This patch adds some configuration options that allow to compile out
CPU vendor-specific code in x86 kernels (in arch/x86/kernel/cpu). The
new configuration options are only visible when CONFIG_EMBEDDED is
selected, as they are mostly interesting for space savings reasons.
An example of size saving, on x86 with only Intel CPU support:
text data bss dec hex filename
1125479 118760 212992 1457231 163c4f vmlinux.old
1121355 116536 212992 1450883 162383 vmlinux
-4124 -2224 0 -6348 -18CC +/-
However, I'm not exactly sure that the Kconfig wording is correct with
regard to !64BIT / 64BIT.
[ mingo@elte.hu: convert macro to inline ]
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
arch/x86/kernel/cpu/intel.c defines a few fallback functions
(cmpxchg_*()) that are used when the CPU doesn't support cmpxchg
and/or cmpxchg64 natively. However, while defined in an Intel-specific
file, these functions are also used for CPUs from other vendors when
they don't support cmpxchg and/or cmpxchg64. This breaks the
compilation when support for Intel CPUs is disabled.
This patch moves these functions to a new
arch/x86/kernel/cpu/cmpxchg.c file, unconditionally compiled when
X86_32 is enabled.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: michael@free-electrons.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
movsl_mask is currently defined in arch/x86/kernel/cpu/intel.c, which
contains code specific to Intel CPUs. However, movsl_mask is used in
the non-CPU specific code in arch/x86/lib/usercopy_32.c, which breaks
the compilation when support for Intel CPUs is compiled out.
This patch solves this problem by moving movsl_mask's definition close
to its users in arch/x86/lib/usercopy_32.c.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: michael@free-electrons.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: fix 2.6.27rc1 cannot boot more than 8CPUs
x86: make "apic" an early_param() on 32-bit, NULL check
EFI, x86: fix function prototype
x86, pci-calgary: fix function declaration
x86: work around gcc 3.4.x bug
x86: make "apic" an early_param() on 32-bit
x86, debug: tone down arch/x86/kernel/mpparse.c debugging printk
x86_64: restore the proper NR_IRQS define so larger systems work.
x86: Restore proper vector locking during cpu hotplug
x86: Fix broken VMI in 2.6.27-rc..
x86: fdiv bug detection fix
Jeff Chua reported that booting a !bigsmp kernel on a 16-way box
hangs silently.
this is a long-standing issue, smp start AP cpu could check the
apic id >=8 etc before trying to start it.
achieve this by moving the def_to_bigsmp check later and skip the
apicid id > 8
[ mingo@elte.hu: clean up the message that is printed. ]
Reported-by: "Jeff Chua" <jeff.chua.linux@gmail.com>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
arch/x86/kernel/setup.c | 6 ------
arch/x86/kernel/smpboot.c | 10 ++++++++++
2 files changed, 10 insertions(+), 6 deletions(-)
Cyrill Gorcunov observed:
> you turned it into early_param so now it's NULL injecting vulnerabled.
> Could you please add checking for NULL str param?
fix that.
Also, change the name of 'str' into 'arg', to make it more apparent
that this is an optional argument that can be NULL, not a string
parameter that is empty when unset.
Reported-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix function declaration:
linux-next-20080807/arch/x86/kernel/pci-calgary_64.c:1353:36: warning: non-ANSI function declaration of function 'get_tce_space_from_tar'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Acked-by: Muli Ben-Yehuda <muli@il.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On 32-bit, "apic" is a __setup() param meaning it is parsed rather
late in the game. Make it an early_param() for apic_printk() use
by arch/x86/kernel/mpparse.c.
On 64-bit, it already is an early_param().
Signed-off-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
commit 11a62a0560 turns some formerly
nopped debugging printks in arch/x86/kernel/mppparse.c into regular
ones. The one at the top of smp_scan_config() in particular also
prints on !CONFIG_SMP/CONFIG_X86_LOCAL_APIC kernels and UP machines
without anything resembling MP tables which makes their lowly UP
owners wonder...
Turn the former Dprintk()s into apic_printk()s instead meaning that
their printing is dependent on passing the apic=verbose (or =debug)
command line param.
On 32-bit, "apic" is a __setup() param which isn't early enough
for this code and therefore needs a followup changing it into an
early_param(). On 64-bit, it already is.
Signed-off-by: Rene Herman <rene.herman@gmail.com>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Having cpu_online_map change during assign_irq_vector can result
in some really nasty and weird things happening. The one that
bit me last time was accessing non existent per cpu memory for non
existent cpus.
This locking was removed in a sloppy x86_64 and x86_32 merge patch.
Guys can we please try and avoid subtly breaking x86 when we are
merging files together?
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The lowmem mapping table created by VMI need not depend on max_low_pfn
at all. Instead we now create an extra large mapping which covers all
possible lowmem instead of the physical ram that is actually available.
This allows the vmi initialization to be done before max_low_pfn could
be computed. We also move the vmi_init code very early in the boot process
so that nobody accidentally breaks the fixmap dependancy.
Signed-off-by: Alok N Kataria <akataria@vmware.com>
Acked-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This patch provides support for the _PSD ACPI object in the Powernow-k8
driver. Although it looks like an invasive patch, most of it is
simply the consequence of turning the static acpi_performance_data
structure into a pointer.
AMD has tested it on several machines over the past few days without issue.
[trivial checkpatch warnings fixed up by davej]
[X86_POWERNOW_K8_ACPI=n buildfix from Randy Dunlap]
Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Tested-by: Frank Arnold <frank.arnold@amd.com>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Dave Jones <davej@redhat.com>
arch/x86/kernel/cpu/cpufreq/elanfreq.c:47:26: warning: symbol 'elan_multiplier' was not declared. Should it be static?
Yes, yes it should.
Signed-off-by: Dave Jones <davej@redhat.com>
The fdiv detection code writes s32 integer into
the boot_cpu_data.fdiv_bug.
However, the boot_cpu_data.fdiv_bug is only char (s8)
field so the detection overwrites already set fields for
other bugs, e.g. the f00f bug field.
Use local s32 variable to receive result.
This is a partial fix to Bugzilla #9928 - fixes wrong
information about the f00f bug (tested) and probably
for coma bug (I have no cpu to test this).
Signed-off-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Exports needed by the GRU driver.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This IOMMU helper function doesn't work for some architectures:
http://marc.info/?l=linux-kernel&m=121699304403202&w=2
It also breaks POWER and SPARC builds:
http://marc.info/?l=linux-kernel&m=121730388001890&w=2
Currently, only x86 IOMMUs use this so let's move it to x86 for
now.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6: (21 commits)
x86/PCI: use dev_printk when possible
PCI: add D3 power state avoidance quirk
PCI: fix bogus "'device' may be used uninitialized" warning in pci_slot
PCI: add an option to allow ASPM enabled forcibly
PCI: disable ASPM on pre-1.1 PCIe devices
PCI: disable ASPM per ACPI FADT setting
PCI MSI: Don't disable MSIs if the mask bit isn't supported
PCI: handle 64-bit resources better on 32-bit machines
PCI: rewrite PCI BAR reading code
PCI: document pci_target_state
PCI hotplug: fix typo in pcie hotplug output
x86 gart: replace to_pages macro with iommu_num_pages
x86, AMD IOMMU: replace to_pages macro with iommu_num_pages
iommu: add iommu_num_pages helper function
dma-coherent: add documentation to new interfaces
Cris: convert to using generic dma-coherent mem allocator
Sh: use generic per-device coherent dma allocator
ARM: support generic per-device coherent dma mem
Generic dma-coherent: fix DMA_MEMORY_EXCLUSIVE
x86: use generic per-device dma coherent allocator
...
Clean up and optimize cpumask_of_cpu(), by sharing all the zero words.
Instead of stupidly generating all possible i=0...NR_CPUS 2^i patterns
creating a huge array of constant bitmasks, realize that the zero words
can be shared.
In other words, on a 64-bit architecture, we only ever need 64 of these
arrays - with a different bit set in one single world (with enough zero
words around it so that we can create any bitmask by just offsetting in
that big array). And then we just put enough zeroes around it that we
can point every single cpumask to be one of those things.
So when we have 4k CPU's, instead of having 4k arrays (of 4k bits each,
with one bit set in each array - 2MB memory total), we have exactly 64
arrays instead, each 8k bits in size (64kB total).
And then we just point cpumask(n) to the right position (which we can
calculate dynamically). Once we have the right arrays, getting
"cpumask(n)" ends up being:
static inline const cpumask_t *get_cpu_mask(unsigned int cpu)
{
const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
p -= cpu / BITS_PER_LONG;
return (const cpumask_t *)p;
}
This brings other advantages and simplifications as well:
- we are not wasting memory that is just filled with a single bit in
various different places
- we don't need all those games to re-create the arrays in some dense
format, because they're already going to be dense enough.
if we compile a kernel for up to 4k CPU's, "wasting" that 64kB of memory
is a non-issue (especially since by doing this "overlapping" trick we
probably get better cache behaviour anyway).
[ mingo@elte.hu:
Converted Linus's mails into a commit. See:
http://lkml.org/lkml/2008/7/27/156http://lkml.org/lkml/2008/7/28/320
Also applied a family filter - which also has the side-effect of leaving
out the bits where Linus calls me an idio... Oh, never mind ;-)
]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix !PCI build failure:
arch/x86/kernel/cpu/intel_cacheinfo.c: In function 'get_k8_northbridge':
arch/x86/kernel/cpu/intel_cacheinfo.c:675: error: implicit declaration of function 'pci_match_id'
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Monday 21 July 2008, Ingo Molnar wrote:
> > applied to tip/x86/cpu, thanks Mark.
> >
> > I've done some coding style fixes for the new functions you've
> > introduced, see that commit below.
>
> -tip testing found the following build failure:
>
> arch/x86/kernel/built-in.o: In function `show_cache_disable':
> intel_cacheinfo.c:(.text+0xbbf2): undefined reference to `k8_northbridges'
> arch/x86/kernel/built-in.o: In function `store_cache_disable':
> intel_cacheinfo.c:(.text+0xbd91): undefined reference to `k8_northbridges'
>
> please send a delta fix patch against the tip/x86/cpu branch:
>
> http://people.redhat.com/mingo/tip.git/README
>
> which has your patch plus the cleanup applied.
delta fix patch follows. It removes the dependency on k8_northbridges.
-Mark Langsdorf
Operating System Research Center
AMD
Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
New versions of AMD processors have support to disable parts
of their L3 caches if too many MCEs are generated by the
L3 cache.
This patch provides a /sysfs interface under the cache
hierarchy to display which caches indices are disabled
(if any) and to monitoring applications to disable a
cache index.
This patch does not set an automatic policy to disable
the L3 cache. Policy decisions would need to be made
by a RAS handler. This patch merely makes it easier to
see what indices are currently disabled.
Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
commit 3e9704739d ("x86: boot secondary
cpus through initial_code") causes the kernel to crash when a CPU is
brought online after the read only sections have been write
protected. The write to initial_code in do_boot_cpu() fails.
Move inital_code to .cpuinit.data section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, AMD IOMMU: include amd_iommu_last_bdf in device initialization
x86: fix IBM Summit based systems' phys_cpu_present_map on 32-bit kernels
x86, RDC321x: remove gpio.h complications
x86, RDC321x: add to mach-default
crashdump: fix undefined reference to `elfcorehdr_addr'
flag parameters: fix compile error of sys_epoll_create1
This patch implements devices state save/restore before after kexec.
This patch together with features in kexec_jump patch can be used for
following:
- A simple hibernation implementation without ACPI support. You can kexec a
hibernating kernel, save the memory image of original system and shutdown
the system. When resuming, you restore the memory image of original system
via ordinary kexec load then jump back.
- Kernel/system debug through making system snapshot. You can make system
snapshot, jump back, do some thing and make another system snapshot.
- Cooperative multi-kernel/system. With kexec jump, you can switch between
several kernels/systems quickly without boot process except the first time.
This appears like swap a whole kernel/system out/in.
- A general method to call program in physical mode (paging turning
off). This can be used to invoke BIOS code under Linux.
The following user-space tools can be used with kexec jump:
- kexec-tools needs to be patched to support kexec jump. The patches
and the precompiled kexec can be download from the following URL:
source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10
- makedumpfile with patches are used as memory image saving tool, it
can exclude free pages from original kernel memory image file. The
patches and the precompiled makedumpfile can be download from the
following URL:
source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10
- An initramfs image can be used as the root file system of kexeced
kernel. An initramfs image built with "BuildRoot" can be downloaded
from the following URL:
initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz
All user space tools above are included in the initramfs image.
Usage example of simple hibernation:
1. Compile and install patched kernel with following options selected:
CONFIG_X86_32=y
CONFIG_RELOCATABLE=y
CONFIG_KEXEC=y
CONFIG_CRASH_DUMP=y
CONFIG_PM=y
CONFIG_HIBERNATION=y
CONFIG_KEXEC_JUMP=y
2. Build an initramfs image contains kexec-tool and makedumpfile, or
download the pre-built initramfs image, called rootfs.gz in
following text.
3. Prepare a partition to save memory image of original kernel, called
hibernating partition in following text.
4. Boot kernel compiled in step 1 (kernel A).
5. In the kernel A, load kernel compiled in step 1 (kernel B) with
/sbin/kexec. The shell command line can be as follow:
/sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000
--mem-max=0xffffff --initrd=rootfs.gz
6. Boot the kernel B with following shell command line:
/sbin/kexec -e
7. The kernel B will boot as normal kexec. In kernel B the memory
image of kernel A can be saved into hibernating partition as
follow:
jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='`
echo $jump_back_entry > kexec_jump_back_entry
cp /proc/vmcore dump.elf
Then you can shutdown the machine as normal.
8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as
root file system.
9. In kernel C, load the memory image of kernel A as follow:
/sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf
10. Jump back to the kernel A as follow:
/sbin/kexec -e
Then, kernel A is resumed.
Implementation point:
To support jumping between two kernels, before jumping to (executing)
the new kernel and jumping back to the original kernel, the devices
are put into quiescent state, and the state of devices and CPU is
saved. After jumping back from kexeced kernel and jumping to the new
kernel, the state of devices and CPU are restored accordingly. The
devices/CPU state save/restore code of software suspend is called to
implement corresponding function.
Known issues:
- Because the segment number supported by sys_kexec_load is limited,
hibernation image with many segments may not be load. This is
planned to be eliminated by adding a new flag to sys_kexec_load to
make a image can be loaded with multiple sys_kexec_load invoking.
Now, only the i386 architecture is supported.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch provides an enhancement to kexec/kdump. It implements the
following features:
- Backup/restore memory used by the original kernel before/after
kexec.
- Save/restore CPU state before/after kexec.
The features of this patch can be used as a general method to call program in
physical mode (paging turning off). This can be used to call BIOS code under
Linux.
kexec-tools needs to be patched to support kexec jump. The patches and
the precompiled kexec can be download from the following URL:
source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10
Usage example of calling some physical mode code and return:
1. Compile and install patched kernel with following options selected:
CONFIG_X86_32=y
CONFIG_KEXEC=y
CONFIG_PM=y
CONFIG_KEXEC_JUMP=y
2. Build patched kexec-tool or download the pre-built one.
3. Build some physical mode executable named such as "phy_mode"
4. Boot kernel compiled in step 1.
5. Load physical mode executable with /sbin/kexec. The shell command
line can be as follow:
/sbin/kexec --load-preserve-context --args-none phy_mode
6. Call physical mode executable with following shell command line:
/sbin/kexec -e
Implementation point:
To support jumping without reserving memory. One shadow backup page (source
page) is allocated for each page used by kexeced code image (destination
page). When do kexec_load, the image of kexeced code is loaded into source
pages, and before executing, the destination pages and the source pages are
swapped, so the contents of destination pages are backupped. Before jumping
to the kexeced code image and after jumping back to the original kernel, the
destination pages and the source pages are swapped too.
C ABI (calling convention) is used as communication protocol between
kernel and called code.
A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to
indicate that the loaded kernel image is used for jumping back.
Now, only the i386 architecture is supported.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The calgary code can give drivers addresses above 4GB which is very bad
for hardware that is only 32bit DMA addressable.
With this patch, the calgary code sets the global dma_ops to swiotlb or
nommu properly, and the dma_ops of devices behind the Calgary/CalIOC2
to calgary_dma_ops. So the calgary code can handle devices safely that
aren't behind the Calgary/CalIOC2.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Alexis Bruemmer <alexisb@us.ibm.com>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add per-device dma_mapping_ops support for CONFIG_X86_64 as POWER
architecture does:
This enables us to cleanly fix the Calgary IOMMU issue that some devices
are not behind the IOMMU (http://lkml.org/lkml/2008/5/8/423).
I think that per-device dma_mapping_ops support would be also helpful for
KVM people to support PCI passthrough but Andi thinks that this makes it
difficult to support the PCI passthrough (see the above thread). So I
CC'ed this to KVM camp. Comments are appreciated.
A pointer to dma_mapping_ops to struct dev_archdata is added. If the
pointer is non NULL, DMA operations in asm/dma-mapping.h use it. If it's
NULL, the system-wide dma_ops pointer is used as before.
If it's useful for KVM people, I plan to implement a mechanism to register
a hook called when a new pci (or dma capable) device is created (it works
with hot plugging). It enables IOMMUs to set up an appropriate
dma_mapping_ops per device.
The major obstacle is that dma_mapping_error doesn't take a pointer to the
device unlike other DMA operations. So x86 can't have dma_mapping_ops per
device. Note all the POWER IOMMUs use the same dma_mapping_error function
so this is not a problem for POWER but x86 IOMMUs use different
dma_mapping_error functions.
The first patch adds the device argument to dma_mapping_error. The patch
is trivial but large since it touches lots of drivers and dma-mapping.h in
all the architecture.
This patch:
dma_mapping_error() doesn't take a pointer to the device unlike other DMA
operations. So we can't have dma_mapping_ops per device.
Note that POWER already has dma_mapping_ops per device but all the POWER
IOMMUs use the same dma_mapping_error function. x86 IOMMUs use device
argument.
[akpm@linux-foundation.org: fix sge]
[akpm@linux-foundation.org: fix svc_rdma]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix bnx2x]
[akpm@linux-foundation.org: fix s2io]
[akpm@linux-foundation.org: fix pasemi_mac]
[akpm@linux-foundation.org: fix sdhci]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix sparc]
[akpm@linux-foundation.org: fix ibmvscsi]
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Replace previous instances of the cpumask_of_cpu_ptr* macros
with a the new (lvalue capable) generic cpumask_of_cpu().
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Create the cpumask_of_cpu_map statically in the init data section
using NR_CPUS but replace it during boot up with one sized by
nr_cpu_ids (num possible cpus).
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All the values read while searching for amd_iommu_last_bdf are defined as
inclusive. Let the code handle this value as such. Found by Wei Wang. Thanks
Wei.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Cc: iommu@lists.linux-foundation.org
Cc: bhavna.sarathy@amd.com
Cc: robert.richter@amd.com
Cc: Wei Wang <wei.wang2@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kdump kernel fails to boot with calgary iommu and aacraid driver on a x366
box. The ongoing dma's of aacraid from the first kernel continue to exist
until the driver is loaded in the kdump kernel. Calgary is initialized
prior to aacraid and creation of new tce tables causes wrong dma's to
occur. Here we try to get the tce tables of the first kernel in kdump
kernel and use them. While in the kdump kernel we do not allocate new tce
tables but instead read the base address register contents of calgary
iommu and use the tables that the registers point to. With these changes
the kdump kernel and hence aacraid now boots normally.
Signed-off-by: Chandru Siddalingappa <chandru@in.ibm.com>
Acked-by: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently list of kretprobe instances are stored in kretprobe object (as
used_instances,free_instances) and in kretprobe hash table. We have one
global kretprobe lock to serialise the access to these lists. This causes
only one kretprobe handler to execute at a time. Hence affects system
performance, particularly on SMP systems and when return probe is set on
lot of functions (like on all systemcalls).
Solution proposed here gives fine-grain locks that performs better on SMP
system compared to present kretprobe implementation.
Solution:
1) Instead of having one global lock to protect kretprobe instances
present in kretprobe object and kretprobe hash table. We will have
two locks, one lock for protecting kretprobe hash table and another
lock for kretporbe object.
2) We hold lock present in kretprobe object while we modify kretprobe
instance in kretprobe object and we hold per-hash-list lock while
modifying kretprobe instances present in that hash list. To prevent
deadlock, we never grab a per-hash-list lock while holding a kretprobe
lock.
3) We can remove used_instances from struct kretprobe, as we can
track used instances of kretprobe instances using kretprobe hash
table.
Time duration for kernel compilation ("make -j 8") on a 8-way ppc64 system
with return probes set on all systemcalls looks like this.
cacheline non-cacheline Un-patched kernel
aligned patch aligned patch
===============================================================================
real 9m46.784s 9m54.412s 10m2.450s
user 40m5.715s 40m7.142s 40m4.273s
sys 2m57.754s 2m58.583s 3m17.430s
===========================================================
Time duration for kernel compilation ("make -j 8) on the same system, when
kernel is not probed.
=========================
real 9m26.389s
user 40m8.775s
sys 2m7.283s
=========================
Signed-off-by: Srinivasa DS <srinivasa@in.ibm.com>
Signed-off-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Suresh Siddha wants to fix a possible FPU leakage in error conditions,
but the fact that save/restore_i387() are inlines in a header file makes
that harder to do than necessary. So start off with an obvious cleanup.
This just moves the x86-64 version of save/restore_i387() out of the
header file, and moves it to the only file that it is actually used in:
arch/x86/kernel/signal_64.c. So exposing it in a header file was wrong
to begin with.
[ Side note: I'd like to fix up some of the games we play with the
32-bit version of these functions too, but that's a separate
matter. The 32-bit versions are shared - under different names
at that! - by both the native x86-32 code and the x86-64 32-bit
compatibility code ]
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
nohz: adjust tick_nohz_stop_sched_tick() call of s390 as well
nohz: prevent tick stop outside of the idle loop
Commit 9d25d4db81 ("x86: BUILD_IRQ say
.text to avoid .data.percpu") added a ".text" specifier to make sure
that BUILD_IRQ() builds the irq trampoline in the text segment rather
than in some random left-over segment that the compiler happened to
leave the asm in.
However, we should also make sure that we switch back by adding a
".previous" at the end, so that there are no subtle issues with
subsequent compiler-generated code.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>