* 'tracing-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (40 commits)
tracing: Separate raw syscall from syscall tracer
ring-buffer-benchmark: Add parameters to set produce/consumer priorities
tracing, function tracer: Clean up strstrip() usage
ring-buffer benchmark: Run producer/consumer threads at nice +19
tracing: Remove the stale include/trace/power.h
tracing: Only print objcopy version warning once from recordmcount
tracing: Prevent build warning: 'ftrace_graph_buf' defined but not used
ring-buffer: Move access to commit_page up into function used
tracing: do not disable interrupts for trace_clock_local
ring-buffer: Add multiple iterations between benchmark timestamps
kprobes: Sanitize struct kretprobe_instance allocations
tracing: Fix to use __always_unused attribute
compiler: Introduce __always_unused
tracing: Exit with error if a weak function is used in recordmcount.pl
tracing: Move conditional into update_funcs() in recordmcount.pl
tracing: Add regex for weak functions in recordmcount.pl
tracing: Move mcount section search to front of loop in recordmcount.pl
tracing: Fix objcopy revision check in recordmcount.pl
tracing: Check absolute path of input file in recordmcount.pl
tracing: Correct the check for number of arguments in recordmcount.pl
...
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: Fix trace_marker output
tracing: Fix event format export
tracing: Fix return value of tracing_stats_read()
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (31 commits)
rcu: Make RCU's CPU-stall detector be default
rcu: Add expedited grace-period support for preemptible RCU
rcu: Enable fourth level of TREE_RCU hierarchy
rcu: Rename "quiet" functions
rcu: Re-arrange code to reduce #ifdef pain
rcu: Eliminate unneeded function wrapping
rcu: Fix grace-period-stall bug on large systems with CPU hotplug
rcu: Eliminate __rcu_pending() false positives
rcu: Further cleanups of use of lastcomp
rcu: Simplify association of forced quiescent states with grace periods
rcu: Accelerate callback processing on CPUs not detecting GP end
rcu: Mark init-time-only rcu_bootup_announce() as __init
rcu: Simplify association of quiescent states with grace periods
rcu: Rename dynticks_completed to completed_fqs
rcu: Enable synchronize_sched_expedited() fastpath
rcu: Remove inline from forward-referenced functions
rcu: Fix note_new_gpnum() uses of ->gpnum
rcu: Fix synchronization for rcu_process_gp_end() uses of ->completed counter
rcu: Prepare for synchronization fixes: clean up for non-NO_HZ handling of ->completed counter
rcu: Cleanup: balance rcu_irq_enter()/rcu_irq_exit() calls
...
* 'core-printk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
ratelimit: Make suppressed output messages more useful
printk: Remove ratelimit.h from kernel.h
ratelimit: Fix/allow use in atomic contexts
ratelimit: Use per ratelimit context locking
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
mutex: Fix missing conditions to build mutex_spin_on_owner()
mutex: Better control mutex adaptive spinning config
locking, task_struct: Reduce size on TRACE_IRQFLAGS and 64bit
locking: Use __[SPIN|RW]_LOCK_UNLOCKED in [spin|rw]_lock_init()
locking: Remove unused prototype
locking: Reduce ifdefs in kernel/spinlock.c
locking: Make inlining decision Kconfig based
* 'core-iommu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (63 commits)
x86, Calgary IOMMU quirk: Find nearest matching Calgary while walking up the PCI tree
x86/amd-iommu: Remove amd_iommu_pd_table
x86/amd-iommu: Move reset_iommu_command_buffer out of locked code
x86/amd-iommu: Cleanup DTE flushing code
x86/amd-iommu: Introduce iommu_flush_device() function
x86/amd-iommu: Cleanup attach/detach_device code
x86/amd-iommu: Keep devices per domain in a list
x86/amd-iommu: Add device bind reference counting
x86/amd-iommu: Use dev->arch->iommu to store iommu related information
x86/amd-iommu: Remove support for domain sharing
x86/amd-iommu: Rearrange dma_ops related functions
x86/amd-iommu: Move some pte allocation functions in the right section
x86/amd-iommu: Remove iommu parameter from dma_ops_domain_alloc
x86/amd-iommu: Use get_device_id and check_device where appropriate
x86/amd-iommu: Move find_protection_domain to helper functions
x86/amd-iommu: Simplify get_device_resources()
x86/amd-iommu: Let domain_for_device handle aliases
x86/amd-iommu: Remove iommu specific handling from dma_ops path
x86/amd-iommu: Remove iommu parameter from __(un)map_single
x86/amd-iommu: Make alloc_new_range aware of multiple IOMMUs
...
* git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw: (31 commits)
GFS2: Fix glock refcount issues
writeback: remove unused nonblocking and congestion checks (gfs2)
GFS2: drop rindex glock to refresh rindex list
GFS2: Tag all metadata with jid
GFS2: Locking order fix in gfs2_check_blk_state
GFS2: Remove dirent_first() function
GFS2: Display nobarrier option in /proc/mounts
GFS2: add barrier/nobarrier mount options
GFS2: remove division from new statfs code
GFS2: Improve statfs and quota usability
GFS2: Use dquot_send_warning()
VFS: Export dquot_send_warning
GFS2: Add set_xquota support
GFS2: Add get_xquota support
GFS2: Clean up gfs2_adjust_quota() and do_glock()
GFS2: Remove constant argument from qd_get()
GFS2: Remove constant argument from qdsb_get()
GFS2: Add proper error reporting to quota sync via sysfs
GFS2: Add get_xstate quota function
GFS2: Remove obsolete code in quota.c
...
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6: (30 commits)
TOMOYO: Add recursive directory matching operator support.
remove CONFIG_SECURITY_FILE_CAPABILITIES compile option
SELinux: print denials for buggy kernel with unknown perms
Silence the existing API for capability version compatibility check.
LSM: Move security_path_chmod()/security_path_chown() to after mutex_lock().
SELinux: header generation may hit infinite loop
selinux: Fix warnings
security: report the module name to security_module_request
Config option to set a default LSM
sysctl: require CAP_SYS_RAWIO to set mmap_min_addr
tpm: autoload tpm_tis based on system PnP IDs
tpm_tis: TPM_STS_DATA_EXPECT workaround
define convenient securebits masks for prctl users (v2)
tpm: fix header for modular build
tomoyo: improve hash bucket dispersion
tpm add default function definitions
LSM: imbed ima calls in the security hooks
SELinux: add .gitignore files for dynamic classes
security: remove root_plug
SELinux: fix locking issue introduced with c6d3aaa4e3
...
Starting with version 4.5, GCC has a new built-in function
__builtin_unreachable() that can be used in places like the kernel's
BUG() where inline assembly is used to transfer control flow. This
eliminated the need for an endless loop in these places.
The patch adds a new macro 'unreachable()' that will expand to either
__builtin_unreachable() or an endless loop depending on the compiler
version.
Change from v1: Simplify unreachable() for non-GCC 4.5 case.
Signed-off-by: David Daney <ddaney@caviumnetworks.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two spare field in the header common to all GFS2
metadata. One is just the right size to fit a journal id
in it, and this patch updates the journal code so that each
time a metadata block is modified, we tag it with the journal
id of the node which is performing the modification.
The reason for this is that it should make it much easier to
debug issues which arise if we can tell which node was the
last to modify a particular metadata block.
Since the field is updated before the block is written into
the journal, each journal should only contain metadata which
is tagged with its own journal id. The one exception to this
is the journal header block, which might have a different node's
id in it, if that journal was recovered by another node in the
cluster.
Thus each journal will contain a record of which nodes recovered
it, via the journal header.
The other field in the metadata header could potentially be
used to hold information about what kind of operation was
performed, but for the time being we just zero it on each
transaction so that if we use it for that in future, we'll
know that the information (where it exists) is reliable.
I did consider using the other field to hold the journal
sequence number, however since in GFS2's journaling we write
the modified data into the journal and not the original
data, this gives no information as to what action caused the
modification, so I think we can probably come up with a better
use for those 64 bits in the future.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Sending a message to userspace in a generic format to warn
of events (e.g. quota exceeded) in the quota subsystem is
a generically useful feature. This patch makes some minor
changes to the send_message function from dquot.c renaming
it quota_send_message, moving it to quota.c and exporting it
for use by filesystems which do not use the dquot code.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This is required for cluster filesystems which want to use
cached ACLs so that they can invalidate the cache when
required.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Alexander Viro <aviro@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Reorder task_struct field for TRACE_IRQFLAGS to remove padding
on 64-bit.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4B135F50.8070302@ct.jp.nec.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There was confusion between the array size and the highest ISEL
value possible.
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6: (42 commits)
b44: Fix wedge when using netconsole.
wan: cosa: drop chan->wsem on error path
ep93xx-eth: check for zero MAC address on probe, not on device open
NET: smc91x: Fix irq flags
smsc9420: prevent BUG() if ethtool is called with interface down
r8169: restore mac addr in rtl8169_remove_one and rtl_shutdown
ipv4: additional update of dev_net(dev) to struct *net in ip_fragment.c, NULL ptr OOPS
e100: Use pci pool to work around GFP_ATOMIC order 5 memory allocation failure
sctp: on T3_RTX retransmit all the in-flight chunks
pktgen: Fix netdevice unregister
macvlan: fix gso_max_size setting
rfkill: fix miscdev ops
ath9k: set ps_default as false
hso: fix soft-lockup
hso: fix debug routines
pktgen: Fix device name compares
stmmac: do not fail when the timer cannot be used.
stmmac: fixed a compilation error when use the external timer
netfilter: xt_limit: fix invalid return code in limit_mt_check()
Au1x00: fix crash when trying register_netdev()
...
* git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-fscache: (31 commits)
FS-Cache: Provide nop fscache_stat_d() if CONFIG_FSCACHE_STATS=n
SLOW_WORK: Fix GFS2 to #include <linux/module.h> before using THIS_MODULE
SLOW_WORK: Fix CIFS to pass THIS_MODULE to slow_work_register_user()
CacheFiles: Don't log lookup/create failing with ENOBUFS
CacheFiles: Catch an overly long wait for an old active object
CacheFiles: Better showing of debugging information in active object problems
CacheFiles: Mark parent directory locks as I_MUTEX_PARENT to keep lockdep happy
CacheFiles: Handle truncate unlocking the page we're reading
CacheFiles: Don't write a full page if there's only a partial page to cache
FS-Cache: Actually requeue an object when requested
FS-Cache: Start processing an object's operations on that object's death
FS-Cache: Make sure FSCACHE_COOKIE_LOOKING_UP cleared on lookup failure
FS-Cache: Add a retirement stat counter
FS-Cache: Handle pages pending storage that get evicted under OOM conditions
FS-Cache: Handle read request vs lookup, creation or other cache failure
FS-Cache: Don't delete pending pages from the page-store tracking tree
FS-Cache: Fix lock misorder in fscache_write_op()
FS-Cache: The object-available state can't rely on the cookie to be available
FS-Cache: Permit cache retrieval ops to be interrupted in the initial wait phase
FS-Cache: Use radix tree preload correctly in tracking of pages to be stored
...
Lennert Buytenhek noticed that delBA handling in mac80211
was broken and has remotely triggerable problems, some of
which are due to some code shuffling I did that ended up
changing the order in which things were done -- this was
commit d75636ef9c
Author: Johannes Berg <johannes@sipsolutions.net>
Date: Tue Feb 10 21:25:53 2009 +0100
mac80211: RX aggregation: clean up stop session
and other parts were already present in the original
commit d92684e660
Author: Ron Rindjunsky <ron.rindjunsky@intel.com>
Date: Mon Jan 28 14:07:22 2008 +0200
mac80211: A-MPDU Tx add delBA from recipient support
The first problem is that I moved a BUG_ON before various
checks -- thereby making it possible to hit. As the comment
indicates, the BUG_ON can be removed since the ampdu_action
callback must already exist when the state is != IDLE.
The second problem isn't easily exploitable but there's a
race condition due to unconditionally setting the state to
OPERATIONAL when a delBA frame is received, even when no
aggregation session was ever initiated. All the drivers
accept stopping the session even then, but that opens a
race window where crashes could happen before the driver
accepts it. Right now, a WARN_ON may happen with non-HT
drivers, while the race opens only for HT drivers.
For this case, there are two things necessary to fix it:
1) don't process spurious delBA frames, and be more careful
about the session state; don't drop the lock
2) HT drivers need to be prepared to handle a session stop
even before the session was really started -- this is
true for all drivers (that support aggregation) but
iwlwifi which can be fixed easily. The other HT drivers
(ath9k and ar9170) are behaving properly already.
Reported-by: Lennert Buytenhek <buytenh@marvell.com>
Cc: stable@kernel.org
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
When retransmitting due to T3 timeout, retransmit all the
in-flight chunks for the corresponding transport/path, including
chunks sent less then 1 rto ago.
This is the correct behaviour according to rfc4960 section 6.3.3
E3 and
"Note: Any DATA chunks that were sent to the address for which the
T3-rtx timer expired but did not fit in one MTU (rule E3 above)
should be marked for retransmission and sent as soon as cwnd
allows (normally, when a SACK arrives). ".
This fixes problems when more then one path is present and the T3
retransmission of the first chunk that timeouts stops the T3 timer
for the initial active path, leaving all the other in-flight
chunks waiting forever or until a new chunk is transmitted on the
same path and timeouts (and this will happen only if the cwnd
allows sending new chunks, but since cwnd was dropped to MTU by
the timeout => it will wait until the first heartbeat).
Example: 10 packets in flight, sent at 0.1 s intervals on the
primary path. The primary path is down and the first packet
timeouts. The first packet is retransmitted on another path, the
T3 timer for the primary path is stopped and cwnd is set to MTU.
All the other 9 in-flight packets will not be retransmitted
(unless more new packets are sent on the primary path which depend
on cwnd allowing it, and even in this case the 9 packets will be
retransmitted only after a new packet timeouts which even in the
best case would be more then RTO).
This commit reverts d0ce92910b and
also removes the now unused transport->last_rto, introduced in
b6157d8e03.
p.s The problem is not only when multiple paths are there. It
can happen in a single homed environment. If the application
stops sending data, it possible to have a hung association.
Signed-off-by: Andrei Pelinescu-Onciul <andrei@iptel.org>
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most of the irq_req_t typedef'd struct can be re-worked quite
easily:
(1) IRQInfo2 was unused in any case, so drop it.
(2) IRQInfo1 was used write-only, so drop it.
(3) Instance (private data to be passed to the IRQ handler):
Most PCMCIA drivers using pcmcia_request_irq() to actually
register an IRQ handler set the "dev_id" to the same pointer
as the "priv" pointer in struct pcmcia_device. Modify the two
exceptions (ipwireless, ibmtr_cs) to also work this waym and
set the IRQ handler's "dev_id" to p_dev->priv unconditionally.
(4) Handler is to be of type irq_handler_t.
(5) Handler != NULL already tells whether an IRQ handler is present.
Therefore, we do not need the IRQ_HANDLER_PRESENT flag in
irq_req_t.Attributes.
CC: netdev@vger.kernel.org
CC: linux-bluetooth@vger.kernel.org
CC: linux-ide@vger.kernel.org
CC: linux-wireless@vger.kernel.org
CC: linux-scsi@vger.kernel.org
CC: alsa-devel@alsa-project.org
CC: Jaroslav Kysela <perex@perex.cz>
CC: Jiri Kosina <jkosina@suse.cz>
CC: Karsten Keil <isdn@linux-pingi.de>
for the Bluetooth parts: Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
pcmcia_request_window() only needs a pointer to struct pcmcia_device, not
a pointer to a pointer.
CC: netdev@vger.kernel.org
CC: linux-wireless@vger.kernel.org
CC: linux-scsi@vger.kernel.org
CC: Jiri Kosina <jkosina@suse.cz>
Acked-by: Karsten Keil <keil@b1-systems.de> (for ISDN)
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Logic changes based on top of the other patches:
This set of patches changed window_handle_t from being a pointer to an
unsigned long. The unsigned long is now a simple index into socket->win[].
Going from a pointer to unsigned long should leave the user space interface
unchanged unless I'm mistaken.
This change results in code that is less error prone and a user space
interface which is much cleaner and safer. A nice side effect is that we
are also are able to remove all members except one from window_t.
[ linux@dominikbrodowski.net:
Update to 2.6.31. Also, a plain "index" to socket->win[] does not
work, as several codepaths rely on "window_handle_t" being
non-zero if used. Therefore, set the window_handle_t to the
socket->win[] index + 1. ]
CC: netdev@vger.kernel.org
Signed-off-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
No logic changes, just pass struct pcmcia_socket to pcmcia_get_mem_page()
[linux@dominikbrodowski.net: update to 2.6.31]
Signed-off-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Async scanning introduced a very wide window where the SCSI device is
up and running but has not yet been added to sysfs. We delay the
adding until all scans have completed to retain the same ordering as
sync scanning.
This delay in visibility causes an oops if a device is removed before
we make it visible because the SCSI removal routines have an inbuilt
assumption that if a device is in SDEV_RUNNING state, it must be
visible (which is not necessarily true in the async scanning case).
Fix this by introducing an additional is_visible flag which we can use
to condition the tear down so we do the right thing for running but
not yet made visible.
Reported-by: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
The current syscall tracer mixes raw syscalls and real syscalls.
echo 1 > events/syscalls/enable
And we get these from the output:
(XXXX insteads " grep-20914 [001] 588211.446347" .. etc)
XXXX: sys_read(fd: 3, buf: 80609a8, count: 7000)
XXXX: sys_enter: NR 3 (3, 80609a8, 7000, a, 1000, bfce8ef8)
XXXX: sys_read -> 0x138
XXXX: sys_exit: NR 3 = 312
XXXX: sys_read(fd: 3, buf: 8060ae0, count: 7000)
XXXX: sys_enter: NR 3 (3, 8060ae0, 7000, a, 1000, bfce8ef8)
XXXX: sys_read -> 0x138
XXXX: sys_exit: NR 3 = 312
There are 2 drawbacks here.
A) two almost identical records are saved in ringbuffer
when a syscall enters or exits. (4 records for every syscall)
This wastes precious space in the ring buffer.
B) the lines including "sys_enter/sys_exit" produces
hardly any useful information for the output (no labels).
The user can use this method to prevent these drawbacks:
echo 1 > events/syscalls/enable
echo 0 > events/syscalls/sys_enter/enable
echo 0 > events/syscalls/sys_exit/enable
But this is not user friendly. So we separate raw syscall
from syscall tracer.
After this fix applied:
syscall tracer's output (echo 1 > events/syscalls/enable):
XXXX: sys_read(fd: 3, buf: bfe87d88, count: 200)
XXXX: sys_read -> 0x200
XXXX: sys_fstat64(fd: 3, statbuf: bfe87c98)
XXXX: sys_fstat64 -> 0x0
XXXX: sys_close(fd: 3)
raw syscall tracer's output (echo 1 > events/raw_syscalls/enable):
XXXX: sys_enter: NR 175 (0, bf92bf18, bf92bf98, 8, b748cff4, bf92bef8)
XXXX: sys_exit: NR 175 = 0
XXXX: sys_enter: NR 175 (2, bf92bf98, 0, 8, b748cff4, bf92bef8)
XXXX: sys_exit: NR 175 = 0
XXXX: sys_enter: NR 3 (9, bf927f9c, 4000, b77e2518, b77dce60, bf92bff8)
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <4AEFC37C.5080609@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
SPIN_LOCK_UNLOCKED and RW_LOCK_UNLOCKED are deprecated. Replace them
with the __*_LOCK_UNLOCKED variants.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 910067d1(remove generic__raw_read_trylock()) removed the
implementation but left the prototype around. Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As far as I know, all distros currently ship kernels with default
CONFIG_SECURITY_FILE_CAPABILITIES=y. Since having the option on
leaves a 'no_file_caps' option to boot without file capabilities,
the main reason to keep the option is that turning it off saves
you (on my s390x partition) 5k. In particular, vmlinux sizes
came to:
without patch fscaps=n: 53598392
without patch fscaps=y: 53603406
with this patch applied: 53603342
with the security-next tree.
Against this we must weigh the fact that there is no simple way for
userspace to figure out whether file capabilities are supported,
while things like per-process securebits, capability bounding
sets, and adding bits to pI if CAP_SETPCAP is in pE are not supported
with SECURITY_FILE_CAPABILITIES=n, leaving a bit of a problem for
applications wanting to know whether they can use them and/or why
something failed.
It also adds another subtly different set of semantics which we must
maintain at the risk of severe security regressions.
So this patch removes the SECURITY_FILE_CAPABILITIES compile
option. It drops the kernel size by about 50k over the stock
SECURITY_FILE_CAPABILITIES=y kernel, by removing the
cap_limit_ptraced_target() function.
Changelog:
Nov 20: remove cap_limit_ptraced_target() as it's logic
was ifndef'ed.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Andrew G. Morgan" <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
As this struct is exposed to user space and the API was added for this
release it's a bit of a pain for the C++ world and we still have time to
fix it. Rename the fields before we end up with that pain in an actual
release.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Reported-by: Olivier Goffart
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Catch an overly long wait for an old, dying active object when we want to
replace it with a new one. The probability is that all the slow-work threads
are hogged, and the delete can't get a look in.
What we do instead is:
(1) if there's nothing in the slow work queue, we sleep until either the dying
object has finished dying or there is something in the slow work queue
behind which we can queue our object.
(2) if there is something in the slow work queue, we return ETIMEDOUT to
fscache_lookup_object(), which then puts us back on the slow work queue,
presumably behind the deletion that we're blocked by. We are then
deferred for a while until we work our way back through the queue -
without blocking a slow-work thread unnecessarily.
A backtrace similar to the following may appear in the log without this patch:
INFO: task kslowd004:5711 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
kslowd004 D 0000000000000000 0 5711 2 0x00000080
ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000
ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8
Call Trace:
[<ffffffff81058e21>] ? trace_hardirqs_on+0xd/0xf
[<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
[<ffffffffa011c4e1>] cachefiles_wait_bit+0x9/0xd [cachefiles]
[<ffffffff81353153>] __wait_on_bit+0x43/0x76
[<ffffffff8111ae39>] ? ext3_xattr_get+0x1ec/0x270
[<ffffffff813531ef>] out_of_line_wait_on_bit+0x69/0x74
[<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
[<ffffffff8104c125>] ? wake_bit_function+0x0/0x2e
[<ffffffffa011bc79>] cachefiles_mark_object_active+0x203/0x23b [cachefiles]
[<ffffffffa011c209>] cachefiles_walk_to_object+0x558/0x827 [cachefiles]
[<ffffffffa011a429>] cachefiles_lookup_object+0xac/0x12a [cachefiles]
[<ffffffffa00aa1e9>] fscache_lookup_object+0x1c7/0x214 [fscache]
[<ffffffffa00aafc5>] fscache_object_state_machine+0xa5/0x52d [fscache]
[<ffffffffa00ab4ac>] fscache_object_slow_work_execute+0x5f/0xa0 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
1 lock held by kslowd004/5711:
#0: (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [<ffffffffa011be64>] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles]
Signed-off-by: David Howells <dhowells@redhat.com>
cachefiles_write_page() writes a full page to the backing file for the last
page of the netfs file, even if the netfs file's last page is only a partial
page.
This causes the EOF on the backing file to be extended beyond the EOF of the
netfs, and thus the backing file will be truncated by cachefiles_attr_changed()
called from cachefiles_lookup_object().
So we need to limit the write we make to the backing file on that last page
such that it doesn't push the EOF too far.
Also, if a backing file that has a partial page at the end is expanded, we
discard the partial page and refetch it on the basis that we then have a hole
in the file with invalid data, and should the power go out... A better way to
deal with this could be to record a note that the partial page contains invalid
data until the correct data is written into it.
This isn't a problem for netfs's that discard the whole backing file if the
file size changes (such as NFS).
Signed-off-by: David Howells <dhowells@redhat.com>
Start processing an object's operations when that object moves into the DYING
state as the object cannot be destroyed until all its outstanding operations
have completed.
Furthermore, make sure that read and allocation operations handle being woken
up on a dead object. Such events are recorded in the Allocs.abt and
Retrvls.abt statistics as viewable through /proc/fs/fscache/stats.
The code for waiting for object activation for the read and allocation
operations is also extracted into its own function as it is much the same in
all cases, differing only in the stats incremented.
Signed-off-by: David Howells <dhowells@redhat.com>
Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
under OOM conditions, but that are waiting for write to the cache. Under these
conditions, vmscan calls the releasepage() function of the netfs, asking if a
page can be discarded.
The problem is typified by the following trace of a stuck process:
kslowd005 D 0000000000000000 0 4253 2 0x00000080
ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
Call Trace:
[<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache]
[<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs]
[<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs]
[<ffffffff810885d3>] try_to_release_page+0x32/0x3b
[<ffffffff81093203>] shrink_page_list+0x316/0x4ac
[<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c
[<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b
[<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
[<ffffffff8135330e>] ? mutex_unlock+0x9/0xb
[<ffffffff81093aa2>] shrink_list+0x8d/0x8f
[<ffffffff81093d1c>] shrink_zone+0x278/0x33c
[<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba
[<ffffffff81094b13>] try_to_free_pages+0x22e/0x392
[<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212
[<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf
[<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa
[<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb
[<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c
[<ffffffff8103cb69>] ? current_fs_time+0x22/0x29
[<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385
[<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae
[<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae
[<ffffffff810b2e82>] do_sync_write+0xe3/0x120
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8
[<ffffffff810b1a76>] ? dentry_open+0x82/0x89
[<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles]
[<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache]
[<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
In the above backtrace, the following is happening:
(1) A page storage operation is being executed by a slow-work thread
(fscache_write_op()).
(2) FS-Cache farms the operation out to the cache to perform
(cachefiles_write_page()).
(3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
standard write (do_sync_write()) under KERNEL_DS directly from the netfs
page.
(4) However, for Ext3 to perform the write, it must allocate some memory, in
particular, it must allocate at least one page cache page into which it
can copy the data from the netfs page.
(5) Under OOM conditions, the memory allocator can't immediately come up with
a page, so it uses vmscan to find something to discard
(try_to_free_pages()).
(6) vmscan finds a clean netfs page it might be able to discard (possibly the
one it's trying to write out).
(7) The netfs is called to throw the page away (nfs_release_page()) - but it's
called with __GFP_WAIT, so the netfs decides to wait for the store to
complete (__fscache_wait_on_page_write()).
(8) This blocks a slow-work processing thread - possibly against itself.
The system ends up stuck because it can't write out any netfs pages to the
cache without allocating more memory.
To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
actually being performed. This means that some data won't make it into the
cache this time. To support this, a new FS-Cache function is added
fscache_maybe_release_page() that replaces what the netfs releasepage()
functions used to do with respect to the cache.
The decisions fscache_maybe_release_page() makes are counted and displayed
through /proc/fs/fscache/stats on a line labelled "VmScan". There are four
counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
pages that were pending storage when we first looked, but weren't by the time
we got the object lock; "bsy=N" - pages that we ignored as they were actively
being written when we looked; and "can=N" - pages that we cancelled the storage
of.
What I'd really like to do is alter the behaviour of the cancellation
heuristics, depending on how necessary it is to expel pages. If there are
plenty of other pages that aren't waiting to be written to the cache that
could be ejected first, then it would be nice to hold up on immediate
cancellation of cache writes - but I don't see a way of doing that.
Signed-off-by: David Howells <dhowells@redhat.com>
FS-Cache has two structs internally for keeping track of the internal state of
a cached file: the fscache_cookie struct, which represents the netfs's state,
and fscache_object struct, which represents the cache's state. Each has a
pointer that points to the other (when both are in existence), and each has a
spinlock for pointer maintenance.
Since netfs operations approach these structures from the cookie side, they get
the cookie lock first, then the object lock. Cache operations, on the other
hand, approach from the object side, and get the object lock first. It is not
then permitted for a cache operation to get the cookie lock whilst it is
holding the object lock lest deadlock occur; instead, it must do one of two
things:
(1) increment the cookie usage counter, drop the object lock and then get both
locks in order, or
(2) simply hold the object lock as certain parts of the cookie may not be
altered whilst the object lock is held.
It is also not permitted to follow either pointer without holding the lock at
the end you start with. To break the pointers between the cookie and the
object, both locks must be held.
fscache_write_op(), however, violates the locking rules: It attempts to get the
cookie lock without (a) checking that the cookie pointer is a valid pointer,
and (b) holding the object lock to protect the cookie pointer whilst it follows
it. This is so that it can access the pending page store tree without
interference from __fscache_write_page().
This is fixed by splitting the cookie lock, such that the page store tracking
tree is protected by its own lock, and checking that the cookie pointer is
non-NULL before we attempt to follow it whilst holding the object lock.
The new lock is subordinate to both the cookie lock and the object lock, and so
should be taken after those.
Signed-off-by: David Howells <dhowells@redhat.com>