list() by
__sysfs_match_string()") has remove the string "default".
Update the comment.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
commit 220bb38c21 ("bcache: Break up struct search") introduced
changes to struct search and s->iop. bypass/bio are fields of struct
data_insert_op now. Update the comment.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
debugfs_remove and debugfs_remove_recursive will check if the dentry
pointer is NULL or ERR, and will do nothing in that case.
Remove the check in cache_set_free and bch_debug_init.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We have the following define for btree iterator:
struct btree_iter {
size_t size, used;
#ifdef CONFIG_BCACHE_DEBUG
struct btree_keys *b;
#endif
struct btree_iter_set {
struct bkey *k, *end;
} data[MAX_BSETS];
};
We can see that the length of data[] field is static MAX_BSETS, which is
defined as 4 currently.
But a btree node on disk could have too many bsets for an iterator to fit
on the stack - maybe far more that MAX_BSETS. Have to dynamically allocate
space to host more btree_iter_sets.
bch_cache_set_alloc() will make sure the pool cache_set->fill_iter can
allocate an iterator equipped with enough room that can host
(sb.bucket_size / sb.block_size)
btree_iter_sets, which is more than static MAX_BSETS.
bch_btree_node_read_done() will use that pool to allocate one iterator, to
host many bsets in one btree node.
Add more comment around cache_set->fill_iter to make code less confusing.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
when the nbuckets of cache device is smaller than 1024, making cache
device will trigger BUG_ON in kernel, add a condition to avoid this.
Reported-by: nitroxis <n@nxs.re>
Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Split the combined '||' statements in if() check, to make the code easier
for debug.
Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Current cache_set has MAX_CACHES_PER_SET caches most, and the macro
is used for
"
struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
"
in the define of struct cache_set.
Use MAX_CACHES_PER_SET instead of magic number 8 in
__bch_bucket_alloc_set.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In extents.c:bch_extent_bad(), number 96 is used as parameter to call
btree_bug_on(). The purpose is to check whether stale gen value exceeds
BUCKET_GC_GEN_MAX, so it is better to use macro BUCKET_GC_GEN_MAX to
make the code more understandable.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Parameter "struct kobject *kobj" in bch_debug_init() is useless,
remove it in this patch.
Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
struct kmem_cache *bch_passthrough_cache is not used in
bcache code. Remove it.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Recal cached_dev_sectors on cached_dev detached, as recal done on
cached_dev attached.
Update the cached_dev_sectors before bcache_device_detach called
as bcache_device_detach will set bcache_device->c to NULL.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
refill->end record the last key of writeback, for example, at the first
time, keys (1,128K) to (1,1024K) are flush to the backend device, but
the end key (1,1024K) is not included, since the bellow code:
if (bkey_cmp(k, refill->end) >= 0) {
ret = MAP_DONE;
goto out;
}
And in the next time when we refill writeback keybuf again, we searched
key start from (1,1024K), and got a key bigger than it, so the key
(1,1024K) missed.
This patch modify the above code, and let the end key to be included to
the writeback key buffer.
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Forgot to include the maintainers with my first email.
Somewhere between Michael Lyle's original
"bcache: PI controller for writeback rate V2" patch dated 07 Sep 2017
and 1d316e6 bcache: implement PI controller for writeback rate,
the mapping of the writeback_rate_minimum attribute was dropped.
Re-add the missing sysfs writeback_rate_minimum attribute mapping to
"allow the user to specify a minimum rate at which dirty blocks are
retired."
Fixes: 1d316e6 ("bcache: implement PI controller for writeback rate")
Signed-off-by: Ben Peddell <klightspeed@killerwolves.net>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When bcache device is clean, dirty keys may still exist after
journal replay, so we need to count these dirty keys even
device in clean status, otherwise after writeback, the amount
of dirty data would be incorrect.
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The code comments of closure_return_with_destructor() in closure.h makrs
function name as closure_return(). This patch fixes this type with the
correct name - closure_return_with_destructor.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When doing ioctl in flash device, it will call ioctl_dev() in super.c,
then we should not to get cached device since flash only device has
no backend device. This patch just move the jugement dc->io_disable
to cached_dev_ioctl() to make ioctl in flash device correctly.
Fixes: 0f0709e6bf ("bcache: stop bcache device when backing device is offline")
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In cached_dev_cache_miss() and check_should_bypass(), REQ_META is used
to check whether a bio is for metadata request. REQ_META is used for
blktrace, the correct REQ_ flag should be REQ_PRIO. This flag means the
bio should be prior to other bio, and frequently be used to indicate
metadata io in file system code.
This patch replaces REQ_META with correct flag REQ_PRIO.
CC Adam Manzanares because he explains to me what REQ_PRIO is for.
Signed-off-by: Coly Li <colyli@suse.de>
Cc: Adam Manzanares <adam.manzanares@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Missed reading IOs are identified by s->cache_missed, not the
s->cache_miss, so in trace_bcache_read() using trace_bcache_read
to identify whether the IO is missed or not.
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
UUIDs are considered as metadata. __uuid_write should add the number
of buckets (in sectors) written to disk to ca->meta_sectors_written.
Currently only 1 bucket is used in uuid write.
Steps to test:
1) create a fresh backing device and a fresh cache device separately.
The backing device didn't attach to any cache set.
2) cd /sys/block/<cache device>/bcache
cat metadata_written // record the output value
cat bucket_size
3) attach the backing device to cache set
4) cat metadata_written
The output value is almost the same as the value in step 2
before the change.
After the change, the value is bigger about 1 bucket size.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Reviewed-by: Tang Junhui <tang.junhui.linux@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After write SSD completed, bcache schedules journal_write work to
system_wq, which is a public workqueue in system, without WQ_MEM_RECLAIM
flag. system_wq is also a bound wq, and there may be no idle kworker on
current processor. Creating a new kworker may unfortunately need to
reclaim memory first, by shrinking cache and slab used by vfs, which
depends on bcache device. That's a deadlock.
This patch create a new workqueue for journal_write with WQ_MEM_RECLAIM
flag. It's rescuer thread will work to avoid the deadlock.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The writeback thread would exit with a lock held when the cache device
is detached via sysfs interface, fix it by releasing the held lock
before exiting the while-loop.
Fixes: fadd94e05c (bcache: quit dc->writeback_thread when BCACHE_DEV_DETACHING is set)
Signed-off-by: Shan Hai <shan.hai@oracle.com>
Signed-off-by: Coly Li <colyli@suse.de>
Tested-by: Shenghui Wang <shhuiw@foxmail.com>
Cc: stable@vger.kernel.org #4.17+
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlt9on8QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpj1xEADKBmJlV9aVyxc5w6XggqAGeHqI4afFrl+v
9fW6WUQMAaBUrr7PMIEJQ0Zm4B7KxgBaEWNtuuj4ULkjpgYm2AuGUuTJSyKz41rS
Ma+KNyCA2Zmq4SvwGFbcdCuCbUqnoxTycscAgCjuDvIYLW0+nFGNc47ibmu9lZIV
33Ef5LrxuCjhC2zyNxEdWpUxDCjoYzock85LW+wYyIYLU9uKdoExS+YmT8U+ebA/
AkXBcxPztNDxwkcsIwgGVoTjwxiowqGz3uueWfyEmYgaCPiNOsxkoNQAtjX4ykQE
hnqnHWyzJkRwbYo7Vd/bRAZXvszKGYE1YcJmu5QrNf0dK5MSq2o5OYJAEJWbucPj
m0R2u7O9qbS2JEnxGrm5+oYJwBzwNY5/Lajr15WkljTqobKnqcvn/Hdgz/XdGtek
0S1QHkkBsF7e+cax8sePWK+O3ilY7pl9CzyZKB/tJngl8A45Jv8xVojg0v3O7oS+
zZib0rwWg/bwR/uN6uPCDcEsQusqL5YovB7m6NRVshwz6cV1zVNp2q+iOulk7KuC
MprW4Du9CJf8HA19XtyJIG1XLstnuz+Exy+i5BiimUJ5InoEFDuj/6OZa6Qaczbo
SrDDvpGtSf4h7czKpE5kV4uZiTOrjuI30TrI+4csdZ7HQIlboxNL72seNTLJs55F
nbLjRM8L6g==
=FS7e
-----END PGP SIGNATURE-----
Merge tag 'for-4.19/post-20180822' of git://git.kernel.dk/linux-block
Pull more block updates from Jens Axboe:
- Set of bcache fixes and changes (Coly)
- The flush warn fix (me)
- Small series of BFQ fixes (Paolo)
- wbt hang fix (Ming)
- blktrace fix (Steven)
- blk-mq hardware queue count update fix (Jianchao)
- Various little fixes
* tag 'for-4.19/post-20180822' of git://git.kernel.dk/linux-block: (31 commits)
block/DAC960.c: make some arrays static const, shrinks object size
blk-mq: sync the update nr_hw_queues with blk_mq_queue_tag_busy_iter
blk-mq: init hctx sched after update ctx and hctx mapping
block: remove duplicate initialization
tracing/blktrace: Fix to allow setting same value
pktcdvd: fix setting of 'ret' error return for a few cases
block: change return type to bool
block, bfq: return nbytes and not zero from struct cftype .write() method
block, bfq: improve code of bfq_bfqq_charge_time
block, bfq: reduce write overcharge
block, bfq: always update the budget of an entity when needed
block, bfq: readd missing reset of parent-entity service
blk-wbt: fix IO hang in wbt_wait()
block: don't warn for flush on read-only device
bcache: add the missing comments for smp_mb()/smp_wmb()
bcache: remove unnecessary space before ioctl function pointer arguments
bcache: add missing SPDX header
bcache: move open brace at end of function definitions to next line
bcache: add static const prefix to char * array declarations
bcache: fix code comments style
...
Now we have crc64 calculation in lib/crc64.c, it is unnecessary for
bcache to use its own version. This patch changes bcache code to use
crc64 routines in lib/crc64.c.
Link: http://lkml.kernel.org/r/20180718165545.1622-3-colyli@suse.de
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Noah Massey <noah.massey@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Checkpatch.pl warns there are 2 locations of smp_mb() and smp_wmb()
without code comment. This patch adds the missing code comments for
these memory barrier calls.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This is warned by checkpatch.pl, this patch removes the extra space.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The SPDX header is missing fro closure.c, super.c and util.c, this
patch adds SPDX header for GPL-2.0 into these files.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This is not a preferred style to place open brace '{' at the end of
function definition, checkpatch.pl reports error for such coding
style. This patch moves them into the start of the next new line.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch declares char * array with const prefix in sysfs.c,
which is suggested by checkpatch.pl.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes 3 style issues warned by checkpatch.pl,
- Comment lines are not aligned
- Comments use "/*" on subsequent lines
- Comment lines use a trailing "*/"
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
kmem_cache_destroy() is safe for NULL pointer as input, the NULL pointer
checking is unncessary. This patch just removes the NULL pointer checking
to make code simpler.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Current bcache Kconfig uses '---help---' as header of help information,
for now 'help' is prefered. This patch fixes this style by replacing
'---help---' by 'help' in bcache Kconfig file.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes typo 'succesfully' to correct 'successfully', which is
suggested by checkpatch.pl.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
'%pF' and '%pf' are deprecated vsprintf pointer extensions, this patch
replace them by '%pS', which is suggested by checkpatch.pl.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bch_btree_insert_check_key() has unaligned indent, or indent by blank
characters. This patch makes the indent aligned and replace blank by
tabs.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are still many places in bcache use printk to display kernel
message, which are suggested to be preplaced by pr_*() routines like
pr_err(), pr_info(), or pr_notice().
This patch replaces all printk() with a proper pr_*() routine for
bcache code.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Symbolic permission names are used in bcache, for now octal permission
numbers are encouraged to use for readability. This patch replaces
all symbolic permissions by octal permission numbers.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes the lines over 80 characters into more lines, to minimize
warnings by checkpatch.pl. There are still some lines exceed 80 characters,
but it is better to be a single line and I don't change them.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are many function definitions do not have identifier argument names,
scripts/checkpatch.pl complains warnings like this,
WARNING: function definition argument 'struct bcache_device *' should
also have an identifier name
#16735: FILE: writeback.h:120:
+void bch_sectors_dirty_init(struct bcache_device *);
This patch adds identifier argument names to all bcache function
definitions to fix such warnings.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes warning reported by checkpatch.pl by replacing 'unsigned'
with 'unsigned int'.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit ea8c5356d3 ("bcache: set max writeback rate when I/O request
is idle") changes struct bch_ratelimit member rate from uint32_t to
atomic_long_t and uses atomic_long_set() in drivers/md/bcache/sysfs.c
to set new writeback rate, after the input is converted from memory
buf to long int by sysfs_strtoul_clamp().
The above change has a problem because there is an implicit return
inside sysfs_strtoul_clamp() so the following atomic_long_set()
won't be called. This error is detected by 0day system with following
snipped smatch warnings:
drivers/md/bcache/sysfs.c:271 __cached_dev_store() error: uninitialized
symbol 'v'.
270 sysfs_strtoul_clamp(writeback_rate, v, 1, INT_MAX);
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@271 atomic_long_set(&dc->writeback_rate.rate, v);
This patch fixes the above error by using strtoul_safe_clamp() to
convert the input buffer into a long int type result.
Fixes: ea8c5356d3 ("bcache: set max writeback rate when I/O request is idle")
Cc: Kai Krakow <kai@kaishome.de>
Cc: Stefan Priebe <s.priebe@profihost.ag>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Remove the tailing backslash in macro BTREE_FLAG in btree.h
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The pr_err statement in the code for sysfs_attatch section would run
for various error codes, which maybe confusing.
E.g,
Run the command twice:
echo 796b5c05-b03c-4bc7-9cbd-a8df5e8be891 > \
/sys/block/bcache0/bcache/attach
[the backing dev got attached on the first run]
echo 796b5c05-b03c-4bc7-9cbd-a8df5e8be891 > \
/sys/block/bcache0/bcache/attach
In dmesg, after the command run twice, we can get:
bcache: bch_cached_dev_attach() Can't attach sda6: already attached
bcache: __cached_dev_store() Can't attach 796b5c05-b03c-4bc7-9cbd-\
a8df5e8be891
: cache set not found
The first statement in the message was right, but the second was
confusing.
bch_cached_dev_attach has various pr_ statements for various error
codes, except ENOENT.
After the change, rerun above command twice:
echo 796b5c05-b03c-4bc7-9cbd-a8df5e8be891 > \
/sys/block/bcache0/bcache/attach
echo 796b5c05-b03c-4bc7-9cbd-a8df5e8be891 > \
/sys/block/bcache0/bcache/attach
In dmesg we only got:
bcache: bch_cached_dev_attach() Can't attach sda6: already attached
No confusing "cache set not found" message anymore.
And for some not exist SET-UUID:
echo 796b5c05-b03c-4bc7-9cbd-a8df5e8be898 > \
/sys/block/bcache0/bcache/attach
In dmesg we can get:
bcache: __cached_dev_store() Can't attach 796b5c05-b03c-4bc7-9cbd-\
a8df5e8be898
: cache set not found
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>