Users have no business installing custom code segments into the
GDT, and segments that are not present but are otherwise valid
are a historical source of interesting attacks.
For completeness, block attempts to set the L bit. (Prior to
this patch, the L bit would have been silently dropped.)
This is an ABI break. I've checked glibc, musl, and Wine, and
none of them look like they'll have any trouble.
Note to stable maintainers: this is a hardening patch that fixes
no known bugs. Given the possibility of ABI issues, this
probably shouldn't be backported quickly.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: stable@vger.kernel.org # optional
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: security@kernel.org <security@kernel.org>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Installing a 16-bit RW data segment into the GDT defeats espfix.
AFAICT this will not affect glibc, Wine, or dosemu at all.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: stable@vger.kernel.org
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: security@kernel.org <security@kernel.org>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1) Discovered by Fengguang Wu's tests. I changed the parameters to
the function graph x86 prepare_ftrace_return call but forgot
to update the call from entry_32 (i386 version). This patch corrects
that.
2) I was tracing some code and found that the sched_switch tracepoint
was showing tasks in the INTERRUPTIBLE state as RUNNING. This was
due to the updates to convert preempt_count into a per_cpu variable.
The tracepoint logic was made to use the tasks saved_preempt_count
which could hold a stale "PREEMPT_ACTIVE", instead of using the
current preempt_count() call.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEbBAABAgAGBQJUi75HAAoJEEjnJuOKh9ldYVoH+LZsoT0m5UVQT8vQmahXABnY
A3l19KGUAL3qaWRf4Au50sK2NdBTfGjvt8KGNkskPsvVv5X3z0GoXIIA76SD/MtX
ysyLUXGCayNCqb3akuzznGZxE8CNKcU5aj3Hy+hIvRI6tgg2sEDt67QBAYsukIOR
MN3us7ezvh0r+8muyPdrpC2OtkwsC1QvX2My1km0UU67CcWxo8zIuzUeeMSe+1+4
6eCjLsVWAznaTo5W9i2DTKpw85hZjfAFgaGn21yRrAHbC+REpaigB9mxZg3Bb1Qb
SovdyGSSEspke4/0Pu7bVXW/lx7dlnEsNWqc0RHWY1nd5FINQY+tRfbmgSoPRA==
=DMsV
-----END PGP SIGNATURE-----
Merge tag 'trace-fixes-v3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"Here's two fixes:
1) Discovered by Fengguang Wu's tests. I changed the parameters to
the function graph x86 prepare_ftrace_return call but forgot to
update the call from entry_32 (i386 version). This patch corrects
that.
2) I was tracing some code and found that the sched_switch tracepoint
was showing tasks in the INTERRUPTIBLE state as RUNNING. This was
due to the updates to convert preempt_count into a per_cpu
variable. The tracepoint logic was made to use the tasks
saved_preempt_count which could hold a stale "PREEMPT_ACTIVE",
instead of using the current preempt_count() call"
* tag 'trace-fixes-v3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing/sched: Check preempt_count() for current when reading task->state
ftrace/x86: Update i386 call to prepare_ftrace_return()
After commit b2b49ccbdd (PM: Kconfig: Set PM_RUNTIME if PM_SLEEP is
selected) PM_RUNTIME is always set if PM is set, so #ifdef blocks
depending on CONFIG_PM_RUNTIME may now be changed to depend on
CONFIG_PM.
Replace CONFIG_PM_RUNTIME with CONFIG_PM in x86/kernel/apic/io_apic.c.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The parameters for prepare_ftrace_return() used by the function graph
tracer were swapped to simplify the code on x86_64. But i386 function
graph trampoline also calls this function, and it did not have its
parameters swapped.
Link: http://lkml.kernel.org/r/20141210231732.GA24163@wfg-t540p.sh.intel.com
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: Fengguang Wu <fengguang.wu@intel.com>
Fixes: 6a06bdbf7f "ftrace/fgraph/x86: Have prepare_ftrace_return() take ip as first parameter"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Sometimes it is helpful to build a kernel compilation unit
directly, i.e.:
make .../<filename>.i
in order to look at compiler output.
Since asm-offsets_{32,64}.c are included by asm-offsets.c and
building them directly doesn't evaluate the macros used (thus
making the preprocessor output not very useful), error out when
an attempt is made to build them. Issue a hint for the user to
build asm-offsets.c instead.
Suggested-by: Michael Matz <matz@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418139917-12722-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The type of "MAX_DMA_PFN" and "xXx_pfn" are both unsigned long
now, so use min() instead of min_t().
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Linux MM <linux-mm@kvack.org>
Cc: <dave@sr71.net>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/5487AB3F.7050807@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The uncore_collect_events functions assumes that event group
might contain only uncore events which is wrong, because it
might contain any type of events.
This bug leads to uncore framework touching 'not' uncore events,
which could end up all sorts of bugs.
One was triggered by Vince's perf fuzzer, when the uncore code
touched breakpoint event private event space as if it was uncore
event and caused BUG:
BUG: unable to handle kernel paging request at ffffffff82822068
IP: [<ffffffff81020338>] uncore_assign_events+0x188/0x250
...
The code in uncore_assign_events() function was looking for
event->hw.idx data while the event was initialized as a
breakpoint with different members in event->hw union.
This patch forces uncore_collect_events() to collect only uncore
events.
Reported-by: Vince Weaver <vince@deater.net>
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Yan, Zheng <zheng.z.yan@intel.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1418243031-20367-2-git-send-email-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This time we have some more new material than we used to have during
the last couple of development cycles.
The most important part of it to me is the introduction of a unified
interface for accessing device properties provided by platform
firmware. It works with Device Trees and ACPI in a uniform way and
drivers using it need not worry about where the properties come
from as long as the platform firmware (either DT or ACPI) makes
them available. It covers both devices and "bare" device node
objects without struct device representation as that turns out to
be necessary in some cases. This has been in the works for quite
a few months (and development cycles) and has been approved by
all of the relevant maintainers.
On top of that, some drivers are switched over to the new interface
(at25, leds-gpio, gpio_keys_polled) and some additional changes are
made to the core GPIO subsystem to allow device drivers to manipulate
GPIOs in the "canonical" way on platforms that provide GPIO information
in their ACPI tables, but don't assign names to GPIO lines (in which
case the driver needs to do that on the basis of what it knows about
the device in question). That also has been approved by the GPIO
core maintainers and the rfkill driver is now going to use it.
Second is support for hardware P-states in the intel_pstate driver.
It uses CPUID to detect whether or not the feature is supported by
the processor in which case it will be enabled by default. However,
it can be disabled entirely from the kernel command line if necessary.
Next is support for a platform firmware interface based on ACPI
operation regions used by the PMIC (Power Management Integrated
Circuit) chips on the Intel Baytrail-T and Baytrail-T-CR platforms.
That interface is used for manipulating power resources and for
thermal management: sensor temperature reporting, trip point setting
and so on.
Also the ACPI core is now going to support the _DEP configuration
information in a limited way. Basically, _DEP it supposed to reflect
off-the-hierarchy dependencies between devices which may be very
indirect, like when AML for one device accesses locations in an
operation region handled by another device's driver (usually, the
device depended on this way is a serial bus or GPIO controller).
The support added this time is sufficient to make the ACPI battery
driver work on Asus T100A, but it is general enough to be able to
cover some other use cases in the future.
Finally, we have a new cpufreq driver for the Loongson1B processor.
In addition to the above, there are fixes and cleanups all over the
place as usual and a traditional ACPICA update to a recent upstream
release.
As far as the fixes go, the ACPI LPSS (Low-power Subsystem) driver
for Intel platforms should be able to handle power management of
the DMA engine correctly, the cpufreq-dt driver should interact
with the thermal subsystem in a better way and the ACPI backlight
driver should handle some more corner cases, among other things.
On top of the ACPICA update there are fixes for race conditions
in the ACPICA's interrupt handling code which might lead to some
random and strange looking failures on some systems.
In the cleanups department the most visible part is the series
of commits targeted at getting rid of the CONFIG_PM_RUNTIME
configuration option. That was triggered by a discussion
regarding the generic power domains code during which we realized
that trying to support certain combinations of PM config options
was painful and not really worth it, because nobody would use them
in production anyway. For this reason, we decided to make
CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and that lead to the
conclusion that the latter became redundant and CONFIG_PM could
be used instead of it. The material here makes that replacement
in a major part of the tree, but there will be at least one more
batch of that in the second part of the merge window.
Specifics:
- Support for retrieving device properties information from ACPI
_DSD device configuration objects and a unified device properties
interface for device drivers (and subsystems) on top of that.
As stated above, this works with Device Trees and ACPI and allows
device drivers to be written in a platform firmware (DT or ACPI)
agnostic way. The at25, leds-gpio and gpio_keys_polled drivers
are now going to use this new interface and the GPIO subsystem
is additionally modified to allow device drivers to assign names
to GPIO resources returned by ACPI _CRS objects (in case _DSD is
not present or does not provide the expected data). The changes
in this set are mostly from Mika Westerberg, Rafael J Wysocki,
Aaron Lu, and Darren Hart with some fixes from others (Fabio Estevam,
Geert Uytterhoeven).
- Support for Hardware Managed Performance States (HWP) as described
in Volume 3, section 14.4, of the Intel SDM in the intel_pstate
driver. CPUID is used to detect whether or not the feature is
supported by the processor. If supported, it will be enabled
automatically unless the intel_pstate=no_hwp switch is present in
the kernel command line. From Dirk Brandewie.
- New Intel Broadwell-H ID for intel_pstate (Dirk Brandewie).
- Support for firmware interface based on ACPI operation regions
used by the PMIC chips on the Intel Baytrail-T and Baytrail-T-CR
platforms for power resource control and thermal management
(Aaron Lu).
- Limited support for retrieving off-the-hierarchy dependencies
between devices from ACPI _DEP device configuration objects
and deferred probing support for the ACPI battery driver based
on the _DEP information to make that driver work on Asus T100A
(Lan Tianyu).
- New cpufreq driver for the Loongson1B processor (Kelvin Cheung).
- ACPICA update to upstream revision 20141107 which only affects
tools (Bob Moore).
- Fixes for race conditions in the ACPICA's interrupt handling
code and in the ACPI code related to system suspend and resume
(Lv Zheng and Rafael J Wysocki).
- ACPI core fix for an RCU-related issue in the ioremap() regions
management code that slowed down significantly after CPUs had
been allowed to enter idle states even if they'd had RCU callbakcs
queued and triggered some problems in certain proprietary graphics
driver (and elsewhere). The fix replaces synchronize_rcu() in
that code with synchronize_rcu_expedited() which makes the issue
go away. From Konstantin Khlebnikov.
- ACPI LPSS (Low-Power Subsystem) driver fix to handle power
management of the DMA engine included into the LPSS correctly.
The problem is that the DMA engine doesn't have ACPI PM support
of its own and it simply is turned off when the last LPSS device
having ACPI PM support goes into D3cold. To work around that,
the PM domain used by the ACPI LPSS driver is redesigned so at
least one device with ACPI PM support will be on as long as the
DMA engine is in use. From Andy Shevchenko.
- ACPI backlight driver fix to avoid using it on "Win8-compatible"
systems where it doesn't work and where it was used by default by
mistake (Aaron Lu).
- Assorted minor ACPI core fixes and cleanups from Tomasz Nowicki,
Sudeep Holla, Huang Rui, Hanjun Guo, Fabian Frederick, and
Ashwin Chaugule (mostly related to the upcoming ARM64 support).
- Intel RAPL (Running Average Power Limit) power capping driver
fixes and improvements including new processor IDs (Jacob Pan).
- Generic power domains modification to power up domains after
attaching devices to them to meet the expectations of device
drivers and bus types assuming devices to be accessible at
probe time (Ulf Hansson).
- Preliminary support for controlling device clocks from the
generic power domains core code and modifications of the
ARM/shmobile platform to use that feature (Ulf Hansson).
- Assorted minor fixes and cleanups of the generic power
domains core code (Ulf Hansson, Geert Uytterhoeven).
- Assorted minor fixes and cleanups of the device clocks control
code in the PM core (Geert Uytterhoeven, Grygorii Strashko).
- Consolidation of device power management Kconfig options by making
CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and removing the latter
which is now redundant (Rafael J Wysocki and Kevin Hilman). That
is the first batch of the changes needed for this purpose.
- Core device runtime power management support code cleanup related
to the execution of callbacks (Andrzej Hajda).
- cpuidle ARM support improvements (Lorenzo Pieralisi).
- cpuidle cleanup related to the CPUIDLE_FLAG_TIME_VALID flag and
a new MAINTAINERS entry for ARM Exynos cpuidle (Daniel Lezcano and
Bartlomiej Zolnierkiewicz).
- New cpufreq driver callback (->ready) to be executed when the
cpufreq core is ready to use a given policy object and cpufreq-dt
driver modification to use that callback for cooling device
registration (Viresh Kumar).
- cpufreq core fixes and cleanups (Viresh Kumar, Vince Hsu,
James Geboski, Tomeu Vizoso).
- Assorted fixes and cleanups in the cpufreq-pcc, intel_pstate,
cpufreq-dt, pxa2xx cpufreq drivers (Lenny Szubowicz, Ethan Zhao,
Stefan Wahren, Petr Cvek).
- OPP (Operating Performance Points) framework modification to
allow OPPs to be removed too and update of a few cpufreq drivers
(cpufreq-dt, exynos5440, imx6q, cpufreq) to remove OPPs (added
during initialization) on driver removal (Viresh Kumar).
- Hibernation core fixes and cleanups (Tina Ruchandani and
Markus Elfring).
- PM Kconfig fix related to CPU power management (Pankaj Dubey).
- cpupower tool fix (Prarit Bhargava).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJUhj6JAAoJEILEb/54YlRxTM4P/j5g5SfqvY0QKsn7sR7MGZ6v
nsgCBhJAqTw3ocNC7EAs8z9h2GWy1KbKpakKYWAh9Fs1yZoey7tFSlcv/Rgjlp70
uU5sDQHtpE9mHKiymdsowiQuWgpl962L4k+k8hUslhlvgk1PvVbpajR6OqG8G+pD
asuIW9eh1APNkLyXmRJ3ZPomzs0VmRdZJ0NEs0lKX9mJskqEvxPIwdaxq3iaJq9B
Fo0J345zUDcJnxWblDRdHlOigCimglElfN5qJwaC4KpwUKuBvLRKbp4f69+wfT0c
kYFiR29X5KjJ2kLfP/wKsLyuDCYYXRq3tCia5M1tAqOjZ+UA89H/GDftx/5lntmv
qUlBa35VfdS1SX4HyApZitOHiLgo+It/hl8Z9bJnhyVw66NxmMQ8JYN2imb8Lhqh
XCLR7BxLTah82AapLJuQ0ZDHPzZqMPG2veC2vAzRMYzVijict/p4Y2+qBqONltER
4rs9uRVn+hamX33lCLg8BEN8zqlnT3rJFIgGaKjq/wXHAU/zpE9CjOrKMQcAg9+s
t51XMNPwypHMAYyGVhEL89ImjXnXxBkLRuquhlmEpvQchIhR+mR3dLsarGn7da44
WPIQJXzcsojXczcwwfqsJCR4I1FTFyQIW+UNh02GkDRgRovQqo+Jk762U7vQwqH+
LBdhvVaS1VW4v+FWXEoZ
=5dox
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"This time we have some more new material than we used to have during
the last couple of development cycles.
The most important part of it to me is the introduction of a unified
interface for accessing device properties provided by platform
firmware. It works with Device Trees and ACPI in a uniform way and
drivers using it need not worry about where the properties come from
as long as the platform firmware (either DT or ACPI) makes them
available. It covers both devices and "bare" device node objects
without struct device representation as that turns out to be necessary
in some cases. This has been in the works for quite a few months (and
development cycles) and has been approved by all of the relevant
maintainers.
On top of that, some drivers are switched over to the new interface
(at25, leds-gpio, gpio_keys_polled) and some additional changes are
made to the core GPIO subsystem to allow device drivers to manipulate
GPIOs in the "canonical" way on platforms that provide GPIO
information in their ACPI tables, but don't assign names to GPIO lines
(in which case the driver needs to do that on the basis of what it
knows about the device in question). That also has been approved by
the GPIO core maintainers and the rfkill driver is now going to use
it.
Second is support for hardware P-states in the intel_pstate driver.
It uses CPUID to detect whether or not the feature is supported by the
processor in which case it will be enabled by default. However, it
can be disabled entirely from the kernel command line if necessary.
Next is support for a platform firmware interface based on ACPI
operation regions used by the PMIC (Power Management Integrated
Circuit) chips on the Intel Baytrail-T and Baytrail-T-CR platforms.
That interface is used for manipulating power resources and for
thermal management: sensor temperature reporting, trip point setting
and so on.
Also the ACPI core is now going to support the _DEP configuration
information in a limited way. Basically, _DEP it supposed to reflect
off-the-hierarchy dependencies between devices which may be very
indirect, like when AML for one device accesses locations in an
operation region handled by another device's driver (usually, the
device depended on this way is a serial bus or GPIO controller). The
support added this time is sufficient to make the ACPI battery driver
work on Asus T100A, but it is general enough to be able to cover some
other use cases in the future.
Finally, we have a new cpufreq driver for the Loongson1B processor.
In addition to the above, there are fixes and cleanups all over the
place as usual and a traditional ACPICA update to a recent upstream
release.
As far as the fixes go, the ACPI LPSS (Low-power Subsystem) driver for
Intel platforms should be able to handle power management of the DMA
engine correctly, the cpufreq-dt driver should interact with the
thermal subsystem in a better way and the ACPI backlight driver should
handle some more corner cases, among other things.
On top of the ACPICA update there are fixes for race conditions in the
ACPICA's interrupt handling code which might lead to some random and
strange looking failures on some systems.
In the cleanups department the most visible part is the series of
commits targeted at getting rid of the CONFIG_PM_RUNTIME configuration
option. That was triggered by a discussion regarding the generic
power domains code during which we realized that trying to support
certain combinations of PM config options was painful and not really
worth it, because nobody would use them in production anyway. For
this reason, we decided to make CONFIG_PM_SLEEP select
CONFIG_PM_RUNTIME and that lead to the conclusion that the latter
became redundant and CONFIG_PM could be used instead of it. The
material here makes that replacement in a major part of the tree, but
there will be at least one more batch of that in the second part of
the merge window.
Specifics:
- Support for retrieving device properties information from ACPI _DSD
device configuration objects and a unified device properties
interface for device drivers (and subsystems) on top of that. As
stated above, this works with Device Trees and ACPI and allows
device drivers to be written in a platform firmware (DT or ACPI)
agnostic way. The at25, leds-gpio and gpio_keys_polled drivers are
now going to use this new interface and the GPIO subsystem is
additionally modified to allow device drivers to assign names to
GPIO resources returned by ACPI _CRS objects (in case _DSD is not
present or does not provide the expected data). The changes in
this set are mostly from Mika Westerberg, Rafael J Wysocki, Aaron
Lu, and Darren Hart with some fixes from others (Fabio Estevam,
Geert Uytterhoeven).
- Support for Hardware Managed Performance States (HWP) as described
in Volume 3, section 14.4, of the Intel SDM in the intel_pstate
driver. CPUID is used to detect whether or not the feature is
supported by the processor. If supported, it will be enabled
automatically unless the intel_pstate=no_hwp switch is present in
the kernel command line. From Dirk Brandewie.
- New Intel Broadwell-H ID for intel_pstate (Dirk Brandewie).
- Support for firmware interface based on ACPI operation regions used
by the PMIC chips on the Intel Baytrail-T and Baytrail-T-CR
platforms for power resource control and thermal management (Aaron
Lu).
- Limited support for retrieving off-the-hierarchy dependencies
between devices from ACPI _DEP device configuration objects and
deferred probing support for the ACPI battery driver based on the
_DEP information to make that driver work on Asus T100A (Lan
Tianyu).
- New cpufreq driver for the Loongson1B processor (Kelvin Cheung).
- ACPICA update to upstream revision 20141107 which only affects
tools (Bob Moore).
- Fixes for race conditions in the ACPICA's interrupt handling code
and in the ACPI code related to system suspend and resume (Lv Zheng
and Rafael J Wysocki).
- ACPI core fix for an RCU-related issue in the ioremap() regions
management code that slowed down significantly after CPUs had been
allowed to enter idle states even if they'd had RCU callbakcs
queued and triggered some problems in certain proprietary graphics
driver (and elsewhere). The fix replaces synchronize_rcu() in that
code with synchronize_rcu_expedited() which makes the issue go
away. From Konstantin Khlebnikov.
- ACPI LPSS (Low-Power Subsystem) driver fix to handle power
management of the DMA engine included into the LPSS correctly. The
problem is that the DMA engine doesn't have ACPI PM support of its
own and it simply is turned off when the last LPSS device having
ACPI PM support goes into D3cold. To work around that, the PM
domain used by the ACPI LPSS driver is redesigned so at least one
device with ACPI PM support will be on as long as the DMA engine is
in use. From Andy Shevchenko.
- ACPI backlight driver fix to avoid using it on "Win8-compatible"
systems where it doesn't work and where it was used by default by
mistake (Aaron Lu).
- Assorted minor ACPI core fixes and cleanups from Tomasz Nowicki,
Sudeep Holla, Huang Rui, Hanjun Guo, Fabian Frederick, and Ashwin
Chaugule (mostly related to the upcoming ARM64 support).
- Intel RAPL (Running Average Power Limit) power capping driver fixes
and improvements including new processor IDs (Jacob Pan).
- Generic power domains modification to power up domains after
attaching devices to them to meet the expectations of device
drivers and bus types assuming devices to be accessible at probe
time (Ulf Hansson).
- Preliminary support for controlling device clocks from the generic
power domains core code and modifications of the ARM/shmobile
platform to use that feature (Ulf Hansson).
- Assorted minor fixes and cleanups of the generic power domains core
code (Ulf Hansson, Geert Uytterhoeven).
- Assorted minor fixes and cleanups of the device clocks control code
in the PM core (Geert Uytterhoeven, Grygorii Strashko).
- Consolidation of device power management Kconfig options by making
CONFIG_PM_SLEEP select CONFIG_PM_RUNTIME and removing the latter
which is now redundant (Rafael J Wysocki and Kevin Hilman). That
is the first batch of the changes needed for this purpose.
- Core device runtime power management support code cleanup related
to the execution of callbacks (Andrzej Hajda).
- cpuidle ARM support improvements (Lorenzo Pieralisi).
- cpuidle cleanup related to the CPUIDLE_FLAG_TIME_VALID flag and a
new MAINTAINERS entry for ARM Exynos cpuidle (Daniel Lezcano and
Bartlomiej Zolnierkiewicz).
- New cpufreq driver callback (->ready) to be executed when the
cpufreq core is ready to use a given policy object and cpufreq-dt
driver modification to use that callback for cooling device
registration (Viresh Kumar).
- cpufreq core fixes and cleanups (Viresh Kumar, Vince Hsu, James
Geboski, Tomeu Vizoso).
- Assorted fixes and cleanups in the cpufreq-pcc, intel_pstate,
cpufreq-dt, pxa2xx cpufreq drivers (Lenny Szubowicz, Ethan Zhao,
Stefan Wahren, Petr Cvek).
- OPP (Operating Performance Points) framework modification to allow
OPPs to be removed too and update of a few cpufreq drivers
(cpufreq-dt, exynos5440, imx6q, cpufreq) to remove OPPs (added
during initialization) on driver removal (Viresh Kumar).
- Hibernation core fixes and cleanups (Tina Ruchandani and Markus
Elfring).
- PM Kconfig fix related to CPU power management (Pankaj Dubey).
- cpupower tool fix (Prarit Bhargava)"
* tag 'pm+acpi-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (120 commits)
i2c-omap / PM: Drop CONFIG_PM_RUNTIME from i2c-omap.c
dmaengine / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
tools: cpupower: fix return checks for sysfs_get_idlestate_count()
drivers: sh / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
e1000e / igb / PM: Eliminate CONFIG_PM_RUNTIME
MMC / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
MFD / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
misc / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
media / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
input / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
leds: leds-gpio: Fix multiple instances registration without 'label' property
iio / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
hsi / OMAP / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
i2c-hid / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
drm / exynos / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
gpio / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
hwrandom / exynos / PM: Use CONFIG_PM in #ifdef
block / PM: Replace CONFIG_PM_RUNTIME with CONFIG_PM
USB / PM: Drop CONFIG_PM_RUNTIME from the USB core
PM: Merge the SET*_RUNTIME_PM_OPS() macros
...
clean ups from that branch.
This code solves the issue of performing stack dumps from NMI context.
The issue is that printk() is not safe from NMI context as if the NMI
were to trigger when a printk() was being performed, the NMI could
deadlock from the printk() internal locks. This has been seen in practice.
With lots of review from Petr Mladek, this code went through several
iterations, and we feel that it is now at a point of quality to be
accepted into mainline.
Here's what is contained in this patch set:
o Creates a "seq_buf" generic buffer utility that allows a descriptor
to be passed around where functions can write their own "printk()"
formatted strings into it. The generic version was pulled out of
the trace_seq() code that was made specifically for tracing.
o The seq_buf code was change to model the seq_file code. I have
a patch (not included for 3.19) that converts the seq_file.c code
over to use seq_buf.c like the trace_seq.c code does. This was done
to make sure that seq_buf.c is compatible with seq_file.c. I may
try to get that patch in for 3.20.
o The seq_buf.c file was moved to lib/ to remove it from being dependent
on CONFIG_TRACING.
o The printk() was updated to allow for a per_cpu "override" of
the internal calls. That is, instead of writing to the console, a call
to printk() may do something else. This made it easier to allow the
NMI to change what printk() does in order to call dump_stack() without
needing to update that code as well.
o Finally, the dump_stack from all CPUs via NMI code was converted to
use the seq_buf code. The caller to trigger the NMI code would wait
till all the NMIs finished, and then it would print the seq_buf
data to the console safely from a non NMI context.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUhbrnAAoJEEjnJuOKh9ldsCoIAJ3sKIJ5B3jxJJTCHPAx/lZD
GVbV1J1mu4kTAZuhJZOAxW8D6PZGZMyEjg0y6ScDEnBGcjAZ9gTiWCdakPktf9EX
GfaPPqwiL9dZ18J9Qc6uR+7M1Ffpzzwbcc6lJrpoTcjRgkoH9wCiLS9ozFQyYzWb
/7m5UbUM/PIk9WAjLYXPW6UUVtPTPT0RdEQKofMGTeah+vgqj4TXCOROdlxsXXWF
77vqBvPd5TUPWFH9ftzJGDtZS8SroXVKCu3fZIqHgzAU0yqwVtH/JzDTy9u2UYhX
GzDEPeAIdp6m6Uyc406VuIf1QW0gfBgmA0ir80vFoP27uFMM6j5HlF7azgQfx34=
=YBgA
-----END PGP SIGNATURE-----
Merge tag 'trace-seq-buf-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull nmi-safe seq_buf printk update from Steven Rostedt:
"This code is a fork from the trace-3.19 pull as it needed the
trace_seq clean ups from that branch.
This code solves the issue of performing stack dumps from NMI context.
The issue is that printk() is not safe from NMI context as if the NMI
were to trigger when a printk() was being performed, the NMI could
deadlock from the printk() internal locks. This has been seen in
practice.
With lots of review from Petr Mladek, this code went through several
iterations, and we feel that it is now at a point of quality to be
accepted into mainline.
Here's what is contained in this patch set:
- Creates a "seq_buf" generic buffer utility that allows a descriptor
to be passed around where functions can write their own "printk()"
formatted strings into it. The generic version was pulled out of
the trace_seq() code that was made specifically for tracing.
- The seq_buf code was change to model the seq_file code. I have a
patch (not included for 3.19) that converts the seq_file.c code
over to use seq_buf.c like the trace_seq.c code does. This was
done to make sure that seq_buf.c is compatible with seq_file.c. I
may try to get that patch in for 3.20.
- The seq_buf.c file was moved to lib/ to remove it from being
dependent on CONFIG_TRACING.
- The printk() was updated to allow for a per_cpu "override" of the
internal calls. That is, instead of writing to the console, a call
to printk() may do something else. This made it easier to allow
the NMI to change what printk() does in order to call dump_stack()
without needing to update that code as well.
- Finally, the dump_stack from all CPUs via NMI code was converted to
use the seq_buf code. The caller to trigger the NMI code would
wait till all the NMIs finished, and then it would print the
seq_buf data to the console safely from a non NMI context
One added bonus is that this code also makes the NMI dump stack work
on PREEMPT_RT kernels. As printk() includes sleeping locks on
PREEMPT_RT, printk() only writes to console if the console does not
use any rt_mutex converted spin locks. Which a lot do"
* tag 'trace-seq-buf-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
x86/nmi: Fix use of unallocated cpumask_var_t
printk/percpu: Define printk_func when printk is not defined
x86/nmi: Perform a safe NMI stack trace on all CPUs
printk: Add per_cpu printk func to allow printk to be diverted
seq_buf: Move the seq_buf code to lib/
seq-buf: Make seq_buf_bprintf() conditional on CONFIG_BINARY_PRINTF
tracing: Add seq_buf_get_buf() and seq_buf_commit() helper functions
tracing: Have seq_buf use full buffer
seq_buf: Add seq_buf_can_fit() helper function
tracing: Add paranoid size check in trace_printk_seq()
tracing: Use trace_seq_used() and seq_buf_used() instead of len
tracing: Clean up tracing_fill_pipe_page()
seq_buf: Create seq_buf_used() to find out how much was written
tracing: Add a seq_buf_clear() helper and clear len and readpos in init
tracing: Convert seq_buf fields to be like seq_file fields
tracing: Convert seq_buf_path() to be like seq_path()
tracing: Create seq_buf layer in trace_seq
to the trace_seq code. It also removed the return values to the
trace_seq_*() functions and use trace_seq_has_overflowed() to see if
the buffer filled up or not. This is similar to work being done to the
seq_file code as well in another tree.
Some of the other goodies include:
o Added some "!" (NOT) logic to the tracing filter.
o Fixed the frame pointer logic to the x86_64 mcount trampolines
o Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems.
That is, the ftrace trampoline can be dynamically allocated
and be called directly by functions that only have a single hook
to them.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUhbLGAAoJEEjnJuOKh9ldRV4H/3NcLbgGB2iu96la1zdYE6pG
Q7cDJMxXK80YIIL70h9G0IItcD4t62LMb72lfBnMGRj3msgFb3AgISW57EuI0Pxk
xk24wuIPoTG2S7v9sc3SboNFwO8qbtIjxD2OBmqIUrGo2sZIiGjyj3gX7mCY3uzL
WB2bUOSFz/22OgaANinR5EELHA3pZZCf54Vz1K9ndmtK0xp0j1a7xJShD6TrMdYv
mZ3zH5ViIhW4A3mdcMceh6fy2JLQAiEKF0uPTvcMMz7NlVul0mxyL/+10P7AE/3R
Ehw4fzmm4NDshPDtBOkKH0LsppgXzuItFuQUTpact3JlqTg++bV6onSsrkt1hlY=
=Z7Cm
-----END PGP SIGNATURE-----
Merge tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"There was a lot of clean ups and minor fixes. One of those clean ups
was to the trace_seq code. It also removed the return values to the
trace_seq_*() functions and use trace_seq_has_overflowed() to see if
the buffer filled up or not. This is similar to work being done to
the seq_file code as well in another tree.
Some of the other goodies include:
- Added some "!" (NOT) logic to the tracing filter.
- Fixed the frame pointer logic to the x86_64 mcount trampolines
- Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems.
That is, the ftrace trampoline can be dynamically allocated and be
called directly by functions that only have a single hook to them"
* tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (55 commits)
tracing: Truncated output is better than nothing
tracing: Add additional marks to signal very large time deltas
Documentation: describe trace_buf_size parameter more accurately
tracing: Allow NOT to filter AND and OR clauses
tracing: Add NOT to filtering logic
ftrace/fgraph/x86: Have prepare_ftrace_return() take ip as first parameter
ftrace/x86: Get rid of ftrace_caller_setup
ftrace/x86: Have save_mcount_regs macro also save stack frames if needed
ftrace/x86: Add macro MCOUNT_REG_SIZE for amount of stack used to save mcount regs
ftrace/x86: Simplify save_mcount_regs on getting RIP
ftrace/x86: Have save_mcount_regs store RIP in %rdi for first parameter
ftrace/x86: Rename MCOUNT_SAVE_FRAME and add more detailed comments
ftrace/x86: Move MCOUNT_SAVE_FRAME out of header file
ftrace/x86: Have static tracing also use ftrace_caller_setup
ftrace/x86: Have static function tracing always test for function graph
kprobes: Add IPMODIFY flag to kprobe_ftrace_ops
ftrace, kprobes: Support IPMODIFY flag to find IP modify conflict
kprobes/ftrace: Recover original IP if pre_handler doesn't change it
tracing/trivial: Fix typos and make an int into a bool
tracing: Deletion of an unnecessary check before iput()
...
Pull x86 microcode loading updates from Ingo Molnar:
"The main changes in this cycle are:
- Reload microcode when resuming and the case when only the early
loader has been utilized. (Borislav Petkov)
- Also, do not load the driver on paravirt guests. (Boris
Ostrovsky)"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/intel: Fish out the stashed microcode for the BSP
x86, microcode: Reload microcode on resume
x86, microcode: Don't initialize microcode code on paravirt
x86, microcode, intel: Drop unused parameter
x86, microcode, AMD: Do not use smp_processor_id() in preemtible context
Pull x86 vdso updates from Ingo Molnar:
"Various vDSO updates from Andy Lutomirski, mostly cleanups and
reorganization to improve maintainability, but also some
micro-optimizations and robustization changes"
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86_64/vsyscall: Restore orig_ax after vsyscall seccomp
x86_64: Add a comment explaining the TASK_SIZE_MAX guard page
x86_64,vsyscall: Make vsyscall emulation configurable
x86_64, vsyscall: Rewrite comment and clean up headers in vsyscall code
x86_64, vsyscall: Turn vsyscalls all the way off when vsyscall==none
x86,vdso: Use LSL unconditionally for vgetcpu
x86: vdso: Fix build with older gcc
x86_64/vdso: Clean up vgetcpu init and merge the vdso initcalls
x86_64/vdso: Remove jiffies from the vvar page
x86/vdso: Make the PER_CPU segment 32 bits
x86/vdso: Make the PER_CPU segment start out accessed
x86/vdso: Change the PER_CPU segment to use struct desc_struct
x86_64/vdso: Move getcpu code from vsyscall_64.c to vdso/vma.c
x86_64/vsyscall: Move all of the gate_area code to vsyscall_64.c
Pull x86 RAS update from Ingo Molnar:
"The biggest change in this cycle is better support for UCNA
(UnCorrected No Action) events:
"Handle all uncorrected error reports in the same way (soft
offline the page). We used to only do that for SRAO
(software recoverable action optional) machine checks, but
it makes sense to also do it for UCNA (UnCorrected No
Action) logs found by CMCI or polling."
plus various x86 MCE handling updates and fixes"
* 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Spell "panicked" correctly
x86, mce: Support memory error recovery for both UCNA and Deferred error in machine_check_poll
x86, mce, severity: Extend the the mce_severity mechanism to handle UCNA/DEFERRED error
x86, MCE, AMD: Assign interrupt handler only when bank supports it
x86, MCE, AMD: Drop software-defined bank in error thresholding
x86, MCE, AMD: Move invariant code out from loop body
x86, MCE, AMD: Correct thresholding error logging
x86, MCE, AMD: Use macros to compute bank MSRs
RAS, HWPOISON: Fix wrong error recovery status
GHES: Make ghes_estatus_caches static
APEI, GHES: Cleanup unnecessary function for lockless list
Pull x86 platform changes from Ingo Molnar:
"A handful of numachip APIC driver updates/fixes, and two small SGI/UV
fixes"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: numachip: APIC driver cleanups
x86: numachip: Elide self-IPI ICR polling
x86: numachip: Fix 16-bit APIC ID truncation
* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: UV BAU: Increase maximum CPUs per socket/hub
x86: UV BAU: Avoid NULL pointer reference in ptc_seq_show
Pull x86 build, cleanup and defconfig updates from Ingo Molnar:
"A single minor build change to suppress a repetitive build messages,
misc cleanups and a defconfig update"
* 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/purgatory, build: Suppress kexec-purgatory.c is up to date message
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, CPU, AMD: Move K8 TLB flush filter workaround to K8 code
x86, espfix: Remove stale ptemask
x86, msr: Use seek definitions instead of hard-coded values
x86, msr: Convert printk to pr_foo()
x86, msr: Use PTR_ERR_OR_ZERO
x86/simplefb: Use PTR_ERR_OR_ZERO
x86/sysfb: Use PTR_ERR_OR_ZERO
x86, cpuid: Use PTR_ERR_OR_ZERO
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kconfig/defconfig: Enable CONFIG_FHANDLE=y
Pull x86 boot and percpu updates from Ingo Molnar:
"This tree contains a bootable images documentation update plus three
slightly misplaced x86/asm percpu changes/optimizations"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86-64: Use RIP-relative addressing for most per-CPU accesses
x86-64: Handle PC-relative relocations on per-CPU data
x86: Convert a few more per-CPU items to read-mostly ones
x86, boot: Document intermediates more clearly
Pull x86 MPX support from Thomas Gleixner:
"This enables support for x86 MPX.
MPX is a new debug feature for bound checking in user space. It
requires kernel support to handle the bound tables and decode the
bound violating instruction in the trap handler"
* 'x86-mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
asm-generic: Remove asm-generic arch_bprm_mm_init()
mm: Make arch_unmap()/bprm_mm_init() available to all architectures
x86: Cleanly separate use of asm-generic/mm_hooks.h
x86 mpx: Change return type of get_reg_offset()
fs: Do not include mpx.h in exec.c
x86, mpx: Add documentation on Intel MPX
x86, mpx: Cleanup unused bound tables
x86, mpx: On-demand kernel allocation of bounds tables
x86, mpx: Decode MPX instruction to get bound violation information
x86, mpx: Add MPX-specific mmap interface
x86, mpx: Introduce VM_MPX to indicate that a VMA is MPX specific
x86, mpx: Add MPX to disabled features
ia64: Sync struct siginfo with general version
mips: Sync struct siginfo with general version
mpx: Extend siginfo structure to include bound violation information
x86, mpx: Rename cfg_reg_u and status_reg
x86: mpx: Give bndX registers actual names
x86: Remove arbitrary instruction size limit in instruction decoder
Pull irq domain updates from Thomas Gleixner:
"The real interesting irq updates:
- Support for hierarchical irq domains:
For complex interrupt routing scenarios where more than one
interrupt related chip is involved we had no proper representation
in the generic interrupt infrastructure so far. That made people
implement rather ugly constructs in their nested irq chip
implementations. The main offenders are x86 and arm/gic.
To distangle that mess we have now hierarchical irqdomains which
seperate the various interrupt chips and connect them via the
hierarchical domains. That keeps the domain specific details
internal to the particular hierarchy level and removes the
criss/cross referencing of chip internals. The resulting hierarchy
for a complex x86 system will look like this:
vector mapped: 74
msi-0 mapped: 2
dmar-ir-1 mapped: 69
ioapic-1 mapped: 4
ioapic-0 mapped: 20
pci-msi-2 mapped: 45
dmar-ir-0 mapped: 3
ioapic-2 mapped: 1
pci-msi-1 mapped: 2
htirq mapped: 0
Neither ioapic nor pci-msi know about the dmar interrupt remapping
between themself and the vector domain. If interrupt remapping is
disabled ioapic and pci-msi become direct childs of the vector
domain.
In hindsight we should have done that years ago, but in hindsight
we always know better :)
- Support for generic MSI interrupt domain handling
We have more and more non PCI related MSI interrupts, so providing
a generic infrastructure for this is better than having all
affected architectures implementing their own private hacks.
- Support for PCI-MSI interrupt domain handling, based on the generic
MSI support.
This part carries the pci/msi branch from Bjorn Helgaas pci tree to
avoid a massive conflict. The PCI/MSI parts are acked by Bjorn.
I have two more branches on top of this. The full conversion of x86
to hierarchical domains and a partial conversion of arm/gic"
* 'irq-irqdomain-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
genirq: Move irq_chip_write_msi_msg() helper to core
PCI/MSI: Allow an msi_controller to be associated to an irq domain
PCI/MSI: Provide mechanism to alloc/free MSI/MSIX interrupt from irqdomain
PCI/MSI: Enhance core to support hierarchy irqdomain
PCI/MSI: Move cached entry functions to irq core
genirq: Provide default callbacks for msi_domain_ops
genirq: Introduce msi_domain_alloc/free_irqs()
asm-generic: Add msi.h
genirq: Add generic msi irq domain support
genirq: Introduce callback irq_chip.irq_write_msi_msg
genirq: Work around __irq_set_handler vs stacked domains ordering issues
irqdomain: Introduce helper function irq_domain_add_hierarchy()
irqdomain: Implement a method to automatically call parent domains alloc/free
genirq: Introduce helper irq_domain_set_info() to reduce duplicated code
genirq: Split out flow handler typedefs into seperate header file
genirq: Add IRQ_SET_MASK_OK_DONE to support stacked irqchip
genirq: Introduce irq_chip.irq_compose_msi_msg() to support stacked irqchip
genirq: Add more helper functions to support stacked irq_chip
genirq: Introduce helper functions to support stacked irq_chip
irqdomain: Do irq_find_mapping and set_type for hierarchy irqdomain in case OF
...
paravirt_enabled has the following effects:
- Disables the F00F bug workaround warning. There is no F00F bug
workaround any more because Linux's standard IDT handling already
works around the F00F bug, but the warning still exists. This
is only cosmetic, and, in any event, there is no such thing as
KVM on a CPU with the F00F bug.
- Disables 32-bit APM BIOS detection. On a KVM paravirt system,
there should be no APM BIOS anyway.
- Disables tboot. I think that the tboot code should check the
CPUID hypervisor bit directly if it matters.
- paravirt_enabled disables espfix32. espfix32 should *not* be
disabled under KVM paravirt.
The last point is the purpose of this patch. It fixes a leak of the
high 16 bits of the kernel stack address on 32-bit KVM paravirt
guests. Fixes CVE-2014-8134.
Cc: stable@vger.kernel.org
Suggested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I'm such a moron! The simple solution of saving the BSP patch
for use on resume was too simple (and wrong!), hint:
sizeof(struct microcode_intel).
What needs to be done instead is to fish out the microcode patch
we have stashed previously and apply that on the BSP in case the
late loader hasn't been utilized.
So do that instead.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141208110820.GB20057@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull leftover perf fixes from Ingo Molnar:
"Two perf fixes left over from the previous cycle"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf session: Do not fail on processing out of order event
x86/asm/traps: Disable tracing and kprobes in fixup_bad_iret and sync_regs
Pull perf events update from Ingo Molnar:
"On the kernel side there's few changes, the one that stands out is
PEBS machine state sampling support on x86, by Stephane Eranian.
On the tooling side:
User visible tooling changes:
- Don't open the DWARF info multiple times, keeping instead a dwfl
handle in struct dso, greatly speeding up 'perf report' on powerpc.
(Sukadev Bhattiprolu)
- Introduce PARSE_OPT_DISABLED option flag and use it to avoid
showing undersired options in tools that provides frontends to
'perf record', like sched, kvm, etc (Namhyung Kim)
- Fallback to kallsyms when using the minimal 'ELF' loader (Arnaldo
Carvalho de Melo)
- Fix annotation with kcore (Adrian Hunter)
- Support source line numbers in annotate using a hotkey (Andi Kleen)
- Callchain improvements including:
* Enable printing the srcline in the history
* Make get_srcline fall back to sym+offset (Andi Kleen)
- TUI hist_entry browser fixes, including showing missing overhead
value for first level callchain. Detected comparing the output of
--stdio/--gui (that matched) with --tui, that had this problem.
(Namhyung Kim)
- Support handling complete branch stacks as histograms (Andi Kleen)
Tooling infrastructure changes:
- Prep work for supporting per-pkg and snapshot counters in 'perf
stat' (Jiri Olsa)
- 'perf stat' refactorings, moving stuff from it to evsel.c to use in
per-pkg/snapshot format changes (Jiri Olsa)
- Add per-pkg format file parsing (Matt Fleming)
- Clean up libelf feature support code (Namhyung Kim)
- Add gzip decompression support for kernel modules (Namhyung Kim)
- More prep patches for Intel PT, including a a thread stack and more
stuff made available via the database export mechanism (Adrian
Hunter)
- More Intel PT work, including a facility to export sample data
(comms, threads, symbol names, etc) in a database friendly way,
with an script to use this to create a postgresql database.
(Adrian Hunter)
- Make sure that thread->mg->machine points to the machine where the
thread exists (it was being set only for the kmaps kernel modules
case, do it as well for the mmaps) and use it to shorten function
signatures (Arnaldo Carvalho de Melo)
... and lots of other fixes and smaller improvements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (91 commits)
perf report: In branch stack mode use address history sorting
perf report: Add --branch-history option
perf callchain: Support handling complete branch stacks as histograms
perf stat: Add support for snapshot counters
perf stat: Add support for per-pkg counters
perf tools: Remove perf_evsel__read interface
perf stat: Use read_counter in read_counter_aggr
perf stat: Make read_counter work over the thread dimension
perf stat: Use perf_evsel__read_cb in read_counter
perf tools: Add snapshot format file parsing
perf tools: Add per-pkg format file parsing
perf evsel: Introduce perf_evsel__read_cb function
perf evsel: Introduce perf_counts_values__scale function
perf evsel: Introduce perf_evsel__compute_deltas function
perf tools: Allow to force redirect pr_debug to stderr.
perf tools: Fix segfault due to invalid kernel dso access
perf callchain: Make get_srcline fall back to sym+offset
perf symbols: Move bfd_demangle stubbing to its only user
perf callchain: Enable printing the srcline in the history
perf tools: Collapse first level callchain entry if it has sibling
...
* Enablement for AMD F15h models 0x60 CPUs. Most notably DDR4 RAM
support. Out of tree stuff is
arch/x86/kernel/amd_nb.c | 2 +
include/linux/pci_ids.h | 2 +
adding the required PCI IDs. From Aravind Gopalakrishnan.
* Enable amd64_edac for 32-bit due to popular demand. From Tomasz Pala.
* Convert the AMD MCE injection module to debugfs, where it belongs.
* Misc EDAC cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUhZbcAAoJEBLB8Bhh3lVKd5kQAK77qsB4ebpke1rEBerQl9jQ
YCVrByCKu7QTRt/xvlqU9Vyp7EvcnpNxFbRCCqzIpBcJjre9v17QVRA2/zFS0q81
QRDTOWf9uhMWbssI2Zu1hbjDNMWYiEb9+aeZHjScVtkzPDmsgYuKGdWfTSLw9dkS
AG/UUZ3ojwyc2dK3i0W3pCjakKYLUsCmijyTZBfb37+u4rRGuAgrQ9G8fBn2lL+l
huptgV2BsTCQqdL554zTs64Yt912PnidsJWYCPCjMubgEPSeNcWRzTTBYDUf9NIn
RxFXYHnOQxetPSQqfLVXlX3V/cGNQg0yEXFZ9S0tCt5uLNbbN/D8Uumtst0rq9x3
XkJ/EGHXBFP+KwHdV/i9j6OYM5rq4z+4ql4OqbWzsvPrEDbh/4p5gRbhqd1Hhy9U
zgHJjVPpD/l2t82Tpz0jIOscQruZ6VqGMDSYo3LiLnNt724pcrmr3DiN9mc6ljzJ
rsNsemMH0IoH8KbBHKGtMLnBVO6HbnrtC6iKFfocNBisvo1PKKzn9s2O1pdjmsCs
jHwz5njoM7Ki/ygkJhbKiSDMXPs67eggwoGIGzpNMoY4RWxrcQzYE9yKfKzRNxET
Qb3xUwDWDyL8ErwHtL3xMxGwyfkhb+SZdMd5aKYA5Rdbf+TN8P6iAv05nrnfpkyk
lPTv5o9EQYvr8/Tc9FZW
=ULmb
-----END PGP SIGNATURE-----
Merge tag 'edac_for_3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
Pull EDAC updates from Borislav Petkov:
"EDAC updates all over the place:
- Enablement for AMD F15h models 0x60 CPUs. Most notably DDR4 RAM
support. Out of tree stuff is adding the required PCI IDs. From
Aravind Gopalakrishnan.
- Enable amd64_edac for 32-bit due to popular demand. From Tomasz
Pala.
- Convert the AMD MCE injection module to debugfs, where it belongs.
- Misc EDAC cleanups"
* tag 'edac_for_3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp:
EDAC, MCE, AMD: Correct formatting of decoded text
EDAC, mce_amd_inj: Add an injector function
EDAC, mce_amd_inj: Add hw-injection attributes
EDAC, mce_amd_inj: Enable direct writes to MCE MSRs
EDAC, mce_amd_inj: Convert mce_amd_inj module to debugfs
EDAC: Delete unnecessary check before calling pci_dev_put()
EDAC, pci_sysfs: remove unneccessary ifdef around entire file
ghes_edac: Use snprintf() to silence a static checker warning
amd64_edac: Build module on x86-32
EDAC, MCE, AMD: Add decoding table for MC6 xec
amd64_edac: Add F15h M60h support
{mv64x60,ppc4xx}_edac,: Remove deprecated IRQF_DISABLED
EDAC: Sync memory types and names
EDAC: Add DDR3 LRDIMM entries to edac_mem_types
x86, amd_nb: Add device IDs to NB tables for F15h M60h
pci_ids: Add PCI device IDs for F15h M60h
* pm-cpufreq: (21 commits)
intel_pstate: skip this driver if Sun server has _PPC method
cpufreq: arm_big_little: free OPP table created during ->init()
imx6q: free OPP table created during ->init()
exynos5440: free OPP table created during ->init()
cpufreq-dt: free OPP table created during ->init()
cpufreq-dt: register cooling device from ->ready() callback
cpufreq: Introduce ->ready() callback for cpufreq drivers
cpufreq-dt: pass 'policy->related_cpus' to of_cpufreq_cooling_register()
cpufreq: Fix formatting issues in 'struct cpufreq_driver'
cpufreq: pxa2xx: Add Kconfig entry
cpufreq: Ref the policy object sooner
cpufreq: Kconfig: Remove architecture specific menu entries
cpufreq: pcc: Enable autoload of pcc-cpufreq for ACPI processors
intel_pstate: Add CPUID for BDW-H CPU
intel_pstate: Add support for HWP
x86: Add support for Intel HWP feature detection.
cpufreq: respect the min/max settings from user space
cpufreq: cpufreq-dt: Handle regulator_get_voltage() failure
cpufreq: cpufreq-dt: Improve debug about matching OPP
cpufreq: Loongson1: Add cpufreq driver for Loongson1B
...
* pm-cpuidle:
cpuidle: add MAINTAINERS entry for ARM Exynos cpuidle driver
drivers: cpuidle: Remove cpuidle-arm64 duplicate error messages
drivers: cpuidle: Add idle-state-name description to ARM idle states
drivers: cpuidle: Add status property to ARM idle states
cpuidle: Invert CPUIDLE_FLAG_TIME_VALID logic
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUhNLZAAoJEHm+PkMAQRiGAEcH/iclYDW7k2GKemMqboy+Ohmh
+ELbQothNhlGZlS1wWdD69LBiiXkkQ+ufVYFh/hC0oy0gUdfPMt5t+bOHy6cjn6w
9zOcACtpDKnqbOwRqXZjZgNmIabk7lRjbn7GK4GQqpIaW4oO0FWcT91FFhtGSPDa
tjtmGRqDmbNsqfzr18h0WPEpUZmT6MxIdv17AYDliPB1MaaRuAv1Kss05TJrXdfL
Oucv+C0uwnybD9UWAz6pLJ3H/HR9VJFdkaJ4Y0pbCHAuxdd1+swoTpicluHlsJA1
EkK5iWQRMpcmGwKvB0unCAQljNpaJiq4/Tlmmv8JlYpMlmIiVLT0D8BZx5q05QQ=
=oGNw
-----END PGP SIGNATURE-----
Merge tag 'v3.18' into drm-next
Linux 3.18
Backmerge Linus tree into -next as we had conflicts in i915/radeon/nouveau,
and everyone was solving them individually.
* tag 'v3.18': (57 commits)
Linux 3.18
watchdog: s3c2410_wdt: Fix the mask bit offset for Exynos7
uapi: fix to export linux/vm_sockets.h
i2c: cadence: Set the hardware time-out register to maximum value
i2c: davinci: generate STP always when NACK is received
ahci: disable MSI on SAMSUNG 0xa800 SSD
context_tracking: Restore previous state in schedule_user
slab: fix nodeid bounds check for non-contiguous node IDs
lib/genalloc.c: export devm_gen_pool_create() for modules
mm: fix anon_vma_clone() error treatment
mm: fix swapoff hang after page migration and fork
fat: fix oops on corrupted vfat fs
ipc/sem.c: fully initialize sem_array before making it visible
drivers/input/evdev.c: don't kfree() a vmalloc address
cxgb4: Fill in supported link mode for SFP modules
xen-netfront: Remove BUGs on paged skb data which crosses a page boundary
mm/vmpressure.c: fix race in vmpressure_work_fn()
mm: frontswap: invalidate expired data on a dup-store failure
mm: do not overwrite reserved pages counter at show_mem()
drm/radeon: kernel panic in drm_calc_vbltimestamp_from_scanoutpos with 3.18.0-rc6
...
Conflicts:
drivers/gpu/drm/i915/intel_display.c
drivers/gpu/drm/nouveau/nouveau_drm.c
drivers/gpu/drm/radeon/radeon_cs.c
Normally, we do reapply microcode on resume. However, in the cases where
that microcode comes from the early loader and the late loader hasn't
been utilized yet, there's no easy way for us to go and apply the patch
applied during boot by the early loader.
Thus, reuse the patch stashed by the early loader for the BSP.
Signed-off-by: Borislav Petkov <bp@suse.de>
Paravirtual guests are not expected to load microcode into processors
and therefore it is not necessary to initialize microcode loading
logic.
In fact, under certain circumstances initializing this logic may cause
the guest to crash. Specifically, 32-bit kernels use __pa_nodebug()
macro which does not work in Xen (the code path that leads to this macro
happens during resume when we call mc_bp_resume()->load_ucode_ap()
->check_loader_disabled_ap())
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/1417469264-31470-1-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Pull x86 fixes from Thomas Gleixner:
"Two final fixlets for 3.18:
- Prevent microcode reload wreckage on 32bit
- Unbreak cross compilation"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, microcode: Limit the microcode reloading to 64-bit for now
x86: Use $(OBJDUMP) instead of plain objdump
get_xsave_addr is the API to access XSAVE states, and KVM would
like to use it. Export it.
Cc: stable@vger.kernel.org
Cc: x86@kernel.org
Cc: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function graph helper function prepare_ftrace_return() which does the work
to hijack the parent pointer has that parent pointer as its first parameter.
Instead, if we make it the second parameter and have ip as the first parameter
(self_addr), then it can use the %rdi from save_mcount_regs that loads it
already.
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1411262304010.3961@nanos
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The save_mcount_regs macro saves and restores the required mcount regs that
need to be saved before calling C code. It is done for all the function hook
utilities (static tracing, dynamic tracing, regs, function graph).
When frame pointers are enabled, the ftrace trampolines need to set up
frames and pointers such that a back trace (dump stack) can continue passed
them. Currently, a separate macro is used (create_frame) to do this, but
it's only done for the ftrace_caller and ftrace_reg_caller functions. It
is not done for the static tracer or function graph tracing.
Instead of having a separate macro doing the recording of the frames,
have the save_mcount_regs perform this task. This also has all tracers
saving the frame pointers when needed.
Link: http://lkml.kernel.org/r/CA+55aFwF+qCGSKdGaEgW4p6N65GZ5_XTV=1NbtWDvxnd5yYLiw@mail.gmail.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1411262304010.3961@nanos
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The macro save_mcount_regs saves regs onto the stack. But to uncouple the
amount of stack used in that macro from the users of the macro, we need
to have a define that tells all the users how much stack is used by that
macro. This way we can change the amount of stack the macro uses without
breaking its users.
Also remove some dead code that was left over from commit fdc841b58c
"ftrace: x86: Remove check of obsolete variable function_trace_stop".
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1411262304010.3961@nanos
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently save_mcount_regs is passed a "skip" parameter to know how much
stack updated the pt_regs, as it tries to keep the saved pt_regs in the
same location for all users. This is rather stupid, especially since the
part stored on the pt_regs has nothing to do with what is suppose to be
in that location.
Instead of doing that, just pass in an "added" parameter that lets that
macro know how much stack was added before it was called so that it
can get to the RIP. But the difference is that it will now offset the
pt_regs by that "added" count. The caller now needs to take care of
the offset of the pt_regs.
This will make it easier to simplify the code later.
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1411262304010.3961@nanos
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The name MCOUNT_SAVE_FRAME is rather confusing as it really isn't a
function frame that is saved, but just the required mcount registers
that are needed to be saved before C code may be called. The word
"frame" confuses it as being a function frame which it is not.
Rename MCOUNT_SAVE_FRAME and MCOUNT_RESTORE_FRAME to save_mcount_regs
and restore_mcount_regs respectively. Noticed the lower case, which
keeps it from screaming at the reviewers.
Link: http://lkml.kernel.org/r/CA+55aFwF+qCGSKdGaEgW4p6N65GZ5_XTV=1NbtWDvxnd5yYLiw@mail.gmail.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1411262304010.3961@nanos
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Linus pointed out that there were locations that did the hard coded
update of the parent and rip parameters. One of them was the static tracer
which could also use the ftrace_caller_setup to do that work. In fact,
because it did not use it, it is prone to bugs, and since the static
tracer is hardly ever used (who wants function tracing code always being
called?) it doesn't get tested very often. I only run a few "does it still
work" tests on it. But I do not run stress tests on that code. Although,
since it is never turned off, just having it on should be stressful enough.
(especially for the performance folks)
There's no reason that the static tracer can't also use ftrace_caller_setup.
Have it do so.
Link: http://lkml.kernel.org/r/CA+55aFwF+qCGSKdGaEgW4p6N65GZ5_XTV=1NbtWDvxnd5yYLiw@mail.gmail.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1411262304010.3961@nanos
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Hand down the cpu number instead, otherwise lockdep screams when doing
echo 1 > /sys/devices/system/cpu/microcode/reload.
BUG: using smp_processor_id() in preemptible [00000000] code: amd64-microcode/2470
caller is debug_smp_processor_id+0x12/0x20
CPU: 1 PID: 2470 Comm: amd64-microcode Not tainted 3.18.0-rc6+ #26
...
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1417428741-4501-1-git-send-email-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
First, there was this: https://bugzilla.kernel.org/show_bug.cgi?id=88001
The problem there was that microcode patches are not being reapplied
after suspend-to-ram. It was important to reapply them, though, because
of for example Haswell's TSX erratum which disabled TSX instructions
with a microcode patch.
A simple fix was fb86b97300 ("x86, microcode: Update BSPs microcode
on resume") but, as it is often the case, simple fixes are too
simple. This one causes 32-bit resume to fail:
https://bugzilla.kernel.org/show_bug.cgi?id=88391
Properly fixing this would require more involved changes for which it
is too late now, right before the merge window. Thus, limit this to
64-bit only temporarily.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1417353999-32236-1-git-send-email-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
These functions can be executed on the int3 stack, so kprobes
are dangerous. Tracing is probably a bad idea, too.
Fixes: b645af2d59 ("x86_64, traps: Rework bad_iret")
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: <stable@vger.kernel.org> # Backport as far back as it would apply
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/50e33d26adca60816f3ba968875801652507d0c4.1416870125.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
New updates to the ftrace generic code had ftrace_stub not always being
called when ftrace is off. This causes the static tracer to always save
and restore functions. But it also showed that when function tracing is
running, the function graph tracer can not. We should always check to see
if function graph tracing is running even if the function tracer is running
too. The function tracer code is not the only one that uses the hook to
function mcount.
Cc: Markos Chandras <Markos.Chandras@imgtec.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Merge x86-64 iret fixes from Andy Lutomirski:
"This addresses the following issues:
- an unrecoverable double-fault triggerable with modify_ldt.
- invalid stack usage in espfix64 failed IRET recovery from IST
context.
- invalid stack usage in non-espfix64 failed IRET recovery from IST
context.
It also makes a good but IMO scary change: non-espfix64 failed IRET
will now report the correct error. Hopefully nothing depended on the
old incorrect behavior, but maybe Wine will get confused in some
obscure corner case"
* emailed patches from Andy Lutomirski <luto@amacapital.net>:
x86_64, traps: Rework bad_iret
x86_64, traps: Stop using IST for #SS
x86_64, traps: Fix the espfix64 #DF fixup and rewrite it in C
It's possible for iretq to userspace to fail. This can happen because
of a bad CS, SS, or RIP.
Historically, we've handled it by fixing up an exception from iretq to
land at bad_iret, which pretends that the failed iret frame was really
the hardware part of #GP(0) from userspace. To make this work, there's
an extra fixup to fudge the gs base into a usable state.
This is suboptimal because it loses the original exception. It's also
buggy because there's no guarantee that we were on the kernel stack to
begin with. For example, if the failing iret happened on return from an
NMI, then we'll end up executing general_protection on the NMI stack.
This is bad for several reasons, the most immediate of which is that
general_protection, as a non-paranoid idtentry, will try to deliver
signals and/or schedule from the wrong stack.
This patch throws out bad_iret entirely. As a replacement, it augments
the existing swapgs fudge into a full-blown iret fixup, mostly written
in C. It's should be clearer and more correct.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On a 32-bit kernel, this has no effect, since there are no IST stacks.
On a 64-bit kernel, #SS can only happen in user code, on a failed iret
to user space, a canonical violation on access via RSP or RBP, or a
genuine stack segment violation in 32-bit kernel code. The first two
cases don't need IST, and the latter two cases are unlikely fatal bugs,
and promoting them to double faults would be fine.
This fixes a bug in which the espfix64 code mishandles a stack segment
violation.
This saves 4k of memory per CPU and a tiny bit of code.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's nothing special enough about the espfix64 double fault fixup to
justify writing it in assembly. Move it to C.
This also fixes a bug: if the double fault came from an IST stack, the
old asm code would return to a partially uninitialized stack frame.
Fixes: 3891a04aaf
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The PCI/MSI irq chip callbacks mask/unmask_msi_irq have been renamed
to pci_msi_mask/unmask_irq to mark them PCI specific. Rename all usage
sites. The conversion helper functions are kept around to avoid
conflicts in next and will be removed after merging into mainline.
Coccinelle assisted conversion. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: x86@kernel.org
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Murali Karicheri <m-karicheri2@ti.com>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Mohit Kumar <mohit.kumar@st.com>
Cc: Simon Horman <horms@verge.net.au>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: Yijing Wang <wangyijing@huawei.com>
Rename write_msi_msg() to pci_write_msi_msg() to mark it as PCI
specific.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Yijing Wang <wangyijing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 fixes from Thomas Gleixner:
"Misc fixes:
- gold linker build fix
- noxsave command line parsing fix
- bugfix for NX setup
- microcode resume path bug fix
- _TIF_NOHZ versus TIF_NOHZ bugfix as discussed in the mysterious
lockup thread"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, syscall: Fix _TIF_NOHZ handling in syscall_trace_enter_phase1
x86, kaslr: Handle Gold linker for finding bss/brk
x86, mm: Set NX across entire PMD at boot
x86, microcode: Update BSPs microcode on resume
x86: Require exact match for 'noxsave' command line option
Pull perf fixes from Ingo Molnar:
"Misc fixes: two Intel uncore driver fixes, a CPU-hotplug fix and a
build dependencies fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix boot crash on SBOX PMU on Haswell-EP
perf/x86/intel/uncore: Fix IRP uncore register offsets on Haswell EP
perf: Fix corruption of sibling list with hotplug
perf/x86: Fix embarrasing typo
TIF_NOHZ is 19 (i.e. _TIF_SYSCALL_TRACE | _TIF_NOTIFY_RESUME |
_TIF_SINGLESTEP), not (1<<19).
This code is involved in Dave's trinity lockup, but I don't see why
it would cause any of the problems he's seeing, except inadvertently
by causing a different path through entry_64.S's syscall handling.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/a6cd3b60a3f53afb6e1c8081b0ec30ff19003dd7.1416434075.git.luto@amacapital.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Recover original IP register if the pre_handler doesn't change it.
Since current kprobes doesn't expect that another ftrace handler
may change regs->ip, it sets kprobe.addr + MCOUNT_INSN_SIZE to
regs->ip and returns to ftrace.
This seems wrong behavior since kprobes can recover regs->ip
and safely pass it to another handler.
This adds code which recovers original regs->ip passed from
ftrace right before returning to ftrace, so that another ftrace
user can change regs->ip.
Link: http://lkml.kernel.org/r/20141009130106.4698.26362.stgit@kbuild-f20.novalocal
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When trigger_all_cpu_backtrace() is called on x86, it will trigger an
NMI on each CPU and call show_regs(). But this can lead to a hard lock
up if the NMI comes in on another printk().
In order to avoid this, when the NMI triggers, it switches the printk
routine for that CPU to call a NMI safe printk function that records the
printk in a per_cpu seq_buf descriptor. After all NMIs have finished
recording its data, the seq_bufs are printed in a safe context.
Link: http://lkml.kernel.org/p/20140619213952.360076309@goodmis.org
Link: http://lkml.kernel.org/r/20141115050605.055232587@goodmis.org
Tested-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Stack traces that happen from function tracing check if the address
on the stack is a __kernel_text_address(). That is, is the address
kernel code. This calls core_kernel_text() which returns true
if the address is part of the builtin kernel code. It also calls
is_module_text_address() which returns true if the address belongs
to module code.
But what is missing is ftrace dynamically allocated trampolines.
These trampolines are allocated for individual ftrace_ops that
call the ftrace_ops callback functions directly. But if they do a
stack trace, the code checking the stack wont detect them as they
are neither core kernel code nor module address space.
Adding another field to ftrace_ops that also stores the size of
the trampoline assigned to it we can create a new function called
is_ftrace_trampoline() that returns true if the address is a
dynamically allocate ftrace trampoline. Note, it ignores trampolines
that are not dynamically allocated as they will return true with
the core_kernel_text() function.
Link: http://lkml.kernel.org/r/20141119034829.497125839@goodmis.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When CONFIG_FRAME_POINTERS are enabled, it is required that the
ftrace_caller and ftrace_regs_caller trampolines set up frame pointers
otherwise a stack trace from a function call wont print the functions
that called the trampoline. This is due to a check in
__save_stack_address():
#ifdef CONFIG_FRAME_POINTER
if (!reliable)
return;
#endif
The "reliable" variable is only set if the function address is equal to
contents of the address before the address the frame pointer register
points to. If the frame pointer is not set up for the ftrace caller
then this will fail the reliable test. It will miss the function that
called the trampoline. Worse yet, if fentry is used (gcc 4.6 and
beyond), it will also miss the parent, as the fentry is called before
the stack frame is set up. That means the bp frame pointer points
to the stack of just before the parent function was called.
Link: http://lkml.kernel.org/r/20141119034829.355440340@goodmis.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: stable@vger.kernel.org # 3.7+
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Uncorrected no action required (UCNA) - is a uncorrected recoverable
machine check error that is not signaled via a machine check exception
and, instead, is reported to system software as a corrected machine
check error. UCNA errors indicate that some data in the system is
corrupted, but the data has not been consumed and the processor state
is valid and you may continue execution on this processor. UCNA errors
require no action from system software to continue execution. Note that
UCNA errors are supported by the processor only when IA32_MCG_CAP[24]
(MCG_SER_P) is set.
-- Intel SDM Volume 3B
Deferred errors are errors that cannot be corrected by hardware, but
do not cause an immediate interruption in program flow, loss of data
integrity, or corruption of processor state. These errors indicate
that data has been corrupted but not consumed. Hardware writes information
to the status and address registers in the corresponding bank that
identifies the source of the error if deferred errors are enabled for
logging. Deferred errors are not reported via machine check exceptions;
they can be seen by polling the MCi_STATUS registers.
-- AMD64 APM Volume 2
Above two items, both UCNA and Deferred errors belong to detected
errors, but they can't be corrected by hardware, and this is very
similar to Software Recoverable Action Optional (SRAO) errors.
Therefore, we can take some actions that have been used for handling
SRAO errors to handle UCNA and Deferred errors.
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Chen Yucong <slaoub@gmail.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Until now, the mce_severity mechanism can only identify the severity
of UCNA error as MCE_KEEP_SEVERITY. Meanwhile, it is not able to filter
out DEFERRED error for AMD platform.
This patch extends the mce_severity mechanism for handling
UCNA/DEFERRED error. In order to do this, the patch introduces a new
severity level - MCE_UCNA/DEFERRED_SEVERITY.
In addition, mce_severity is specific to machine check exception,
and it will check MCIP/EIPV/RIPV bits. In order to use mce_severity
mechanism in non-exception context, the patch also introduces a new
argument (is_excp) for mce_severity. `is_excp' is used to explicitly
specify the calling context of mce_severity.
Reviewed-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Chen Yucong <slaoub@gmail.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
In the situation when we apply early microcode but do *not* apply late
microcode, we fail to update the BSP's microcode on resume because we
haven't initialized the uci->mc microcode pointer. So, in order to
alleviate that, we go and dig out the stashed microcode patch during
early boot. It is basically the same thing that is done on the APs early
during boot so do that too here.
Tested-by: alex.schnaidt@gmail.com
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=88001
Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: <stable@vger.kernel.org> # v3.9
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20141118094657.GA6635@pd.tnic
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is really the meat of the MPX patch set. If there is one patch to
review in the entire series, this is the one. There is a new ABI here
and this kernel code also interacts with userspace memory in a
relatively unusual manner. (small FAQ below).
Long Description:
This patch adds two prctl() commands to provide enable or disable the
management of bounds tables in kernel, including on-demand kernel
allocation (See the patch "on-demand kernel allocation of bounds tables")
and cleanup (See the patch "cleanup unused bound tables"). Applications
do not strictly need the kernel to manage bounds tables and we expect
some applications to use MPX without taking advantage of this kernel
support. This means the kernel can not simply infer whether an application
needs bounds table management from the MPX registers. The prctl() is an
explicit signal from userspace.
PR_MPX_ENABLE_MANAGEMENT is meant to be a signal from userspace to
require kernel's help in managing bounds tables.
PR_MPX_DISABLE_MANAGEMENT is the opposite, meaning that userspace don't
want kernel's help any more. With PR_MPX_DISABLE_MANAGEMENT, the kernel
won't allocate and free bounds tables even if the CPU supports MPX.
PR_MPX_ENABLE_MANAGEMENT will fetch the base address of the bounds
directory out of a userspace register (bndcfgu) and then cache it into
a new field (->bd_addr) in the 'mm_struct'. PR_MPX_DISABLE_MANAGEMENT
will set "bd_addr" to an invalid address. Using this scheme, we can
use "bd_addr" to determine whether the management of bounds tables in
kernel is enabled.
Also, the only way to access that bndcfgu register is via an xsaves,
which can be expensive. Caching "bd_addr" like this also helps reduce
the cost of those xsaves when doing table cleanup at munmap() time.
Unfortunately, we can not apply this optimization to #BR fault time
because we need an xsave to get the value of BNDSTATUS.
==== Why does the hardware even have these Bounds Tables? ====
MPX only has 4 hardware registers for storing bounds information.
If MPX-enabled code needs more than these 4 registers, it needs to
spill them somewhere. It has two special instructions for this
which allow the bounds to be moved between the bounds registers
and some new "bounds tables".
They are similar conceptually to a page fault and will be raised by
the MPX hardware during both bounds violations or when the tables
are not present. This patch handles those #BR exceptions for
not-present tables by carving the space out of the normal processes
address space (essentially calling the new mmap() interface indroduced
earlier in this patch set.) and then pointing the bounds-directory
over to it.
The tables *need* to be accessed and controlled by userspace because
the instructions for moving bounds in and out of them are extremely
frequent. They potentially happen every time a register pointing to
memory is dereferenced. Any direct kernel involvement (like a syscall)
to access the tables would obviously destroy performance.
==== Why not do this in userspace? ====
This patch is obviously doing this allocation in the kernel.
However, MPX does not strictly *require* anything in the kernel.
It can theoretically be done completely from userspace. Here are
a few ways this *could* be done. I don't think any of them are
practical in the real-world, but here they are.
Q: Can virtual space simply be reserved for the bounds tables so
that we never have to allocate them?
A: As noted earlier, these tables are *HUGE*. An X-GB virtual
area needs 4*X GB of virtual space, plus 2GB for the bounds
directory. If we were to preallocate them for the 128TB of
user virtual address space, we would need to reserve 512TB+2GB,
which is larger than the entire virtual address space today.
This means they can not be reserved ahead of time. Also, a
single process's pre-popualated bounds directory consumes 2GB
of virtual *AND* physical memory. IOW, it's completely
infeasible to prepopulate bounds directories.
Q: Can we preallocate bounds table space at the same time memory
is allocated which might contain pointers that might eventually
need bounds tables?
A: This would work if we could hook the site of each and every
memory allocation syscall. This can be done for small,
constrained applications. But, it isn't practical at a larger
scale since a given app has no way of controlling how all the
parts of the app might allocate memory (think libraries). The
kernel is really the only place to intercept these calls.
Q: Could a bounds fault be handed to userspace and the tables
allocated there in a signal handler instead of in the kernel?
A: (thanks to tglx) mmap() is not on the list of safe async
handler functions and even if mmap() would work it still
requires locking or nasty tricks to keep track of the
allocation state there.
Having ruled out all of the userspace-only approaches for managing
bounds tables that we could think of, we create them on demand in
the kernel.
Based-on-patch-by: Qiaowei Ren <qiaowei.ren@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-mm@kvack.org
Cc: linux-mips@linux-mips.org
Cc: Dave Hansen <dave@sr71.net>
Link: http://lkml.kernel.org/r/20141114151829.AD4310DE@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The current x86 instruction decoder steps along through the
instruction stream but always ensures that it never steps farther
than the largest possible instruction size (MAX_INSN_SIZE).
The MPX code is now going to be doing some decoding of userspace
instructions. We copy those from userspace in to the kernel and
they're obviously completely untrusted coming from userspace. In
addition to the constraint that instructions can only be so long,
we also have to be aware of how long the buffer is that came in
from userspace. This _looks_ to be similar to what the perf and
kprobes is doing, but it's unclear to me whether they are
affected.
The whole reason we need this is that it is perfectly valid to be
executing an instruction within MAX_INSN_SIZE bytes of an
unreadable page. We should be able to gracefully handle short
reads in those cases.
This adds support to the decoder to record how long the buffer
being decoded is and to refuse to "validate" the instruction if
we would have gone over the end of the buffer to decode it.
The kprobes code probably needs to be looked at here a bit more
carefully. This patch still respects the MAX_INSN_SIZE limit
there but the kprobes code does look like it might be able to
be a bit more strict than it currently is.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: x86@kernel.org
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20141114153957.E6B01535@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We have some very similarly named command-line options:
arch/x86/kernel/cpu/common.c:__setup("noxsave", x86_xsave_setup);
arch/x86/kernel/cpu/common.c:__setup("noxsaveopt", x86_xsaveopt_setup);
arch/x86/kernel/cpu/common.c:__setup("noxsaves", x86_xsaves_setup);
__setup() is designed to match options that take arguments, like
"foo=bar" where you would have:
__setup("foo", x86_foo_func...);
The problem is that "noxsave" actually _matches_ "noxsaves" in
the same way that "foo" matches "foo=bar". If you boot an old
kernel that does not know about "noxsaves" with "noxsaves" on the
command line, it will interpret the argument as "noxsave", which
is not what you want at all.
This makes the "noxsave" handler only return success when it finds
an *exact* match.
[ tglx: We really need to make __setup() more robust. ]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: x86@kernel.org
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20141111220133.FE053984@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
PEBS can capture machine state regs at retiremnt of the sampled
instructions. When precise sampling is enabled on an event, PEBS
is used, so substitute the interrupted state with the PEBS state.
Note that not all registers are captured by PEBS. Those missing
are replaced by the interrupt state counter-parts.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1411559322-16548-3-git-send-email-eranian@google.com
Cc: cebbert.lkml@gmail.com
Cc: jolsa@redhat.com
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Disallow setting inv/cmask/etc. flags for all PEBS events
on these CPUs, except for the UOPS_RETIRED.* events on Nehalem/Westmere,
which are needed for cycles:p. This avoids an undefined situation
strongly discouraged by the Intle SDM. The PLD_* events were already
covered. This follows the earlier changes for Sandy Bridge and alter.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Link: http://lkml.kernel.org/r/1411569288-5627-3-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
My earlier commit:
86a04461a9 ("perf/x86: Revamp PEBS event selection")
made nearly all PEBS on Sandy/IvyBridge/Haswell to reject non zero flags.
However this wasn't done for the INST_RETIRED.PREC_DIST event
because no suitable macro existed. Now that we have
INTEL_FLAGS_UEVENT_CONSTRAINT enforce zero flags for
INST_RETIRED.PREC_DIST too.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Link: http://lkml.kernel.org/r/1411569288-5627-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a FLAGS_UEVENT_CONSTRAINT macro that allows us to
match on event+umask, and in additional all flags.
This is needed to ensure the INV and CMASK fields
are zero for specific events, as this can cause undefined
behavior.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Cc: Mark Davies <junk@eslaf.co.uk>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/r/1411569288-5627-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add scaling to MB/s to the memory controller read/write
events for Sandy/IvyBridge/Haswell-EP similar to how the client
does. This makes the events easier to use from the
standard perf tool.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Link: http://lkml.kernel.org/r/1415062828-19759-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There were several reports that on some systems writing the SBOX0 PMU
initialization MSR would #GP at boot. This did not happen on all
systems -- my two test systems booted fine.
Writing the three initialization bits bit-by-bit seems to avoid the
problem. So add a special callback to do just that.
This replaces an earlier patch that disabled the SBOX.
Reported-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reported-and-Tested-by: Patrick Lu <patrick.lu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Link: http://lkml.kernel.org/r/1415062828-19759-4-git-send-email-andi@firstfloor.org
[ Fixed a whitespace error and added attribution tags that were left out inexplicably. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The counter register offsets for the IRP box PMU for Haswell-EP
were incorrect. The offsets actually changed over IvyBridge EP.
Fix them to the correct values. For this we need to fork the read
function from the IVB and use an own counter array.
Tested-by: patrick.lu@intel.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Link: http://lkml.kernel.org/r/1415062828-19759-3-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The only place where the time is invalid is when the ACPI_CSTATE_FFH entry
method is not set. Otherwise for all the drivers, the time can be correctly
measured.
Instead of duplicating the CPUIDLE_FLAG_TIME_VALID flag in all the drivers
for all the states, just invert the logic by replacing it by the flag
CPUIDLE_FLAG_TIME_INVALID, hence we can set this flag only for the acpi idle
driver, remove the former flag from all the drivers and invert the logic with
this flag in the different governor.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
New Fam15h models carry extra feature bits and extend
the MSR register space for IBS ops. Adding them here.
While at it, add functionality to read IbsBrTarget and
OpData4 depending on their availability if user wants a
PERF_SAMPLE_RAW.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <paulus@samba.org>
Cc: <acme@kernel.org>
Link: http://lkml.kernel.org/r/1415651066-13523-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUX/DqAAoJEHm+PkMAQRiGLtQH/iAt3fRHlYDXjaJian/KG1Cb
wVP0I+HWZmvVmmd0PzyaxCZLgRNwdmmYHEH4QLy2JwZ3jZfFHlxhy+hDWCgz+67t
bIzkLs0Pf1T4kJ2+r8qW2kBEz9PWJHGTQw7NTqZ++Ts3rPptBA6Fg4mEJ6fQigXy
qRIY68DpipUkXV9BWBWijnTmrvP5tt7JtPzBr4DC8frMjvWct8+XwYhc2k2tEv2j
LwLYb1OW6PUpPv2BQBfWjqqH77vYNQVhJwuwGcDe2YZdI0UFkDheL24+RbbPcZ4f
OnrLjJSSgzv6lBWkAaXZK7/WJ/JZbXxEqHzWZQ3xXoQov97bm7lEYJqqi5gDasQ=
=6Qpa
-----END PGP SIGNATURE-----
Merge tag 'v3.18-rc4' into x86/cleanups, to refresh the tree before pulling new changes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUX/DqAAoJEHm+PkMAQRiGLtQH/iAt3fRHlYDXjaJian/KG1Cb
wVP0I+HWZmvVmmd0PzyaxCZLgRNwdmmYHEH4QLy2JwZ3jZfFHlxhy+hDWCgz+67t
bIzkLs0Pf1T4kJ2+r8qW2kBEz9PWJHGTQw7NTqZ++Ts3rPptBA6Fg4mEJ6fQigXy
qRIY68DpipUkXV9BWBWijnTmrvP5tt7JtPzBr4DC8frMjvWct8+XwYhc2k2tEv2j
LwLYb1OW6PUpPv2BQBfWjqqH77vYNQVhJwuwGcDe2YZdI0UFkDheL24+RbbPcZ4f
OnrLjJSSgzv6lBWkAaXZK7/WJ/JZbXxEqHzWZQ3xXoQov97bm7lEYJqqi5gDasQ=
=6Qpa
-----END PGP SIGNATURE-----
Merge tag 'v3.18-rc4' into drm-next
backmerge to get vmwgfx locking changes into next as the
conflict with per-plane locking.
Add support of Hardware Managed Performance States (HWP) described in Volume 3
section 14.4 of the SDM.
One bit CPUID.06H:EAX[bit 7] expresses the presence of the HWP feature on
the processor. The remaining bits CPUID.06H:EAX[bit 8-11] denote the
presense of various HWP features.
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The problem fixed by 0e4ccb1505 ("PCI: Add x86_msi.msi_mask_irq() and
msix_mask_irq()") has been fixed in a simpler way by a previous commit
("PCI/MSI: Add pci_msi_ignore_mask to prevent writes to MSI/MSI-X Mask
Bits").
The msi_mask_irq() and msix_mask_irq() x86_msi_ops added by 0e4ccb1505
are no longer needed, so revert the commit.
default_msi_mask_irq() and default_msix_mask_irq() were added by
0e4ccb1505 and are still used by s390, so keep them for now.
[bhelgaas: changelog]
Signed-off-by: Yijing Wang <wangyijing@huawei.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: David Vrabel <david.vrabel@citrix.com>
CC: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
CC: xen-devel@lists.xenproject.org
With the introduction of the dynamic trampolines, it is useful that if
things go wrong that ftrace_bug() produces more information about what
the current state is. This can help debug issues that may arise.
Ftrace has lots of checks to make sure that the state of the system it
touchs is exactly what it expects it to be. When it detects an abnormality
it calls ftrace_bug() and disables itself to prevent any further damage.
It is crucial that ftrace_bug() produces sufficient information that
can be used to debug the situation.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When the static ftrace_ops (like function tracer) enables tracing, and it
is the only callback that is referencing a function, a trampoline is
dynamically allocated to the function that calls the callback directly
instead of calling a loop function that iterates over all the registered
ftrace ops (if more than one ops is registered).
But when it comes to dynamically allocated ftrace_ops, where they may be
freed, on a CONFIG_PREEMPT kernel there's no way to know when it is safe
to free the trampoline. If a task was preempted while executing on the
trampoline, there's currently no way to know when it will be off that
trampoline.
But this is not true when it comes to !CONFIG_PREEMPT. The current method
of calling schedule_on_each_cpu() will force tasks off the trampoline,
becaues they can not schedule while on it (kernel preemption is not
configured). That means it is safe to free a dynamically allocated
ftrace ops trampoline when CONFIG_PREEMPT is not configured.
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Previous versions of the espfix had a single function which did setup
the pagetables. It was later split into BSP and AP version. Drop unused
leftovers after that split.
Signed-off-by: Borislav Petkov <bp@suse.de>
* access the dis_ucode_ldr chicken bit properly
* fix patch stashing on AMD on 32-bit
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUYNWUAAoJEBLB8Bhh3lVKU1sQAKIj1LVBtNAeaMaC9O8AUkUN
SWfskslf0uU2OS4RvV0QjDbr/chivIKMs7rbeMb521lHqWULRV/ZSR0kReB1JL45
yF7Dnz/YZX4VXx7O1lUSBhczN+Xp2jlPGuaeV1Q7iE0S1Focwxe8B24n6ye3dyto
o3dOH9tSna1U5KZqzHSaXWI4LJg3VrVNmf70IbYQFYyINHEtxI3oEtRWUlfFBA6C
+RbA3cUksBhYkNLfpkoA9o9ODbdSh5oSNkKFV8R26GCYw+pBQp27FhSECaEDEYIe
sdMTLgQd3ZWo5zh2zm3U12j8hf0hsfz4TjpDuozXmBlHRJSi/cLbFyEUOAbaCHpQ
Coaxgs8iiGcFVcZnMGmis9WGM41Q4O3UyxYVVpVEyMYLcrOxysKB0j1L2ycMGHV1
YHVL6Ex2MYxxqbK6NoC2ZK0OWWm1KNl4O2NAYsT4ICBxsDyxc9JzA6vidKM7VBU6
VYtOo21fYYbDgxogF6N/C95PA6nRxCm5coJ6X2QENg9DWSQHWkQ/q4Jp3yTrW4Dn
h/vY+Y5FkmVGoPBITg6BjtG9Sl3wrsqpIz2umWEeRmNCbcQm+KNQWSctvzzmOWDW
yYHyPQUgwxVX5qK5VVrTEvtDBn7E0gLEnwJLy4AdwkHf7YESxwbnYv+xXkiAubLH
dDlDNEEv1Fi3wzwc4/6g
=BamU
-----END PGP SIGNATURE-----
Merge tag 'microcode_fixes_for_3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp into x86/urgent
Pull two fixes for early microcode loader on 32-bit from Borislav Petkov:
- access the dis_ucode_ldr chicken bit properly
- fix patch stashing on AMD on 32-bit
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Save the patch while we're running on the BSP instead of later, before
the initrd has been jettisoned. More importantly, on 32-bit we need to
access the physical address instead of the virtual.
This way we actually do find it on the APs instead of having to go
through the initrd each time.
Tested-by: Richard Hendershot <rshendershot@mchsi.com>
Fixes: 5335ba5cf4 ("x86, microcode, AMD: Fix early ucode loading")
Cc: <stable@vger.kernel.org> # v3.13+
Signed-off-by: Borislav Petkov <bp@suse.de>
Commit 2ed53c0d6c ("x86/smpboot: Speed up suspend/resume by
avoiding 100ms sleep for CPU offline during S3") introduced
completions to CPU offlining process. These completions are not
initialized on Xen kernels causing a panic in
play_dead_common().
Move handling of die_complete into common routines to make them
available to Xen guests.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Cc: tianyu.lan@intel.com
Cc: konrad.wilk@oracle.com
Cc: xen-devel@lists.xenproject.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414770572-7950-1-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The vsyscall emulation code sets orig_ax for seccomp's benefit,
but it forgot to set it back.
I'm not sure that this is observable at all, but it could cause
confusion to various /proc or ptrace users, and it's possible
that it could cause minor artifacts if a signal were to be
delivered on return from vsyscall emulation.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/cdc6a564517a4df09235572ee5f530ccdcf933f7.1415144089.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many sysfs *_show function use cpu{list,mask}_scnprintf to copy cpumap
to the buffer aligned to PAGE_SIZE, append '\n' and '\0' to return null
terminated buffer with newline.
This patch creates a new helper function cpumap_print_to_pagebuf in
cpumask.h using newly added bitmap_print_to_pagebuf and consolidates
most of those sysfs functions using the new helper function.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Suggested-by: Stephen Boyd <sboyd@codeaurora.org>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: x86@kernel.org
Cc: linux-acpi@vger.kernel.org
Cc: linux-pci@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>