8bea0dfb4a
15666 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Giovanni Gherdovich
|
8bea0dfb4a |
x86, sched: Add support for frequency invariance on XEON_PHI_KNL/KNM
The scheduler needs the ratio freq_curr/freq_max for frequency-invariant accounting. On Xeon Phi CPUs set freq_max to the second-highest frequency reported by the CPU. Xeon Phi CPUs such as Knights Landing and Knights Mill typically have either one or two turbo frequencies; in the former case that's 100 MHz above the base frequency, in the latter case the two levels are 100 MHz and 200 MHz above base frequency. We set freq_max to the second-highest frequency reported by the CPU. This could be the base frequency (if only one turbo level is available) or the first turbo level (if two levels are available). The rationale is to compromise between power efficiency or performance -- going straight to max turbo would favor efficiency and blindly using base freq would favor performance. For reference, this is how MSR_TURBO_RATIO_LIMIT must be parsed on a Xeon Phi to get the available frequencies (taken from a comment in turbostat's sources): [0] -- Reserved [7:1] -- Base value of number of active cores of bucket 1. [15:8] -- Base value of freq ratio of bucket 1. [20:16] -- +ve delta of number of active cores of bucket 2. i.e. active cores of bucket 2 = active cores of bucket 1 + delta [23:21] -- Negative delta of freq ratio of bucket 2. i.e. freq ratio of bucket 2 = freq ratio of bucket 1 - delta [28:24]-- +ve delta of number of active cores of bucket 3. [31:29]-- -ve delta of freq ratio of bucket 3. [36:32]-- +ve delta of number of active cores of bucket 4. [39:37]-- -ve delta of freq ratio of bucket 4. [44:40]-- +ve delta of number of active cores of bucket 5. [47:45]-- -ve delta of freq ratio of bucket 5. [52:48]-- +ve delta of number of active cores of bucket 6. [55:53]-- -ve delta of freq ratio of bucket 6. [60:56]-- +ve delta of number of active cores of bucket 7. [63:61]-- -ve delta of freq ratio of bucket 7. 1. PERFORMANCE EVALUATION: TBENCH +5% 2. NEUTRAL BENCHMARKS (ALL OTHERS) 3. TEST SETUP 1. PERFORMANCE EVALUATION: TBENCH +5% ------------------------------------- A performance evaluation was conducted on a Knights Mill machine (see "Test Setup" below), were the frequency-invariance patch (on schedutil) is compared to both non-invariant schedutil and active intel_pstate with powersave: all three tested kernels behave the same performance-wise and with regard to power consumption (performance per watt). The only notable difference is tbench: comparison ratio of performance with baseline; 1.00 means neutral, higher is better: I_PSTATE FREQ-INV ---------------------------------------- tbench 1.04 1.05 performance-per-watt ratios with baseline; 1.00 means neutral, higher is better: I_PSTATE FREQ-INV ---------------------------------------- tbench 1.03 1.04 which essentially means that frequency-invariant schedutil is 5% better than baseline, the same as intel_pstate+powersave. As the results above are averaged over the varying parameter, here the detailed table. Varying parameter : number of clients Unit : MB/sec (higher is better) 5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 freq-inv - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Hmean 1 49.06 +- 2.12% ( ) 51.66 +- 1.52% ( 5.30%) 52.87 +- 0.88% ( 7.76%) Hmean 2 93.82 +- 0.45% ( ) 103.24 +- 0.70% ( 10.05%) 105.90 +- 0.70% ( 12.88%) Hmean 4 192.46 +- 1.15% ( ) 215.95 +- 0.60% ( 12.21%) 215.78 +- 1.43% ( 12.12%) Hmean 8 406.74 +- 2.58% ( ) 438.58 +- 0.36% ( 7.83%) 437.61 +- 0.97% ( 7.59%) Hmean 16 857.70 +- 1.22% ( ) 890.26 +- 0.72% ( 3.80%) 889.11 +- 0.73% ( 3.66%) Hmean 32 1760.10 +- 0.92% ( ) 1791.70 +- 0.44% ( 1.79%) 1787.95 +- 0.44% ( 1.58%) Hmean 64 3183.50 +- 0.34% ( ) 3183.19 +- 0.36% ( -0.01%) 3187.53 +- 0.36% ( 0.13%) Hmean 128 4830.96 +- 0.31% ( ) 4846.53 +- 0.30% ( 0.32%) 4855.86 +- 0.30% ( 0.52%) Hmean 256 5467.98 +- 0.38% ( ) 5793.80 +- 0.28% ( 5.96%) 5821.94 +- 0.17% ( 6.47%) Hmean 512 5398.10 +- 0.06% ( ) 5745.56 +- 0.08% ( 6.44%) 5503.68 +- 0.07% ( 1.96%) Hmean 1024 5290.43 +- 0.63% ( ) 5221.07 +- 0.47% ( -1.31%) 5277.22 +- 0.80% ( -0.25%) Hmean 1088 5139.71 +- 0.57% ( ) 5236.02 +- 0.71% ( 1.87%) 5190.57 +- 0.41% ( 0.99%) 2. NEUTRAL BENCHMARKS (ALL OTHERS) ---------------------------------- * pgbench (both read/write and read-only) * NASA Parallel Benchmarks (NPB), MPI or OpenMP for message-passing * hackbench * netperf * dbench * kernbench * gitsource (git unit test suite) 3. TEST SETUP ------------- Test machine: CPU Model : Intel Xeon Phi CPU 7255 @ 1.10GHz (a.k.a. Knights Mill) Fam/Mod/Ste : 6:133:0 Topology : 1 socket, 68 cores / 272 threads Memory : 96G Storage : rotary, XFS filesystem Max EFFICiency, BASE frequency and available turbo levels (MHz): EFFIC 1000 |********** BASE 1100 |*********** 68C 1100 |*********** 30C 1200 |************ Tested kernels: Baseline : v5.2, intel_pstate passive, schedutil Comparison #1 : v5.2, intel_pstate active , powersave Comparison #2 : v5.2, this patch, intel_pstate passive, schedutil Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/20200122151617.531-4-ggherdovich@suse.cz |
||
Giovanni Gherdovich
|
2a0abc5969 |
x86, sched: Add support for frequency invariance on SKYLAKE_X
The scheduler needs the ratio freq_curr/freq_max for frequency-invariant
accounting. On SKYLAKE_X CPUs set freq_max to the highest frequency that can
be sustained by a group of at least 4 cores.
From the changelog of commit
|
||
Giovanni Gherdovich
|
1567c3e346 |
x86, sched: Add support for frequency invariance
Implement arch_scale_freq_capacity() for 'modern' x86. This function is used by the scheduler to correctly account usage in the face of DVFS. The present patch addresses Intel processors specifically and has positive performance and performance-per-watt implications for the schedutil cpufreq governor, bringing it closer to, if not on-par with, the powersave governor from the intel_pstate driver/framework. Large performance gains are obtained when the machine is lightly loaded and no regression are observed at saturation. The benchmarks with the largest gains are kernel compilation, tbench (the networking version of dbench) and shell-intensive workloads. 1. FREQUENCY INVARIANCE: MOTIVATION * Without it, a task looks larger if the CPU runs slower 2. PECULIARITIES OF X86 * freq invariance accounting requires knowing the ratio freq_curr/freq_max 2.1 CURRENT FREQUENCY * Use delta_APERF / delta_MPERF * freq_base (a.k.a "BusyMHz") 2.2 MAX FREQUENCY * It varies with time (turbo). As an approximation, we set it to a constant, i.e. 4-cores turbo frequency. 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR * The invariant schedutil's formula has no feedback loop and reacts faster to utilization changes 4. KNOWN LIMITATIONS * In some cases tasks can't reach max util despite how hard they try 5. PERFORMANCE TESTING 5.1 MACHINES * Skylake, Broadwell, Haswell 5.2 SETUP * baseline Linux v5.2 w/ non-invariant schedutil. Tested freq_max = 1-2-3-4-8-12 active cores turbo w/ invariant schedutil, and intel_pstate/powersave 5.3 BENCHMARK RESULTS 5.3.1 NEUTRAL BENCHMARKS * NAS Parallel Benchmark (HPC), hackbench 5.3.2 NON-NEUTRAL BENCHMARKS * tbench (10-30% better), kernbench (10-15% better), shell-intensive-scripts (30-50% better) * no regressions 5.3.3 SELECTION OF DETAILED RESULTS 5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT * dbench (5% worse on one machine), kernbench (3% worse), tbench (5-10% better), shell-intensive-scripts (10-40% better) 6. MICROARCH'ES ADDRESSED HERE * Xeon Core before Scalable Performance processors line (Xeon Gold/Platinum etc have different MSRs semantic for querying turbo levels) 7. REFERENCES * MMTests performance testing framework, github.com/gormanm/mmtests +-------------------------------------------------------------------------+ | 1. FREQUENCY INVARIANCE: MOTIVATION +-------------------------------------------------------------------------+ For example; suppose a CPU has two frequencies: 500 and 1000 Mhz. When running a task that would consume 1/3rd of a CPU at 1000 MHz, it would appear to consume 2/3rd (or 66.6%) when running at 500 MHz, giving the false impression this CPU is almost at capacity, even though it can go faster [*]. In a nutshell, without frequency scale-invariance tasks look larger just because the CPU is running slower. [*] (footnote: this assumes a linear frequency/performance relation; which everybody knows to be false, but given realities its the best approximation we can make.) +-------------------------------------------------------------------------+ | 2. PECULIARITIES OF X86 +-------------------------------------------------------------------------+ Accounting for frequency changes in PELT signals requires the computation of the ratio freq_curr / freq_max. On x86 neither of those terms is readily available. 2.1 CURRENT FREQUENCY ==================== Since modern x86 has hardware control over the actual frequency we run at (because amongst other things, Turbo-Mode), we cannot simply use the frequency as requested through cpufreq. Instead we use the APERF/MPERF MSRs to compute the effective frequency over the recent past. Also, because reading MSRs is expensive, don't do so every time we need the value, but amortize the cost by doing it every tick. 2.2 MAX FREQUENCY ================= Obtaining freq_max is also non-trivial because at any time the hardware can provide a frequency boost to a selected subset of cores if the package has enough power to spare (eg: Turbo Boost). This means that the maximum frequency available to a given core changes with time. The approach taken in this change is to arbitrarily set freq_max to a constant value at boot. The value chosen is the "4-cores (4C) turbo frequency" on most microarchitectures, after evaluating the following candidates: * 1-core (1C) turbo frequency (the fastest turbo state available) * around base frequency (a.k.a. max P-state) * something in between, such as 4C turbo To interpret these options, consider that this is the denominator in freq_curr/freq_max, and that ratio will be used to scale PELT signals such as util_avg and load_avg. A large denominator will undershoot (util_avg looks a bit smaller than it really is), viceversa with a smaller denominator PELT signals will tend to overshoot. Given that PELT drives frequency selection in the schedutil governor, we will have: freq_max set to | effect on DVFS --------------------+------------------ 1C turbo | power efficiency (lower freq choices) base freq | performance (higher util_avg, higher freq requests) 4C turbo | a bit of both 4C turbo proves to be a good compromise in a number of benchmarks (see below). +-------------------------------------------------------------------------+ | 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR +-------------------------------------------------------------------------+ Once an architecture implements a frequency scale-invariant utilization (the PELT signal util_avg), schedutil switches its frequency selection formula from freq_next = 1.25 * freq_curr * util [non-invariant util signal] to freq_next = 1.25 * freq_max * util [invariant util signal] where, in the second formula, freq_max is set to the 1C turbo frequency (max turbo). The advantage of the second formula, whose usage we unlock with this patch, is that freq_next doesn't depend on the current frequency in an iterative fashion, but can jump to any frequency in a single update. This absence of feedback in the formula makes it quicker to react to utilization changes and more robust against pathological instabilities. Compare it to the update formula of intel_pstate/powersave: freq_next = 1.25 * freq_max * Busy% where again freq_max is 1C turbo and Busy% is the percentage of time not spent idling (calculated with delta_MPERF / delta_TSC); essentially the same as invariant schedutil, and largely responsible for intel_pstate/powersave good reputation. The non-invariant schedutil formula is derived from the invariant one by approximating util_inv with util_raw * freq_curr / freq_max, but this has limitations. Testing shows improved performances due to better frequency selections when the machine is lightly loaded, and essentially no change in behaviour at saturation / overutilization. +-------------------------------------------------------------------------+ | 4. KNOWN LIMITATIONS +-------------------------------------------------------------------------+ It's been shown that it is possible to create pathological scenarios where a CPU-bound task cannot reach max utilization, if the normalizing factor freq_max is fixed to a constant value (see [Lelli-2018]). If freq_max is set to 4C turbo as we do here, one needs to peg at least 5 cores in a package doing some busywork, and observe that none of those task will ever reach max util (1024) because they're all running at less than the 4C turbo frequency. While this concern still applies, we believe the performance benefit of frequency scale-invariant PELT signals outweights the cost of this limitation. [Lelli-2018] https://lore.kernel.org/lkml/20180517150418.GF22493@localhost.localdomain/ +-------------------------------------------------------------------------+ | 5. PERFORMANCE TESTING +-------------------------------------------------------------------------+ 5.1 MACHINES ============ We tested the patch on three machines, with Skylake, Broadwell and Haswell CPUs. The details are below, together with the available turbo ratios as reported by the appropriate MSRs. * 8x-SKYLAKE-UMA: Single socket E3-1240 v5, Skylake 4 cores/8 threads Max EFFiciency, BASE frequency and available turbo levels (MHz): EFFIC 800 |******** BASE 3500 |*********************************** 4C 3700 |************************************* 3C 3800 |************************************** 2C 3900 |*************************************** 1C 3900 |*************************************** * 80x-BROADWELL-NUMA: Two sockets E5-2698 v4, 2x Broadwell 20 cores/40 threads Max EFFiciency, BASE frequency and available turbo levels (MHz): EFFIC 1200 |************ BASE 2200 |********************** 8C 2900 |***************************** 7C 3000 |****************************** 6C 3100 |******************************* 5C 3200 |******************************** 4C 3300 |********************************* 3C 3400 |********************************** 2C 3600 |************************************ 1C 3600 |************************************ * 48x-HASWELL-NUMA Two sockets E5-2670 v3, 2x Haswell 12 cores/24 threads Max EFFiciency, BASE frequency and available turbo levels (MHz): EFFIC 1200 |************ BASE 2300 |*********************** 12C 2600 |************************** 11C 2600 |************************** 10C 2600 |************************** 9C 2600 |************************** 8C 2600 |************************** 7C 2600 |************************** 6C 2600 |************************** 5C 2700 |*************************** 4C 2800 |**************************** 3C 2900 |***************************** 2C 3100 |******************************* 1C 3100 |******************************* 5.2 SETUP ========= * The baseline is Linux v5.2 with schedutil (non-invariant) and the intel_pstate driver in passive mode. * The rationale for choosing the various freq_max values to test have been to try all the 1-2-3-4C turbo levels (note that 1C and 2C turbo are identical on all machines), plus one more value closer to base_freq but still in the turbo range (8C turbo for both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA). * In addition we've run all tests with intel_pstate/powersave for comparison. * The filesystem is always XFS, the userspace is openSUSE Leap 15.1. * 8x-SKYLAKE-UMA is capable of HWP (Hardware-Managed P-States), so the runs with active intel_pstate on this machine use that. This gives, in terms of combinations tested on each machine: * 8x-SKYLAKE-UMA * Baseline: Linux v5.2, non-invariant schedutil, intel_pstate passive * intel_pstate active + powersave + HWP * invariant schedutil, freq_max = 1C turbo * invariant schedutil, freq_max = 3C turbo * invariant schedutil, freq_max = 4C turbo * both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA * [same as 8x-SKYLAKE-UMA, but no HWP capable] * invariant schedutil, freq_max = 8C turbo (which on 48x-HASWELL-NUMA is the same as 12C turbo, or "all cores turbo") 5.3 BENCHMARK RESULTS ===================== 5.3.1 NEUTRAL BENCHMARKS ------------------------ Tests that didn't show any measurable difference in performance on any of the test machines between non-invariant schedutil and our patch are: * NAS Parallel Benchmarks (NPB) using either MPI or openMP for IPC, any computational kernel * flexible I/O (FIO) * hackbench (using threads or processes, and using pipes or sockets) 5.3.2 NON-NEUTRAL BENCHMARKS ---------------------------- What follow are summary tables where each benchmark result is given a score. * A tilde (~) means a neutral result, i.e. no difference from baseline. * Scores are computed with the ratio result_new / result_baseline, so a tilde means a score of 1.00. * The results in the score ratio are the geometric means of results running the benchmark with different parameters (eg: for kernbench: using 1, 2, 4, ... number of processes; for pgbench: varying the number of clients, and so on). * The first three tables show higher-is-better kind of tests (i.e. measured in operations/second), the subsequent three show lower-is-better kind of tests (i.e. the workload is fixed and we measure elapsed time, think kernbench). * "gitsource" is a name we made up for the test consisting in running the entire unit tests suite of the Git SCM and measuring how long it takes. We take it as a typical example of shell-intensive serialized workload. * In the "I_PSTATE" column we have the results for intel_pstate/powersave. Other columns show invariant schedutil for different values of freq_max. 4C turbo is circled as it's the value we've chosen for the final implementation. 80x-BROADWELL-NUMA (comparison ratio; higher is better) +------+ I_PSTATE 1C 3C | 4C | 8C pgbench-ro 1.14 ~ ~ | 1.11 | 1.14 pgbench-rw ~ ~ ~ | ~ | ~ netperf-udp 1.06 ~ 1.06 | 1.05 | 1.07 netperf-tcp ~ 1.03 ~ | 1.01 | 1.02 tbench4 1.57 1.18 1.22 | 1.30 | 1.56 +------+ 8x-SKYLAKE-UMA (comparison ratio; higher is better) +------+ I_PSTATE/HWP 1C 3C | 4C | pgbench-ro ~ ~ ~ | ~ | pgbench-rw ~ ~ ~ | ~ | netperf-udp ~ ~ ~ | ~ | netperf-tcp ~ ~ ~ | ~ | tbench4 1.30 1.14 1.14 | 1.16 | +------+ 48x-HASWELL-NUMA (comparison ratio; higher is better) +------+ I_PSTATE 1C 3C | 4C | 12C pgbench-ro 1.15 ~ ~ | 1.06 | 1.16 pgbench-rw ~ ~ ~ | ~ | ~ netperf-udp 1.05 0.97 1.04 | 1.04 | 1.02 netperf-tcp 0.96 1.01 1.01 | 1.01 | 1.01 tbench4 1.50 1.05 1.13 | 1.13 | 1.25 +------+ In the table above we see that active intel_pstate is slightly better than our 4C-turbo patch (both in reference to the baseline non-invariant schedutil) on read-only pgbench and much better on tbench. Both cases are notable in which it shows that lowering our freq_max (to 8C-turbo and 12C-turbo on 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA respectively) helps invariant schedutil to get closer. If we ignore active intel_pstate and focus on the comparison with baseline alone, there are several instances of double-digit performance improvement. 80x-BROADWELL-NUMA (comparison ratio; lower is better) +------+ I_PSTATE 1C 3C | 4C | 8C dbench4 1.23 0.95 0.95 | 0.95 | 0.95 kernbench 0.93 0.83 0.83 | 0.83 | 0.82 gitsource 0.98 0.49 0.49 | 0.49 | 0.48 +------+ 8x-SKYLAKE-UMA (comparison ratio; lower is better) +------+ I_PSTATE/HWP 1C 3C | 4C | dbench4 ~ ~ ~ | ~ | kernbench ~ ~ ~ | ~ | gitsource 0.92 0.55 0.55 | 0.55 | +------+ 48x-HASWELL-NUMA (comparison ratio; lower is better) +------+ I_PSTATE 1C 3C | 4C | 8C dbench4 ~ ~ ~ | ~ | ~ kernbench 0.94 0.90 0.89 | 0.90 | 0.90 gitsource 0.97 0.69 0.69 | 0.69 | 0.69 +------+ dbench is not very remarkable here, unless we notice how poorly active intel_pstate is performing on 80x-BROADWELL-NUMA: 23% regression versus non-invariant schedutil. We repeated that run getting consistent results. Out of scope for the patch at hand, but deserving future investigation. Other than that, we previously ran this campaign with Linux v5.0 and saw the patch doing better on dbench a the time. We haven't checked closely and can only speculate at this point. On the NUMA boxes kernbench gets 10-15% improvements on average; we'll see in the detailed tables that the gains concentrate on low process counts (lightly loaded machines). The test we call "gitsource" (running the git unit test suite, a long-running single-threaded shell script) appears rather spectacular in this table (gains of 30-50% depending on the machine). It is to be noted, however, that gitsource has no adjustable parameters (such as the number of jobs in kernbench, which we average over in order to get a single-number summary score) and is exactly the kind of low-parallelism workload that benefits the most from this patch. When looking at the detailed tables of kernbench or tbench4, at low process or client counts one can see similar numbers. 5.3.3 SELECTION OF DETAILED RESULTS ----------------------------------- Machine : 48x-HASWELL-NUMA Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback) Varying parameter : number of clients Unit : MB/sec (higher is better) 5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Hmean 1 126.73 +- 0.31% ( ) 315.91 +- 0.66% ( 149.28%) 125.03 +- 0.76% ( -1.34%) Hmean 2 258.04 +- 0.62% ( ) 614.16 +- 0.51% ( 138.01%) 269.58 +- 1.45% ( 4.47%) Hmean 4 514.30 +- 0.67% ( ) 1146.58 +- 0.54% ( 122.94%) 533.84 +- 1.99% ( 3.80%) Hmean 8 1111.38 +- 2.52% ( ) 2159.78 +- 0.38% ( 94.33%) 1359.92 +- 1.56% ( 22.36%) Hmean 16 2286.47 +- 1.36% ( ) 3338.29 +- 0.21% ( 46.00%) 2720.20 +- 0.52% ( 18.97%) Hmean 32 4704.84 +- 0.35% ( ) 4759.03 +- 0.43% ( 1.15%) 4774.48 +- 0.30% ( 1.48%) Hmean 64 7578.04 +- 0.27% ( ) 7533.70 +- 0.43% ( -0.59%) 7462.17 +- 0.65% ( -1.53%) Hmean 128 6998.52 +- 0.16% ( ) 6987.59 +- 0.12% ( -0.16%) 6909.17 +- 0.14% ( -1.28%) Hmean 192 6901.35 +- 0.25% ( ) 6913.16 +- 0.10% ( 0.17%) 6855.47 +- 0.21% ( -0.66%) 5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 12C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Hmean 1 128.43 +- 0.28% ( 1.34%) 130.64 +- 3.81% ( 3.09%) 153.71 +- 5.89% ( 21.30%) Hmean 2 311.70 +- 6.15% ( 20.79%) 281.66 +- 3.40% ( 9.15%) 305.08 +- 5.70% ( 18.23%) Hmean 4 641.98 +- 2.32% ( 24.83%) 623.88 +- 5.28% ( 21.31%) 906.84 +- 4.65% ( 76.32%) Hmean 8 1633.31 +- 1.56% ( 46.96%) 1714.16 +- 0.93% ( 54.24%) 2095.74 +- 0.47% ( 88.57%) Hmean 16 3047.24 +- 0.42% ( 33.27%) 3155.02 +- 0.30% ( 37.99%) 3634.58 +- 0.15% ( 58.96%) Hmean 32 4734.31 +- 0.60% ( 0.63%) 4804.38 +- 0.23% ( 2.12%) 4674.62 +- 0.27% ( -0.64%) Hmean 64 7699.74 +- 0.35% ( 1.61%) 7499.72 +- 0.34% ( -1.03%) 7659.03 +- 0.25% ( 1.07%) Hmean 128 6935.18 +- 0.15% ( -0.91%) 6942.54 +- 0.10% ( -0.80%) 7004.85 +- 0.12% ( 0.09%) Hmean 192 6901.62 +- 0.12% ( 0.00%) 6856.93 +- 0.10% ( -0.64%) 6978.74 +- 0.10% ( 1.12%) This is one of the cases where the patch still can't surpass active intel_pstate, not even when freq_max is as low as 12C-turbo. Otherwise, gains are visible up to 16 clients and the saturated scenario is the same as baseline. The scores in the summary table from the previous sections are ratios of geometric means of the results over different clients, as seen in this table. Machine : 80x-BROADWELL-NUMA Benchmark : kernbench (kernel compilation) Varying parameter : number of jobs Unit : seconds (lower is better) 5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Amean 2 379.68 +- 0.06% ( ) 330.20 +- 0.43% ( 13.03%) 285.93 +- 0.07% ( 24.69%) Amean 4 200.15 +- 0.24% ( ) 175.89 +- 0.22% ( 12.12%) 153.78 +- 0.25% ( 23.17%) Amean 8 106.20 +- 0.31% ( ) 95.54 +- 0.23% ( 10.03%) 86.74 +- 0.10% ( 18.32%) Amean 16 56.96 +- 1.31% ( ) 53.25 +- 1.22% ( 6.50%) 48.34 +- 1.73% ( 15.13%) Amean 32 34.80 +- 2.46% ( ) 33.81 +- 0.77% ( 2.83%) 30.28 +- 1.59% ( 12.99%) Amean 64 26.11 +- 1.63% ( ) 25.04 +- 1.07% ( 4.10%) 22.41 +- 2.37% ( 14.16%) Amean 128 24.80 +- 1.36% ( ) 23.57 +- 1.23% ( 4.93%) 21.44 +- 1.37% ( 13.55%) Amean 160 24.85 +- 0.56% ( ) 23.85 +- 1.17% ( 4.06%) 21.25 +- 1.12% ( 14.49%) 5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 8C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Amean 2 284.08 +- 0.13% ( 25.18%) 283.96 +- 0.51% ( 25.21%) 285.05 +- 0.21% ( 24.92%) Amean 4 153.18 +- 0.22% ( 23.47%) 154.70 +- 1.64% ( 22.71%) 153.64 +- 0.30% ( 23.24%) Amean 8 87.06 +- 0.28% ( 18.02%) 86.77 +- 0.46% ( 18.29%) 86.78 +- 0.22% ( 18.28%) Amean 16 48.03 +- 0.93% ( 15.68%) 47.75 +- 1.99% ( 16.17%) 47.52 +- 1.61% ( 16.57%) Amean 32 30.23 +- 1.20% ( 13.14%) 30.08 +- 1.67% ( 13.57%) 30.07 +- 1.67% ( 13.60%) Amean 64 22.59 +- 2.02% ( 13.50%) 22.63 +- 0.81% ( 13.32%) 22.42 +- 0.76% ( 14.12%) Amean 128 21.37 +- 0.67% ( 13.82%) 21.31 +- 1.15% ( 14.07%) 21.17 +- 1.93% ( 14.63%) Amean 160 21.68 +- 0.57% ( 12.76%) 21.18 +- 1.74% ( 14.77%) 21.22 +- 1.00% ( 14.61%) The patch outperform active intel_pstate (and baseline) by a considerable margin; the summary table from the previous section says 4C turbo and active intel_pstate are 0.83 and 0.93 against baseline respectively, so 4C turbo is 0.83/0.93=0.89 against intel_pstate (~10% better on average). There is no noticeable difference with regard to the value of freq_max. Machine : 8x-SKYLAKE-UMA Benchmark : gitsource (time to run the git unit test suite) Varying parameter : none Unit : seconds (lower is better) 5.2.0 vanilla 5.2.0 intel_pstate/hwp 5.2.0 1C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Amean 858.85 +- 1.16% ( ) 791.94 +- 0.21% ( 7.79%) 474.95 ( 44.70%) 5.2.0 3C-turbo 5.2.0 4C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Amean 475.26 +- 0.20% ( 44.66%) 474.34 +- 0.13% ( 44.77%) In this test, which is of interest as representing shell-intensive (i.e. fork-intensive) serialized workloads, invariant schedutil outperforms intel_pstate/powersave by a whopping 40% margin. 5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT --------------------------------------------- The following table shows average power consumption in watt for each benchmark. Data comes from turbostat (package average), which in turn is read from the RAPL interface on CPUs. We know the patch affects CPU frequencies so it's reasonable to ignore other power consumers (such as memory or I/O). Also, we don't have a power meter available in the lab so RAPL is the best we have. turbostat sampled average power every 10 seconds for the entire duration of each benchmark. We took all those values and averaged them (i.e. with don't have detail on a per-parameter granularity, only on whole benchmarks). 80x-BROADWELL-NUMA (power consumption, watts) +--------+ BASELINE I_PSTATE 1C 3C | 4C | 8C pgbench-ro 130.01 142.77 131.11 132.45 | 134.65 | 136.84 pgbench-rw 68.30 60.83 71.45 71.70 | 71.65 | 72.54 dbench4 90.25 59.06 101.43 99.89 | 101.10 | 102.94 netperf-udp 65.70 69.81 66.02 68.03 | 68.27 | 68.95 netperf-tcp 88.08 87.96 88.97 88.89 | 88.85 | 88.20 tbench4 142.32 176.73 153.02 163.91 | 165.58 | 176.07 kernbench 92.94 101.95 114.91 115.47 | 115.52 | 115.10 gitsource 40.92 41.87 75.14 75.20 | 75.40 | 75.70 +--------+ 8x-SKYLAKE-UMA (power consumption, watts) +--------+ BASELINE I_PSTATE/HWP 1C 3C | 4C | pgbench-ro 46.49 46.68 46.56 46.59 | 46.52 | pgbench-rw 29.34 31.38 30.98 31.00 | 31.00 | dbench4 27.28 27.37 27.49 27.41 | 27.38 | netperf-udp 22.33 22.41 22.36 22.35 | 22.36 | netperf-tcp 27.29 27.29 27.30 27.31 | 27.33 | tbench4 41.13 45.61 43.10 43.33 | 43.56 | kernbench 42.56 42.63 43.01 43.01 | 43.01 | gitsource 13.32 13.69 17.33 17.30 | 17.35 | +--------+ 48x-HASWELL-NUMA (power consumption, watts) +--------+ BASELINE I_PSTATE 1C 3C | 4C | 12C pgbench-ro 128.84 136.04 129.87 132.43 | 132.30 | 134.86 pgbench-rw 37.68 37.92 37.17 37.74 | 37.73 | 37.31 dbench4 28.56 28.73 28.60 28.73 | 28.70 | 28.79 netperf-udp 56.70 60.44 56.79 57.42 | 57.54 | 57.52 netperf-tcp 75.49 75.27 75.87 76.02 | 76.01 | 75.95 tbench4 115.44 139.51 119.53 123.07 | 123.97 | 130.22 kernbench 83.23 91.55 95.58 95.69 | 95.72 | 96.04 gitsource 36.79 36.99 39.99 40.34 | 40.35 | 40.23 +--------+ A lower power consumption isn't necessarily better, it depends on what is done with that energy. Here are tables with the ratio of performance-per-watt on each machine and benchmark. Higher is always better; a tilde (~) means a neutral ratio (i.e. 1.00). 80x-BROADWELL-NUMA (performance-per-watt ratios; higher is better) +------+ I_PSTATE 1C 3C | 4C | 8C pgbench-ro 1.04 1.06 0.94 | 1.07 | 1.08 pgbench-rw 1.10 0.97 0.96 | 0.96 | 0.97 dbench4 1.24 0.94 0.95 | 0.94 | 0.92 netperf-udp ~ 1.02 1.02 | ~ | 1.02 netperf-tcp ~ 1.02 ~ | ~ | 1.02 tbench4 1.26 1.10 1.06 | 1.12 | 1.26 kernbench 0.98 0.97 0.97 | 0.97 | 0.98 gitsource ~ 1.11 1.11 | 1.11 | 1.13 +------+ 8x-SKYLAKE-UMA (performance-per-watt ratios; higher is better) +------+ I_PSTATE/HWP 1C 3C | 4C | pgbench-ro ~ ~ ~ | ~ | pgbench-rw 0.95 0.97 0.96 | 0.96 | dbench4 ~ ~ ~ | ~ | netperf-udp ~ ~ ~ | ~ | netperf-tcp ~ ~ ~ | ~ | tbench4 1.17 1.09 1.08 | 1.10 | kernbench ~ ~ ~ | ~ | gitsource 1.06 1.40 1.40 | 1.40 | +------+ 48x-HASWELL-NUMA (performance-per-watt ratios; higher is better) +------+ I_PSTATE 1C 3C | 4C | 12C pgbench-ro 1.09 ~ 1.09 | 1.03 | 1.11 pgbench-rw ~ 0.86 ~ | ~ | 0.86 dbench4 ~ 1.02 1.02 | 1.02 | ~ netperf-udp ~ 0.97 1.03 | 1.02 | ~ netperf-tcp 0.96 ~ ~ | ~ | ~ tbench4 1.24 ~ 1.06 | 1.05 | 1.11 kernbench 0.97 0.97 0.98 | 0.97 | 0.96 gitsource 1.03 1.33 1.32 | 1.32 | 1.33 +------+ These results are overall pleasing: in plenty of cases we observe performance-per-watt improvements. The few regressions (read/write pgbench and dbench on the Broadwell machine) are of small magnitude. kernbench loses a few percentage points (it has a 10-15% performance improvement, but apparently the increase in power consumption is larger than that). tbench4 and gitsource, which benefit the most from the patch, keep a positive score in this table which is a welcome surprise; that suggests that in those particular workloads the non-invariant schedutil (and active intel_pstate, too) makes some rather suboptimal frequency selections. +-------------------------------------------------------------------------+ | 6. MICROARCH'ES ADDRESSED HERE +-------------------------------------------------------------------------+ The patch addresses Xeon Core processors that use MSR_PLATFORM_INFO and MSR_TURBO_RATIO_LIMIT to advertise their base frequency and turbo frequencies respectively. This excludes the recent Xeon Scalable Performance processors line (Xeon Gold, Platinum etc) whose MSRs have to be parsed differently. Subsequent patches will address: * Xeon Scalable Performance processors and Atom Goldmont/Goldmont Plus * Xeon Phi (Knights Landing, Knights Mill) * Atom Silvermont +-------------------------------------------------------------------------+ | 7. REFERENCES +-------------------------------------------------------------------------+ Tests have been run with the help of the MMTests performance testing framework, see github.com/gormanm/mmtests. The configuration file names for the benchmark used are: db-pgbench-timed-ro-small-xfs db-pgbench-timed-rw-small-xfs io-dbench4-async-xfs network-netperf-unbound network-tbench scheduler-unbound workload-kerndevel-xfs workload-shellscripts-xfs hpc-nas-c-class-mpi-full-xfs hpc-nas-c-class-omp-full All those benchmarks are generally available on the web: pgbench: https://www.postgresql.org/docs/10/pgbench.html netperf: https://hewlettpackard.github.io/netperf/ dbench/tbench: https://dbench.samba.org/ gitsource: git unit test suite, github.com/git/git NAS Parallel Benchmarks: https://www.nas.nasa.gov/publications/npb.html hackbench: https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Doug Smythies <dsmythies@telus.net> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/20200122151617.531-2-ggherdovich@suse.cz |
||
Linus Torvalds
|
5c741e2583 |
Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RAS fixes from Borislav Petkov: "Three urgent RAS fixes for the AMD side of things: - initialize struct mce.bank so that calculated error severity on AMD SMCA machines is correct - do not send IPIs early during bank initialization, when interrupts are disabled - a fix for when only a subset of MCA banks are enabled, which led to boot hangs on some new AMD CPUs" * 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mce: Fix possibly incorrect severity calculation on AMD x86/MCE/AMD: Allow Reserved types to be overwritten in smca_banks[] x86/MCE/AMD: Do not use rdmsr_safe_on_cpu() in smca_configure() |
||
Linus Torvalds
|
2abf193275 |
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Ingo Molnar: "Add HPET quirks for the Intel 'Coffee Lake H' and 'Ice Lake' platforms" * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/intel: Disable HPET on Intel Ice Lake platforms x86/intel: Disable HPET on Intel Coffee Lake H platforms |
||
Jan H. Schönherr
|
a3a57ddad0 |
x86/mce: Fix possibly incorrect severity calculation on AMD
The function mce_severity_amd_smca() requires m->bank to be initialized for correct operation. Fix the one case, where mce_severity() is called without doing so. Fixes: |
||
Yazen Ghannam
|
966af20929 |
x86/MCE/AMD: Allow Reserved types to be overwritten in smca_banks[]
Each logical CPU in Scalable MCA systems controls a unique set of MCA
banks in the system. These banks are not shared between CPUs. The bank
types and ordering will be the same across CPUs on currently available
systems.
However, some CPUs may see a bank as Reserved/Read-as-Zero (RAZ) while
other CPUs do not. In this case, the bank seen as Reserved on one CPU is
assumed to be the same type as the bank seen as a known type on another
CPU.
In general, this occurs when the hardware represented by the MCA bank
is disabled, e.g. disabled memory controllers on certain models, etc.
The MCA bank is disabled in the hardware, so there is no possibility of
getting an MCA/MCE from it even if it is assumed to have a known type.
For example:
Full system:
Bank | Type seen on CPU0 | Type seen on CPU1
------------------------------------------------
0 | LS | LS
1 | UMC | UMC
2 | CS | CS
System with hardware disabled:
Bank | Type seen on CPU0 | Type seen on CPU1
------------------------------------------------
0 | LS | LS
1 | UMC | RAZ
2 | CS | CS
For this reason, there is a single, global struct smca_banks[] that is
initialized at boot time. This array is initialized on each CPU as it
comes online. However, the array will not be updated if an entry already
exists.
This works as expected when the first CPU (usually CPU0) has all
possible MCA banks enabled. But if the first CPU has a subset, then it
will save a "Reserved" type in smca_banks[]. Successive CPUs will then
not be able to update smca_banks[] even if they encounter a known bank
type.
This may result in unexpected behavior. Depending on the system
configuration, a user may observe issues enumerating the MCA
thresholding sysfs interface. The issues may be as trivial as sysfs
entries not being available, or as severe as system hangs.
For example:
Bank | Type seen on CPU0 | Type seen on CPU1
------------------------------------------------
0 | LS | LS
1 | RAZ | UMC
2 | CS | CS
Extend the smca_banks[] entry check to return if the entry is a
non-reserved type. Otherwise, continue so that CPUs that encounter a
known bank type can update smca_banks[].
Fixes:
|
||
Konstantin Khlebnikov
|
246ff09f89 |
x86/MCE/AMD: Do not use rdmsr_safe_on_cpu() in smca_configure()
... because interrupts are disabled that early and sending IPIs can deadlock: BUG: sleeping function called from invalid context at kernel/sched/completion.c:99 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1 no locks held by swapper/1/0. irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8106dda9>] copy_process+0x8b9/0x1ca0 softirqs last enabled at (0): [<ffffffff8106dda9>] copy_process+0x8b9/0x1ca0 softirqs last disabled at (0): [<0000000000000000>] 0x0 Preemption disabled at: [<ffffffff8104703b>] start_secondary+0x3b/0x190 CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.5.0-rc2+ #1 Hardware name: GIGABYTE MZ01-CE1-00/MZ01-CE1-00, BIOS F02 08/29/2018 Call Trace: dump_stack ___might_sleep.cold.92 wait_for_completion ? generic_exec_single rdmsr_safe_on_cpu ? wrmsr_on_cpus mce_amd_feature_init mcheck_cpu_init identify_cpu identify_secondary_cpu smp_store_cpu_info start_secondary secondary_startup_64 The function smca_configure() is called only on the current CPU anyway, therefore replace rdmsr_safe_on_cpu() with atomic rdmsr_safe() and avoid the IPI. [ bp: Update commit message. ] Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: linux-edac <linux-edac@vger.kernel.org> Cc: <stable@vger.kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/157252708836.3876.4604398213417262402.stgit@buzz |
||
Linus Torvalds
|
22ff311af9 |
treewide conversion from FIELD_SIZEOF() to sizeof_field()
-----BEGIN PGP SIGNATURE----- Comment: Kees Cook <kees@outflux.net> iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl3umDgWHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJlvsD/49R12HK7UzTxNTrcpvbadJ4t7j j/qJvjMerW7iVNAPOoNAOePUa21+y3rI1AZPvoPyzIqp1Bf2eOICf5SdisG2cG+O X0A8EKWvS0SSQWSKaT6udUKJ3nBJItwvOvQ5B58KQzcOj3S4X7B9iVBWgieMHrzz urkZm7pqowrZB3wuF8keRtli5IZaoiCwzApy48Qrn70G3OeXymknFbpHTDwIAiGw RiE5Xh0R4EzQdsYyCgjR8U56gBchadAmj8BUJU0ppMnOFMyIAG670hNLrs0L3roP 8TOIeyb993ZC5GZaMlnR8mz0jfibfkPa3Z85VAsVyQSPaOQldwc9j8TGBqD5Gfat 1PjOU5RVwma0pH5xTPOeevWPQpIK9KovQpQYqMMN9GMxOEx96IOUjwTrnNK2xWoN UGyOVlESFGoniClhCiKYzPSrYOjlIBk5ovf15PdTe+bwyUDMfyfy5CZV88OS2DHz ZBZvpLrH/EMW9zJ+FqMTp0C4s4wa2Ioid3bSh6XuNUTtltKSjp71eUja8ZEz+2sd 5AGstCC+hYqxaEk+6/851pfkQ9sbBjwuGtNrtX+pqreiLUvWLhQ0yUj6cLXlEQNH aucjCukCjI+4lMzofeaQ2LbNhtff4YsfO4b1Ye8maoDdHjzUVL57n3bTOxKhdzbt y6FM3lApOjk3OyaTJQ== =YU4A -----END PGP SIGNATURE----- Merge tag 'sizeof_field-v5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull FIELD_SIZEOF conversion from Kees Cook: "A mostly mechanical treewide conversion from FIELD_SIZEOF() to sizeof_field(). This avoids the redundancy of having 2 macros (actually 3) doing the same thing, and consolidates on sizeof_field(). While "field" is not an accurate name, it is the common name used in the kernel, and doesn't result in any unintended innuendo. As there are still users of FIELD_SIZEOF() in -next, I will clean up those during this coming development cycle and send the final old macro removal patch at that time" * tag 'sizeof_field-v5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: treewide: Use sizeof_field() macro MIPS: OCTEON: Replace SIZEOF_FIELD() macro |
||
Linus Torvalds
|
6674fdb25a |
This contains 3 changes:
- Removal of code I accidentally applied when doing a minor fix up to a patch, and then using "git commit -a --amend", which pulled in some other changes I was playing with. - Remove an used variable in trace_events_inject code - Fix to function graph tracer when it traces a ftrace direct function. It will now ignore tracing a function that has a ftrace direct tramploine attached. This is needed for eBPF to use the ftrace direct code. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXfD/thQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qoo2AP4j7ONw7BTmMyo+GdYqPPntBeDnClHK vfMKrgK1j5BxYgEA7LgkwuUT9bcyLjfJVcyfeW67rB2PtmovKTWnKihFOwI= =DZ6N -----END PGP SIGNATURE----- Merge tag 'trace-v5.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fixes from Steven Rostedt: - Remove code I accidentally applied when doing a minor fix up to a patch, and then using "git commit -a --amend", which pulled in some other changes I was playing with. - Remove an used variable in trace_events_inject code - Fix function graph tracer when it traces a ftrace direct function. It will now ignore tracing a function that has a ftrace direct tramploine attached. This is needed for eBPF to use the ftrace direct code. * tag 'trace-v5.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: ftrace: Fix function_graph tracer interaction with BPF trampoline tracing: remove set but not used variable 'buffer' module: Remove accidental change of module_enable_x() |
||
Alexei Starovoitov
|
ff205766db |
ftrace: Fix function_graph tracer interaction with BPF trampoline
Depending on type of BPF programs served by BPF trampoline it can call original function. In such case the trampoline will skip one stack frame while returning. That will confuse function_graph tracer and will cause crashes with bad RIP. Teach graph tracer to skip functions that have BPF trampoline attached. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> |
||
Pankaj Bharadiya
|
c593642c8b |
treewide: Use sizeof_field() macro
Replace all the occurrences of FIELD_SIZEOF() with sizeof_field() except at places where these are defined. Later patches will remove the unused definition of FIELD_SIZEOF(). This patch is generated using following script: EXCLUDE_FILES="include/linux/stddef.h|include/linux/kernel.h" git grep -l -e "\bFIELD_SIZEOF\b" | while read file; do if [[ "$file" =~ $EXCLUDE_FILES ]]; then continue fi sed -i -e 's/\bFIELD_SIZEOF\b/sizeof_field/g' $file; done Signed-off-by: Pankaj Bharadiya <pankaj.laxminarayan.bharadiya@intel.com> Link: https://lore.kernel.org/r/20190924105839.110713-3-pankaj.laxminarayan.bharadiya@intel.com Co-developed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: David Miller <davem@davemloft.net> # for net |
||
Linus Torvalds
|
e5b3fc125d |
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar: "Various fixes: - Fix the PAT performance regression that downgraded write-combining device memory regions to uncached. - There's been a number of bugs in 32-bit double fault handling - hopefully all fixed now. - Fix an LDT crash - Fix an FPU over-optimization that broke with GCC9 code optimizations. - Misc cleanups" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm/pat: Fix off-by-one bugs in interval tree search x86/ioperm: Save an indentation level in tss_update_io_bitmap() x86/fpu: Don't cache access to fpu_fpregs_owner_ctx x86/entry/32: Remove unused 'restore_all_notrace' local label x86/ptrace: Document FSBASE and GSBASE ABI oddities x86/ptrace: Remove set_segment_reg() implementations for current x86/traps: die() instead of panicking on a double fault x86/doublefault/32: Rewrite the x86_32 #DF handler and unify with 64-bit x86/doublefault/32: Move #DF stack and TSS to cpu_entry_area x86/doublefault/32: Rename doublefault.c to doublefault_32.c x86/traps: Disentangle the 32-bit and 64-bit doublefault code lkdtm: Add a DOUBLE_FAULT crash type on x86 selftests/x86/single_step_syscall: Check SYSENTER directly x86/mm/32: Sync only to VMALLOC_END in vmalloc_sync_all() |
||
Linus Torvalds
|
8fa91bfa9b |
Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS fix from Borislav Petkov: "One urgent fix for the thermal throttling machinery: the recent change reworking the thermal notifications forgot to mask out read-only and reserved bits in the thermal status MSRs, leading to exceptions while writing those MSRs. The fix takes care of masking out those bits first" * 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mce/therm_throt: Mask out read-only and reserved MSR bits |
||
Borislav Petkov
|
7b0b8cfd26 |
x86/ioperm: Save an indentation level in tss_update_io_bitmap()
... for better readability. No functional changes. [ Minor edit. ] Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Kai-Heng Feng
|
e0748539e3 |
x86/intel: Disable HPET on Intel Ice Lake platforms
Like CFL and CFL-H, ICL SoC has skewed HPET timer once it hits PC10. So let's disable HPET on ICL. Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: feng.tang@intel.com Cc: harry.pan@intel.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20191129062303.18982-2-kai.heng.feng@canonical.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Kai-Heng Feng
|
f8edbde885 |
x86/intel: Disable HPET on Intel Coffee Lake H platforms
Coffee Lake H SoC has similar behavior as Coffee Lake, skewed HPET timer once the SoCs entered PC10. So let's disable HPET on CFL-H platforms. Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: feng.tang@intel.com Cc: harry.pan@intel.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20191129062303.18982-1-kai.heng.feng@canonical.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Srinivas Pandruvada
|
5a43b87b3c |
x86/mce/therm_throt: Mask out read-only and reserved MSR bits
While writing to MSR IA32_THERM_STATUS/IA32_PKG_THERM_STATUS, avoid
writing 1 to read only and reserved fields because updating some fields
generates exception.
[ bp: Vertically align for better readability. ]
Fixes:
|
||
Linus Torvalds
|
81b6b96475 |
dma-mapping updates for 5.5-rc1
- improve dma-debug scalability (Eric Dumazet) - tiny dma-debug cleanup (Dan Carpenter) - check for vmap memory in dma_map_single (Kees Cook) - check for dma_addr_t overflows in dma-direct when using DMA offsets (Nicolas Saenz Julienne) - switch the x86 sta2x11 SOC to use more generic DMA code (Nicolas Saenz Julienne) - fix arm-nommu dma-ranges handling (Vladimir Murzin) - use __initdata in CMA (Shyam Saini) - replace the bus dma mask with a limit (Nicolas Saenz Julienne) - merge the remapping helpers into the main dma-direct flow (me) - switch xtensa to the generic dma remap handling (me) - various cleanups around dma_capable (me) - remove unused dev arguments to various dma-noncoherent helpers (me) -----BEGIN PGP SIGNATURE----- iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl3f+eULHGhjaEBsc3Qu ZGUACgkQD55TZVIEUYPyPg/+PVHCrhmepudQQFHu6wfurE5U77iNnoUifvG+b5z5 5mHmTMkQwyox6rKDe8NuFApAhz1VJDSUgSelPmvTSOIEIGXCvX1p+GqRSVS5YQON aLzGvbWKE8hCpaPdDHKYDauD1FZGMM8L2P5oOMF9X9fQ94xxRqfqJM6c8iD16Sgg +aOgPNzTnxQHJFF/Dbt/mjJrKXWI+XF+bgUbH+l9yKa7Dd7ibmJR8yl9hs1jmp0H 1CZ+CizwnAs57rCd1a6Ybc6gj59tySc03NMnnbTko+KDxrcbD3Ee2tpqHVkkCjYz Yl0m4FIpbotrpokL/FIS727bVvkjbWgoeM+kiVPoYzmZea3pq/tFDr6tp/BxDhFj TZXSFfgQljlYMD3ppSoklFlfjGriVWV0tPO3arPXwuuMF5EX/IMQmvxei05jpc8n iELNXOP9iZZkY4tLHy2hn2uWrxBRrS1WQwlLg9hahlNRzyfFSyHeP0zWlVDt+RgF 5CCbEI+HQcUqg1FApB30lQNWTn1+dJftrpKVBlgNBIyIa/z2rFbt8GdSnItxjfQX /XX8EZbFvF6AcXkgURkYFIoKM/EbYShOSLcYA3PTUtcuTnF6Kk5eimySiGWZTVCS prruSFDZJOvL3SnOIMIiYVmBdB7lEbDyLI/VYuhoECXEDCJpVmRktNkJNg4q6/E+ fjQ= =e5wO -----END PGP SIGNATURE----- Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux; tag 'dma-mapping-5.5' of git://git.infradead.org/users/hch/dma-mapping Pull dma-mapping updates from Christoph Hellwig: - improve dma-debug scalability (Eric Dumazet) - tiny dma-debug cleanup (Dan Carpenter) - check for vmap memory in dma_map_single (Kees Cook) - check for dma_addr_t overflows in dma-direct when using DMA offsets (Nicolas Saenz Julienne) - switch the x86 sta2x11 SOC to use more generic DMA code (Nicolas Saenz Julienne) - fix arm-nommu dma-ranges handling (Vladimir Murzin) - use __initdata in CMA (Shyam Saini) - replace the bus dma mask with a limit (Nicolas Saenz Julienne) - merge the remapping helpers into the main dma-direct flow (me) - switch xtensa to the generic dma remap handling (me) - various cleanups around dma_capable (me) - remove unused dev arguments to various dma-noncoherent helpers (me) * 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux: * tag 'dma-mapping-5.5' of git://git.infradead.org/users/hch/dma-mapping: (22 commits) dma-mapping: treat dev->bus_dma_mask as a DMA limit dma-direct: exclude dma_direct_map_resource from the min_low_pfn check dma-direct: don't check swiotlb=force in dma_direct_map_resource dma-debug: clean up put_hash_bucket() powerpc: remove support for NULL dev in __phys_to_dma / __dma_to_phys dma-direct: avoid a forward declaration for phys_to_dma dma-direct: unify the dma_capable definitions dma-mapping: drop the dev argument to arch_sync_dma_for_* x86/PCI: sta2x11: use default DMA address translation dma-direct: check for overflows on 32 bit DMA addresses dma-debug: increase HASH_SIZE dma-debug: reorder struct dma_debug_entry fields xtensa: use the generic uncached segment support dma-mapping: merge the generic remapping helpers into dma-direct dma-direct: provide mmap and get_sgtable method overrides dma-direct: remove the dma_handle argument to __dma_direct_alloc_pages dma-direct: remove __dma_direct_free_pages usb: core: Remove redundant vmap checks kernel: dma-contiguous: mark CMA parameters __initdata/__initconst dma-debug: add a schedule point in debug_dma_dump_mappings() ... |
||
Linus Torvalds
|
95f1fa9e34 |
New tracing features:
- PERAMAENT flag to ftrace_ops when attaching a callback to a function As /proc/sys/kernel/ftrace_enabled when set to zero will disable all attached callbacks in ftrace, this has a detrimental impact on live kernel tracing, as it disables all that it patched. If a ftrace_ops is registered to ftrace with the PERMANENT flag set, it will prevent ftrace_enabled from being disabled, and if ftrace_enabled is already disabled, it will prevent a ftrace_ops with PREMANENT flag set from being registered. - New register_ftrace_direct(). As eBPF would like to register its own trampolines to be called by the ftrace nop locations directly, without going through the ftrace trampoline, this function has been added. This allows for eBPF trampolines to live along side of ftrace, perf, kprobe and live patching. It also utilizes the ftrace enabled_functions file that keeps track of functions that have been modified in the kernel, to allow for security auditing. - Allow for kernel internal use of ftrace instances. Subsystems in the kernel can now create and destroy their own tracing instances which allows them to have their own tracing buffer, and be able to record events without worrying about other users from writing over their data. - New seq_buf_hex_dump() that lets users use the hex_dump() in their seq_buf usage. - Notifications now added to tracing_max_latency to allow user space to know when a new max latency is hit by one of the latency tracers. - Wider spread use of generic compare operations for use of bsearch and friends. - More synthetic event fields may be defined (32 up from 16) - Use of xarray for architectures with sparse system calls, for the system call trace events. This along with small clean ups and fixes. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXdwv4BQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qnB5AP91vsdHQjwE1+/UWG/cO+qFtKvn2QJK QmBRIJNH/s+1TAD/fAOhgw+ojSK3o/qc+NpvPTEW9AEwcJL1wacJUn+XbQc= =ztql -----END PGP SIGNATURE----- Merge tag 'trace-v5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: "New tracing features: - New PERMANENT flag to ftrace_ops when attaching a callback to a function. As /proc/sys/kernel/ftrace_enabled when set to zero will disable all attached callbacks in ftrace, this has a detrimental impact on live kernel tracing, as it disables all that it patched. If a ftrace_ops is registered to ftrace with the PERMANENT flag set, it will prevent ftrace_enabled from being disabled, and if ftrace_enabled is already disabled, it will prevent a ftrace_ops with PREMANENT flag set from being registered. - New register_ftrace_direct(). As eBPF would like to register its own trampolines to be called by the ftrace nop locations directly, without going through the ftrace trampoline, this function has been added. This allows for eBPF trampolines to live along side of ftrace, perf, kprobe and live patching. It also utilizes the ftrace enabled_functions file that keeps track of functions that have been modified in the kernel, to allow for security auditing. - Allow for kernel internal use of ftrace instances. Subsystems in the kernel can now create and destroy their own tracing instances which allows them to have their own tracing buffer, and be able to record events without worrying about other users from writing over their data. - New seq_buf_hex_dump() that lets users use the hex_dump() in their seq_buf usage. - Notifications now added to tracing_max_latency to allow user space to know when a new max latency is hit by one of the latency tracers. - Wider spread use of generic compare operations for use of bsearch and friends. - More synthetic event fields may be defined (32 up from 16) - Use of xarray for architectures with sparse system calls, for the system call trace events. This along with small clean ups and fixes" * tag 'trace-v5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (51 commits) tracing: Enable syscall optimization for MIPS tracing: Use xarray for syscall trace events tracing: Sample module to demonstrate kernel access to Ftrace instances. tracing: Adding new functions for kernel access to Ftrace instances tracing: Fix Kconfig indentation ring-buffer: Fix typos in function ring_buffer_producer ftrace: Use BIT() macro ftrace: Return ENOTSUPP when DYNAMIC_FTRACE_WITH_DIRECT_CALLS is not configured ftrace: Rename ftrace_graph_stub to ftrace_stub_graph ftrace: Add a helper function to modify_ftrace_direct() to allow arch optimization ftrace: Add helper find_direct_entry() to consolidate code ftrace: Add another check for match in register_ftrace_direct() ftrace: Fix accounting bug with direct->count in register_ftrace_direct() ftrace/selftests: Fix spelling mistake "wakeing" -> "waking" tracing: Increase SYNTH_FIELDS_MAX for synthetic_events ftrace/samples: Add a sample module that implements modify_ftrace_direct() ftrace: Add modify_ftrace_direct() tracing: Add missing "inline" in stub function of latency_fsnotify() tracing: Remove stray tab in TRACE_EVAL_MAP_FILE's help text tracing: Use seq_buf_hex_dump() to dump buffers ... |
||
Linus Torvalds
|
6e9f879684 |
ACPI updates for 5.5-rc1
- Update the ACPICA code in the kernel to upstream revision 20191018 including: * Fixes for Clang warnings (Bob Moore). * Fix for possible overflow in get_tick_count() (Bob Moore). * Introduction of acpi_unload_table() (Bob Moore). * Debugger and utilities updates (Erik Schmauss). * Fix for unloading tables loaded via configfs (Nikolaus Voss). - Add support for EFI specific purpose memory to optionally allow either application-exclusive or core-kernel-mm managed access to differentiated memory (Dan Williams). - Fix and clean up processing of the HMAT table (Brice Goglin, Qian Cai, Tao Xu). - Update the ACPI EC driver to make it work on systems with hardware-reduced ACPI (Daniel Drake). - Always build in support for the Generic Event Device (GED) to allow one kernel binary to work both on systems with full hardware ACPI and hardware-reduced ACPI (Arjan van de Ven). - Fix the table unload mechanism to unregister platform devices created when the given table was loaded (Andy Shevchenko). - Rework the lid blacklist handling in the button driver and add more lid quirks to it (Hans de Goede). - Improve ACPI-based device enumeration for some platforms based on Intel BayTrail SoCs (Hans de Goede). - Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and prevent handlers from being registered for unhandled PMIC OpRegions (Hans de Goede). - Unify ACPI _HID/_UID matching (Andy Shevchenko). - Clean up documentation and comments (Cao jin, James Pack, Kacper Piwiński). -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHNkSHHJqd0Byand5 c29ja2kubmV0AAoJEILEb/54YlRx/NkP/2y6DWjslA6UW4gjZwaRBcjYoyWExMtQ Z86goiRJtP+/NqOwm09wHFcV6FdZ4kitUno3UgMCDZJjrURapg1D0rxb1lSYtMzs mGr2FBZlVsJ9erOVSzKj1x2afVhdgl0Rl0fxPzoKgCFt8tCJar6cXy4CVEQKdeLs eUui2ksXMIEODGhpN/tr/fJqY4O4jlLmPY6gKWfFpSTsv6lnZmzcCxLf5EvUU7JW O91/jXdWz4Vl6IdP32sce6dGDjkvwnY105c7HeBf5EQWUe9RHFuSex982qhCD8U+ iE+JzlhoYpUb03EktJSXbL++IKUHvoUpTanbhka6unMhazC86x0hDf7ruUtYo2Bk V8347CFeQ1x2O5IabfJNnUfKaMYhYmOXIoFHJTLKFO5mcCJmP8KOOyDAYilC1psb RJpl1fDoAhk7NqhMttyBqfxiotP0kMoKuqtAAl8Y0hTF0DwR9IfKntuTtp1yTGds R4dpJrizUDzw1/o4fCWbc3dFZQR3NFGpL/EAyfPzqjGaeaBBkLoNYstqkal5XHwT CILmQg2WHoNuQLXZ4NFFDrM2k2G+VUAjQdkYcb/MCOFbw+aTVPu1wyQq37RLtbMo 9UwGeeT6SXW3iA1nyMoM+YvitjmxS7gHPPPl+b9G6kBubAzBPp91Ra0Mj9dPIGRB Evv5nzOIh8Hi =7Cqr -----END PGP SIGNATURE----- Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI updates from Rafael Wysocki: "These update the ACPICA code in the kernel to upstream revision 20191018, add support for EFI specific purpose memory, update the ACPI EC driver to make it work on systems with hardware-reduced ACPI, improve ACPI-based device enumeration for some platforms, rework the lid blacklist handling in the button driver and add more lid quirks to it, unify ACPI _HID/_UID matching, fix assorted issues and clean up the code and documentation. Specifics: - Update the ACPICA code in the kernel to upstream revision 20191018 including: * Fixes for Clang warnings (Bob Moore) * Fix for possible overflow in get_tick_count() (Bob Moore) * Introduction of acpi_unload_table() (Bob Moore) * Debugger and utilities updates (Erik Schmauss) * Fix for unloading tables loaded via configfs (Nikolaus Voss) - Add support for EFI specific purpose memory to optionally allow either application-exclusive or core-kernel-mm managed access to differentiated memory (Dan Williams) - Fix and clean up processing of the HMAT table (Brice Goglin, Qian Cai, Tao Xu) - Update the ACPI EC driver to make it work on systems with hardware-reduced ACPI (Daniel Drake) - Always build in support for the Generic Event Device (GED) to allow one kernel binary to work both on systems with full hardware ACPI and hardware-reduced ACPI (Arjan van de Ven) - Fix the table unload mechanism to unregister platform devices created when the given table was loaded (Andy Shevchenko) - Rework the lid blacklist handling in the button driver and add more lid quirks to it (Hans de Goede) - Improve ACPI-based device enumeration for some platforms based on Intel BayTrail SoCs (Hans de Goede) - Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and prevent handlers from being registered for unhandled PMIC OpRegions (Hans de Goede) - Unify ACPI _HID/_UID matching (Andy Shevchenko) - Clean up documentation and comments (Cao jin, James Pack, Kacper Piwiński)" * tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits) ACPI: OSI: Shoot duplicate word ACPI: HMAT: use %u instead of %d to print u32 values ACPI: NUMA: HMAT: fix a section mismatch ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device ACPI: NUMA: HMAT: Register HMAT at device_initcall level device-dax: Add a driver for "hmem" devices dax: Fix alloc_dax_region() compile warning lib: Uplevel the pmem "region" ida to a global allocator x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP arm/efi: EFI soft reservation to memblock x86/efi: EFI soft reservation to E820 enumeration efi: Common enable/disable infrastructure for EFI soft reservation x86/efi: Push EFI_MEMMAP check into leaf routines efi: Enumerate EFI_MEMORY_SP ACPI: NUMA: Establish a new drivers/acpi/numa/ directory ACPICA: Update version to 20191018 ACPICA: debugger: remove leading whitespaces when converting a string to a buffer ACPICA: acpiexec: initialize all simple types and field units from user input ACPICA: debugger: add field unit support for acpi_db_get_next_token ... |
||
Linus Torvalds
|
3f59dbcace |
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar: "The main kernel side changes in this cycle were: - Various Intel-PT updates and optimizations (Alexander Shishkin) - Prohibit kprobes on Xen/KVM emulate prefixes (Masami Hiramatsu) - Add support for LSM and SELinux checks to control access to the perf syscall (Joel Fernandes) - Misc other changes, optimizations, fixes and cleanups - see the shortlog for details. There were numerous tooling changes as well - 254 non-merge commits. Here are the main changes - too many to list in detail: - Enhancements to core tooling infrastructure, perf.data, libperf, libtraceevent, event parsing, vendor events, Intel PT, callchains, BPF support and instruction decoding. - There were updates to the following tools: perf annotate perf diff perf inject perf kvm perf list perf maps perf parse perf probe perf record perf report perf script perf stat perf test perf trace - And a lot of other changes: please see the shortlog and Git log for more details" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (279 commits) perf parse: Fix potential memory leak when handling tracepoint errors perf probe: Fix spelling mistake "addrees" -> "address" libtraceevent: Fix memory leakage in copy_filter_type libtraceevent: Fix header installation perf intel-bts: Does not support AUX area sampling perf intel-pt: Add support for decoding AUX area samples perf intel-pt: Add support for recording AUX area samples perf pmu: When using default config, record which bits of config were changed by the user perf auxtrace: Add support for queuing AUX area samples perf session: Add facility to peek at all events perf auxtrace: Add support for dumping AUX area samples perf inject: Cut AUX area samples perf record: Add aux-sample-size config term perf record: Add support for AUX area sampling perf auxtrace: Add support for AUX area sample recording perf auxtrace: Move perf_evsel__find_pmu() perf record: Add a function to test for kernel support for AUX area sampling perf tools: Add kernel AUX area sampling definitions perf/core: Make the mlock accounting simple again perf report: Jump to symbol source view from total cycles view ... |
||
Andy Lutomirski
|
56f2ab41b6 |
x86/ptrace: Document FSBASE and GSBASE ABI oddities
Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
8e05f1b4f2 |
x86/ptrace: Remove set_segment_reg() implementations for current
seg_segment_reg() should be unreachable with task == current. Rather than confusingly trying to make it work, just explicitly disable this case. (regset->get is used for current in the coredump code, but the ->set interface is only used for ptrace, and you can't ptrace yourself.) Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
0337b7ebfc |
x86/traps: die() instead of panicking on a double fault
A double fault has a decent chance of being recoverable by killing the offending thread. Use die() so that we at least try to recover. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
7d8d8cfdee |
x86/doublefault/32: Rewrite the x86_32 #DF handler and unify with 64-bit
The old x86_32 doublefault_fn() was old and crufty, and it did not even try to recover. do_double_fault() is much nicer. Rewrite the 32-bit double fault code to sanitize CPU state and call do_double_fault(). This is mostly an exercise i386 archaeology. With this patch applied, 32-bit double faults get a real stack trace, just like 64-bit double faults. [ mingo: merged the patch to a later kernel base. ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
dc4e0021b0 |
x86/doublefault/32: Move #DF stack and TSS to cpu_entry_area
There are three problems with the current layout of the doublefault stack and TSS. First, the TSS is only cacheline-aligned, which is not enough -- if the hardware portion of the TSS (struct x86_hw_tss) crosses a page boundary, horrible things happen [0]. Second, the stack and TSS are global, so simultaneous double faults on different CPUs will cause massive corruption. Third, the whole mechanism won't work if user CR3 is loaded, resulting in a triple fault [1]. Let the doublefault stack and TSS share a page (which prevents the TSS from spanning a page boundary), make it percpu, and move it into cpu_entry_area. Teach the stack dump code about the doublefault stack. [0] Real hardware will read past the end of the page onto the next *physical* page if a task switch happens. Virtual machines may have any number of bugs, and I would consider it reasonable for a VM to summarily kill the guest if it tries to task-switch to a page-spanning TSS. [1] Real hardware triple faults. At least some VMs seem to hang. I'm not sure what's going on. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
e99b6f46ee |
x86/doublefault/32: Rename doublefault.c to doublefault_32.c
doublefault.c now only contains 32-bit code. Rename it to doublefault_32.c. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
93efbde2c3 |
x86/traps: Disentangle the 32-bit and 64-bit doublefault code
The 64-bit doublefault handler is much nicer than the 32-bit one. As a first step toward unifying them, make the 64-bit handler self-contained. This should have no effect no functional effect except in the odd case of x86_64 with CONFIG_DOUBLEFAULT=n in which case it will change the logging a bit. This also gets rid of CONFIG_DOUBLEFAULT configurability on 64-bit kernels. It didn't do anything useful -- CONFIG_DOUBLEFAULT=n didn't actually disable doublefault handling on x86_64. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
ab851d49f6 |
Merge branch 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 iopl updates from Ingo Molnar: "This implements a nice simplification of the iopl and ioperm code that Thomas Gleixner discovered: we can implement the IO privilege features of the iopl system call by using the IO permission bitmap in permissive mode, while trapping CLI/STI/POPF/PUSHF uses in user-space if they change the interrupt flag. This implements that feature, with testing facilities and related cleanups" [ "Simplification" may be an over-statement. The main goal is to avoid the cli/sti of iopl by effectively implementing the IO port access parts of iopl in terms of ioperm. This may end up not workign well in case people actually depend on cli/sti being available, or if there are mixed uses of iopl and ioperm. We will see.. - Linus ] * 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits) x86/ioperm: Fix use of deprecated config option x86/entry/32: Clarify register saving in __switch_to_asm() selftests/x86/iopl: Extend test to cover IOPL emulation x86/ioperm: Extend IOPL config to control ioperm() as well x86/iopl: Remove legacy IOPL option x86/iopl: Restrict iopl() permission scope x86/iopl: Fixup misleading comment selftests/x86/ioperm: Extend testing so the shared bitmap is exercised x86/ioperm: Share I/O bitmap if identical x86/ioperm: Remove bitmap if all permissions dropped x86/ioperm: Move TSS bitmap update to exit to user work x86/ioperm: Add bitmap sequence number x86/ioperm: Move iobitmap data into a struct x86/tss: Move I/O bitmap data into a seperate struct x86/io: Speedup schedule out of I/O bitmap user x86/ioperm: Avoid bitmap allocation if no permissions are set x86/ioperm: Simplify first ioperm() invocation logic x86/iopl: Cleanup include maze x86/tss: Fix and move VMX BUILD_BUG_ON() x86/cpu: Unify cpu_init() ... |
||
Linus Torvalds
|
1d87200446 |
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar: "The main changes in this cycle were: - Cross-arch changes to move the linker sections for NOTES and EXCEPTION_TABLE into the RO_DATA area, where they belong on most architectures. (Kees Cook) - Switch the x86 linker fill byte from x90 (NOP) to 0xcc (INT3), to trap jumps into the middle of those padding areas instead of sliding execution. (Kees Cook) - A thorough cleanup of symbol definitions within x86 assembler code. The rather randomly named macros got streamlined around a (hopefully) straightforward naming scheme: SYM_START(name, linkage, align...) SYM_END(name, sym_type) SYM_FUNC_START(name) SYM_FUNC_END(name) SYM_CODE_START(name) SYM_CODE_END(name) SYM_DATA_START(name) SYM_DATA_END(name) etc - with about three times of these basic primitives with some label, local symbol or attribute variant, expressed via postfixes. No change in functionality intended. (Jiri Slaby) - Misc other changes, cleanups and smaller fixes" * 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits) x86/entry/64: Remove pointless jump in paranoid_exit x86/entry/32: Remove unused resume_userspace label x86/build/vdso: Remove meaningless CFLAGS_REMOVE_*.o m68k: Convert missed RODATA to RO_DATA x86/vmlinux: Use INT3 instead of NOP for linker fill bytes x86/mm: Report actual image regions in /proc/iomem x86/mm: Report which part of kernel image is freed x86/mm: Remove redundant address-of operators on addresses xtensa: Move EXCEPTION_TABLE to RO_DATA segment powerpc: Move EXCEPTION_TABLE to RO_DATA segment parisc: Move EXCEPTION_TABLE to RO_DATA segment microblaze: Move EXCEPTION_TABLE to RO_DATA segment ia64: Move EXCEPTION_TABLE to RO_DATA segment h8300: Move EXCEPTION_TABLE to RO_DATA segment c6x: Move EXCEPTION_TABLE to RO_DATA segment arm64: Move EXCEPTION_TABLE to RO_DATA segment alpha: Move EXCEPTION_TABLE to RO_DATA segment x86/vmlinux: Move EXCEPTION_TABLE to RO_DATA segment x86/vmlinux: Actually use _etext for the end of the text segment vmlinux.lds.h: Allow EXCEPTION_TABLE to live in RO_DATA ... |
||
Linus Torvalds
|
5c4a1c090d |
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar: "These are the fixes left over from the v5.4 cycle: - Various low level 32-bit entry code fixes and improvements by Andy Lutomirski, Peter Zijlstra and Thomas Gleixner. - Fix 32-bit Xen PV breakage, by Jan Beulich" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/entry/32: Fix FIXUP_ESPFIX_STACK with user CR3 x86/pti/32: Calculate the various PTI cpu_entry_area sizes correctly, make the CPU_ENTRY_AREA_PAGES assert precise selftests/x86/sigreturn/32: Invalidate DS and ES when abusing the kernel selftests/x86/mov_ss_trap: Fix the SYSENTER test x86/entry/32: Fix NMI vs ESPFIX x86/entry/32: Unwind the ESPFIX stack earlier on exception entry x86/entry/32: Move FIXUP_FRAME after pushing %fs in SAVE_ALL x86/entry/32: Use %ss segment where required x86/entry/32: Fix IRET exception x86/cpu_entry_area: Add guard page for entry stack on 32bit x86/pti/32: Size initial_page_table correctly x86/doublefault/32: Fix stack canaries in the double fault handler x86/xen/32: Simplify ring check in xen_iret_crit_fixup() x86/xen/32: Make xen_iret_crit_fixup() independent of frame layout x86/stackframe/32: Repair 32-bit Xen PV |
||
Linus Torvalds
|
53a07a148f |
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PTI updates from Ingo Molnar: "Fix reporting bugs of the MDS and TAA mitigation status, if one or both are set via a boot option. No change to mitigation behavior intended" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation: Fix redundant MDS mitigation message x86/speculation: Fix incorrect MDS/TAA mitigation status |
||
Linus Torvalds
|
da42761df5 |
Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Ingo Molnar: "UV platform updates (with a 'hubless' variant) and Jailhouse updates for better UART support" * 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/jailhouse: Only enable platform UARTs if available x86/jailhouse: Improve setup data version comparison x86/platform/uv: Account for UV Hubless in is_uvX_hub Ops x86/platform/uv: Check EFI Boot to set reboot type x86/platform/uv: Decode UVsystab Info x86/platform/uv: Add UV Hubbed/Hubless Proc FS Files x86/platform/uv: Setup UV functions for Hubless UV Systems x86/platform/uv: Add return code to UV BIOS Init function x86/platform/uv: Return UV Hubless System Type x86/platform/uv: Save OEM_ID from ACPI MADT probe |
||
Linus Torvalds
|
1c134b198d |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar: "The main changes in this cycle were: - A PAT series from Davidlohr Bueso, which simplifies the memtype rbtree by using the interval tree helpers. (There's more cleanups in this area queued up, but they didn't make the merge window.) - Also flip over CONFIG_X86_5LEVEL to default-y. This might draw in a few more testers, as all the major distros are going to have 5-level paging enabled by default in their next iterations. - Misc cleanups" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm/pat: Rename pat_rbtree.c to pat_interval.c x86/mm/pat: Drop the rbt_ prefix from external memtype calls x86/mm/pat: Do not pass 'rb_root' down the memtype tree helper functions x86/mm/pat: Convert the PAT tree to a generic interval tree x86/mm: Clean up the pmd_read_atomic() comments x86/mm: Fix function name typo in pmd_read_atomic() comment x86/cpu: Clean up intel_tlb_table[] x86/mm: Enable 5-level paging support by default |
||
Linus Torvalds
|
24ee25a6da |
Merge branch 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 kdump updates from Ingo Molnar: "This solves a kdump artifact where encrypted memory contents are dumped, instead of unencrypted ones. The solution also happens to simplify the kdump code, to everyone's delight" * 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/crash: Align function arguments on opening braces x86/kdump: Remove the backup region handling x86/kdump: Always reserve the low 1M when the crashkernel option is specified x86/crash: Add a forward declaration of struct kimage |
||
Linus Torvalds
|
64d6a12094 |
Merge branch 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 hyperv updates from Ingo Molnar: "Misc updates to the hyperv guest code: - Rework clockevents initialization to better support hibernation - Allow guests to enable InvariantTSC - Micro-optimize send_ipi_one" * 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/hyperv: Initialize clockevents earlier in CPU onlining x86/hyperv: Allow guests to enable InvariantTSC x86/hyperv: Micro-optimize send_ipi_one() |
||
Linus Torvalds
|
a25bbc2644 |
Merge branches 'x86-cpu-for-linus' and 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu and fpu updates from Ingo Molnar: - math-emu fixes - CPUID updates - sanity-check RDRAND output to see whether the CPU at least pretends to produce random data - various unaligned-access across cachelines fixes in preparation of hardware level split-lock detection - fix MAXSMP constraints to not allow !CPUMASK_OFFSTACK kernels with larger than 512 NR_CPUS - misc FPU related cleanups * 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu: Align the x86_capability array to size of unsigned long x86/cpu: Align cpu_caps_cleared and cpu_caps_set to unsigned long x86/umip: Make the comments vendor-agnostic x86/Kconfig: Rename UMIP config parameter x86/Kconfig: Enforce limit of 512 CPUs with MAXSMP and no CPUMASK_OFFSTACK x86/cpufeatures: Add feature bit RDPRU on AMD x86/math-emu: Limit MATH_EMULATION to 486SX compatibles x86/math-emu: Check __copy_from_user() result x86/rdrand: Sanity-check RDRAND output * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fpu: Use XFEATURE_FP/SSE enum values instead of hardcoded numbers x86/fpu: Shrink space allocated for xstate_comp_offsets x86/fpu: Update stale variable name in comment |
||
Linus Torvalds
|
85fbf15bc9 |
Merge branch 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 boot updates from Ingo Molnar: "The main changes were: - Extend the boot protocol to allow future extensions without hitting the setup_header size limit. - Add quirk to devicetree systems to disable the RTC unless it's listed as a supported device. - Fix ld.lld linker pedantry" * 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/boot: Introduce setup_indirect x86/boot: Introduce kernel_info.setup_type_max x86/boot: Introduce kernel_info x86/init: Allow DT configured systems to disable RTC at boot time x86/realmode: Explicitly set entry point via ENTRY in linker script |
||
Linus Torvalds
|
fd2615908d |
Merge branches 'core-objtool-for-linus', 'x86-cleanups-for-linus' and 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 objtool, cleanup, and apic updates from Ingo Molnar: "Objtool: - Fix a gawk 5.0 incompatibility in gen-insn-attr-x86.awk. Most distros are still on gawk 4.2.x. Cleanup: - Misc cleanups, plus the removal of obsolete code such as Calgary IOMMU support, which code hasn't seen any real testing in a long time and there's no known users left. apic: - Two changes: a cleanup and a fix for an (old) race for oneshot threaded IRQ handlers" * 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/insn: Fix awk regexp warnings * 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86: Remove unused asm/rio.h x86: Fix typos in comments x86/pci: Remove #ifdef __KERNEL__ guard from <asm/pci.h> x86/pci: Remove pci_64.h x86: Remove the calgary IOMMU driver x86/apic, x86/uprobes: Correct parameter names in kernel-doc comments x86/kdump: Remove the unused crash_copy_backup_region() x86/nmi: Remove stale EDAC include leftover * 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/ioapic: Rename misnamed functions x86/ioapic: Prevent inconsistent state when moving an interrupt |
||
Rafael J. Wysocki
|
782b59711e |
Merge branch 'acpi-mm'
* acpi-mm: ACPI: HMAT: use %u instead of %d to print u32 values ACPI: NUMA: HMAT: fix a section mismatch ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device ACPI: NUMA: HMAT: Register HMAT at device_initcall level device-dax: Add a driver for "hmem" devices dax: Fix alloc_dax_region() compile warning lib: Uplevel the pmem "region" ida to a global allocator x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP arm/efi: EFI soft reservation to memblock x86/efi: EFI soft reservation to E820 enumeration efi: Common enable/disable infrastructure for EFI soft reservation x86/efi: Push EFI_MEMMAP check into leaf routines efi: Enumerate EFI_MEMORY_SP ACPI: NUMA: Establish a new drivers/acpi/numa/ directory |
||
Linus Torvalds
|
386403a115 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from David Miller: "Another merge window, another pull full of stuff: 1) Support alternative names for network devices, from Jiri Pirko. 2) Introduce per-netns netdev notifiers, also from Jiri Pirko. 3) Support MSG_PEEK in vsock/virtio, from Matias Ezequiel Vara Larsen. 4) Allow compiling out the TLS TOE code, from Jakub Kicinski. 5) Add several new tracepoints to the kTLS code, also from Jakub. 6) Support set channels ethtool callback in ena driver, from Sameeh Jubran. 7) New SCTP events SCTP_ADDR_ADDED, SCTP_ADDR_REMOVED, SCTP_ADDR_MADE_PRIM, and SCTP_SEND_FAILED_EVENT. From Xin Long. 8) Add XDP support to mvneta driver, from Lorenzo Bianconi. 9) Lots of netfilter hw offload fixes, cleanups and enhancements, from Pablo Neira Ayuso. 10) PTP support for aquantia chips, from Egor Pomozov. 11) Add UDP segmentation offload support to igb, ixgbe, and i40e. From Josh Hunt. 12) Add smart nagle to tipc, from Jon Maloy. 13) Support L2 field rewrite by TC offloads in bnxt_en, from Venkat Duvvuru. 14) Add a flow mask cache to OVS, from Tonghao Zhang. 15) Add XDP support to ice driver, from Maciej Fijalkowski. 16) Add AF_XDP support to ice driver, from Krzysztof Kazimierczak. 17) Support UDP GSO offload in atlantic driver, from Igor Russkikh. 18) Support it in stmmac driver too, from Jose Abreu. 19) Support TIPC encryption and auth, from Tuong Lien. 20) Introduce BPF trampolines, from Alexei Starovoitov. 21) Make page_pool API more numa friendly, from Saeed Mahameed. 22) Introduce route hints to ipv4 and ipv6, from Paolo Abeni. 23) Add UDP segmentation offload to cxgb4, Rahul Lakkireddy" * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1857 commits) libbpf: Fix usage of u32 in userspace code mm: Implement no-MMU variant of vmalloc_user_node_flags slip: Fix use-after-free Read in slip_open net: dsa: sja1105: fix sja1105_parse_rgmii_delays() macvlan: schedule bc_work even if error enetc: add support Credit Based Shaper(CBS) for hardware offload net: phy: add helpers phy_(un)lock_mdio_bus mdio_bus: don't use managed reset-controller ax88179_178a: add ethtool_op_get_ts_info() mlxsw: spectrum_router: Fix use of uninitialized adjacency index mlxsw: spectrum_router: After underlay moves, demote conflicting tunnels bpf: Simplify __bpf_arch_text_poke poke type handling bpf: Introduce BPF_TRACE_x helper for the tracing tests bpf: Add bpf_jit_blinding_enabled for !CONFIG_BPF_JIT bpf, testing: Add various tail call test cases bpf, x86: Emit patchable direct jump as tail call bpf: Constant map key tracking for prog array pokes bpf: Add poke dependency tracking for prog array maps bpf: Add initial poke descriptor table for jit images bpf: Move owner type, jited info into array auxiliary data ... |
||
Linus Torvalds
|
436b2a8039 |
Printk changes for 5.5
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAl3bpjoACgkQUqAMR0iA lPJJDA/+IJT4YCRp2TwV2jvIs0QzvXZrzEsxgCLibLE85mYTJgoQBD3W1bH2eyjp T/9U0Zh5PGr/84cHd4qiMxzo+5Olz930weG59NcO4RJBSr671aRYs5tJqwaQAZDR wlwaob5S28vUmjPxKulvxv6V3FdI79ZE9xrCOCSTQvz4iCLsGOu+Dn/qtF64pImX M/EXzPMBrByiQ8RTM4Ege8JoBqiCZPDG9GR3KPXIXQwEeQgIoeYxwRYakxSmSzz8 W8NduFCbWavg/yHhghHikMiyOZeQzAt+V9k9WjOBTle3TGJegRhvjgI7508q3tXe jQTMGATBOPkIgFaZz7eEn/iBa3jZUIIOzDY93RYBmd26aBvwKLOma/Vkg5oGYl0u ZK+CMe+/xXl7brQxQ6JNsQhbSTjT+746LvLJlCvPbbPK9R0HeKNhsdKpGY3ugnmz VAnOFIAvWUHO7qx+J+EnOo5iiPpcwXZj4AjrwVrs/x5zVhzwQ+4DSU6rbNn0O1Ak ELrBqCQkQzh5kqK93jgMHeWQ9EOUp1Lj6PJhTeVnOx2x8tCOi6iTQFFrfdUPlZ6K 2DajgrFhti4LvwVsohZlzZuKRm5EuwReLRSOn7PU5qoSm5rcouqMkdlYG/viwyhf mTVzEfrfemrIQOqWmzPrWEXlMj2mq8oJm4JkC+jJ/+HsfK4UU8I= =QCEy -----END PGP SIGNATURE----- Merge tag 'printk-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk Pull printk updates from Petr Mladek: - Allow to print symbolic error names via new %pe modifier. - Use pr_warn() instead of the remaining pr_warning() calls. Fix formatting of the related lines. - Add VSPRINTF entry to MAINTAINERS. * tag 'printk-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk: (32 commits) checkpatch: don't warn about new vsprintf pointer extension '%pe' MAINTAINERS: Add VSPRINTF tools lib api: Renaming pr_warning to pr_warn ASoC: samsung: Use pr_warn instead of pr_warning lib: cpu_rmap: Use pr_warn instead of pr_warning trace: Use pr_warn instead of pr_warning dma-debug: Use pr_warn instead of pr_warning vgacon: Use pr_warn instead of pr_warning fs: afs: Use pr_warn instead of pr_warning sh/intc: Use pr_warn instead of pr_warning scsi: Use pr_warn instead of pr_warning platform/x86: intel_oaktrail: Use pr_warn instead of pr_warning platform/x86: asus-laptop: Use pr_warn instead of pr_warning platform/x86: eeepc-laptop: Use pr_warn instead of pr_warning oprofile: Use pr_warn instead of pr_warning of: Use pr_warn instead of pr_warning macintosh: Use pr_warn instead of pr_warning idsn: Use pr_warn instead of pr_warning ide: Use pr_warn instead of pr_warning crypto: n2: Use pr_warn instead of pr_warning ... |
||
Linus Torvalds
|
752272f16d |
ARM:
- Data abort report and injection - Steal time support - GICv4 performance improvements - vgic ITS emulation fixes - Simplify FWB handling - Enable halt polling counters - Make the emulated timer PREEMPT_RT compliant s390: - Small fixes and cleanups - selftest improvements - yield improvements PPC: - Add capability to tell userspace whether we can single-step the guest. - Improve the allocation of XIVE virtual processor IDs - Rewrite interrupt synthesis code to deliver interrupts in virtual mode when appropriate. - Minor cleanups and improvements. x86: - XSAVES support for AMD - more accurate report of nested guest TSC to the nested hypervisor - retpoline optimizations - support for nested 5-level page tables - PMU virtualization optimizations, and improved support for nested PMU virtualization - correct latching of INITs for nested virtualization - IOAPIC optimization - TSX_CTRL virtualization for more TAA happiness - improved allocation and flushing of SEV ASIDs - many bugfixes and cleanups -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQEcBAABAgAGBQJd27PMAAoJEL/70l94x66DspsH+gPc6YWtKJFJH58Zj8NrNh6y t0FwDFcvUa51+m4jaY4L5Y8+zqu1dZFnPPhFGqNWpxrjCEvE/glQJv3BiUX06Seh aYUHNymGoYCTJOHaaGhV+NlgQaDuZOCOkIsOLAPehyFd1KojwB+FRC0xmO6aROPw 9yQgYrKuK1UUn5HwxBNrMS4+Xv+2iKv/9sTnq1G4W2qX2NZQg84LVPg1zIdkCh3D 3GOvoCBEk3ivQqjmdE7rP/InPr0XvW0b6TFhchIk8J6jEIQFHsmOUefiTvTxsIHV OKAZwvyeYPrYHA/aDZpaBmY2aR0ydfKDUQcviNIJoF1vOktGs0hvl3VbsmG8QCg= =OSI1 -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM updates from Paolo Bonzini: "ARM: - data abort report and injection - steal time support - GICv4 performance improvements - vgic ITS emulation fixes - simplify FWB handling - enable halt polling counters - make the emulated timer PREEMPT_RT compliant s390: - small fixes and cleanups - selftest improvements - yield improvements PPC: - add capability to tell userspace whether we can single-step the guest - improve the allocation of XIVE virtual processor IDs - rewrite interrupt synthesis code to deliver interrupts in virtual mode when appropriate. - minor cleanups and improvements. x86: - XSAVES support for AMD - more accurate report of nested guest TSC to the nested hypervisor - retpoline optimizations - support for nested 5-level page tables - PMU virtualization optimizations, and improved support for nested PMU virtualization - correct latching of INITs for nested virtualization - IOAPIC optimization - TSX_CTRL virtualization for more TAA happiness - improved allocation and flushing of SEV ASIDs - many bugfixes and cleanups" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits) kvm: nVMX: Relax guest IA32_FEATURE_CONTROL constraints KVM: x86: Grab KVM's srcu lock when setting nested state KVM: x86: Open code shared_msr_update() in its only caller KVM: Fix jump label out_free_* in kvm_init() KVM: x86: Remove a spurious export of a static function KVM: x86: create mmu/ subdirectory KVM: nVMX: Remove unnecessary TLB flushes on L1<->L2 switches when L1 use apic-access-page KVM: x86: remove set but not used variable 'called' KVM: nVMX: Do not mark vmcs02->apic_access_page as dirty when unpinning KVM: vmx: use MSR_IA32_TSX_CTRL to hard-disable TSX on guest that lack it KVM: vmx: implement MSR_IA32_TSX_CTRL disable RTM functionality KVM: x86: implement MSR_IA32_TSX_CTRL effect on CPUID KVM: x86: do not modify masked bits of shared MSRs KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES KVM: PPC: Book3S HV: XIVE: Fix potential page leak on error path KVM: PPC: Book3S HV: XIVE: Free previous EQ page when setting up a new one KVM: nVMX: Assume TLB entries of L1 and L2 are tagged differently if L0 use EPT KVM: x86: Unexport kvm_vcpu_reload_apic_access_page() KVM: nVMX: add CR4_LA57 bit to nested CR4_FIXED1 KVM: nVMX: Use semi-colon instead of comma for exit-handlers initialization ... |
||
Linus Torvalds
|
28fcb77b38 |
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov: - Fully reworked thermal throttling notifications, there should be no more spamming of dmesg (Srinivas Pandruvada and Benjamin Berg) - More enablement for the Intel-compatible CPUs Zhaoxin (Tony W Wang-oc) - PPIN support for Icelake (Tony Luck) * 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mce/therm_throt: Optimize notifications of thermal throttle x86/mce: Add Xeon Icelake to list of CPUs that support PPIN x86/mce: Lower throttling MCE messages' priority to warning x86/mce: Add Zhaoxin LMCE support x86/mce: Add Zhaoxin CMCI support x86/mce: Add Zhaoxin MCE support x86/mce/amd: Make disable_err_thresholding() static |
||
Linus Torvalds
|
63c2291f83 |
Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode updates from Borislav Petkov: "This converts the late loading method to load the microcode in parallel (vs sequentially currently). The patch remained in linux-next for the maximum amount of time so that any potential and hard to debug fallout be minimized. Now cloud folks have their milliseconds back but all the normal people should use early loading anyway :-)" * 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/microcode/intel: Issue the revision updated message only on the BSP x86/microcode: Update late microcode in parallel x86/microcode/amd: Fix two -Wunused-but-set-variable warnings |
||
Ingo Molnar
|
ceb9e77324 |
Merge branch 'x86/core' into perf/core, to resolve conflicts and to pick up completed topic tree
Conflicts: tools/perf/check-headers.sh Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
f01ec4fca8 |
Merge branch 'x86/build' into x86/asm, to pick up completed topic branch
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
f490e07c53 |
x86/pti/32: Size initial_page_table correctly
Commit |
||
Andy Lutomirski
|
3580d0b29c |
x86/doublefault/32: Fix stack canaries in the double fault handler
The double fault TSS was missing GS setup, which is needed for stack canaries to work. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@kernel.org |