Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA
6dVh26uchcEQLN/XqUDt
=x306
-----END PGP SIGNATURE-----
Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
We need to avoid calling reset after detection because the next
commit adds freesync properties on the atomic_state which are set
during detection. Calling reset after this clears them.
The easiest way to accomplish this right now is to call ->reset on
the connector right after creation but before detection. To stay
consistent call ->reset on every other object as well after creation.
v2: Provide better reason for this change in commit msg.
Signed-off-by: Harry Wentland <harry.wentland@amd.com>
Reviewed-by: Roman Li <Roman.Li@amd.com>
Acked-by: Harry Wentland <harry.wentland@amd.com>
Reviewed-by: Andrey Grodzovsky <andrey.grodzovsky@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
No need for multiple labels as kfree will always do a NULL check
before freeing the memory.
Signed-off-by: Harry Wentland <harry.wentland@amd.com>
Reviewed-by: Bhawanpreet Lakha <Bhawanpreet.Lakha@amd.com>
Reviewed-by: Tony Cheng <Tony.Cheng@amd.com>
Acked-by: Harry Wentland <harry.wentland@amd.com>
Reviewed-by: Andrey Grodzovsky <andrey.grodzovsky@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
While setting cursor position in case of mpo,
input_pixel_processor is not available for underlay,
hence add check of the same to avoid null pointer
access issue.
Signed-off-by: Shirish S <shirish.s@amd.com>
Reviewed-by: Harry Wentland <harry.wentland@amd.com>
Reviewed-by: Tony Cheng <Tony.Cheng@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
crtc is dereferenced from within drm_atomic_get_new_crtc_state, so
check for NULL before initializing new_crtc_state.
Signed-off-by: Drew Davenport <ddavenport@chromium.org>
Reviewed-by: Harry Wentland <harry.wentland@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
v2: Also don't print for ERESTARTSYS or EAGAIN
v3: Best practice is to only ignore ERESTARTSYS
Signed-off-by: Harry Wentland <harry.wentland@amd.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Get rid of the constant we copied over before and just directly use the
constants from the file.
Signed-off-by: Andrew Jiang <Andrew.Jiang@amd.com>
Reviewed-by: Tony Cheng <Tony.Cheng@amd.com>
Acked-by: Harry Wentland <harry.wentland@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Just two small patches for stable to fix the driver failing to load on polaris
cards with harvested VCE or UVD blocks.
* 'drm-fixes-4.14' of git://people.freedesktop.org/~agd5f/linux:
drm/amdgpu: allow harvesting check for Polaris VCE
drm/amdgpu: return -ENOENT from uvd 6.0 early init for harvesting
Fixes init failures on Polaris cards with harvested
VCE blocks.
Signed-off-by: Leo Liu <leo.liu@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Cc: stable@vger.kernel.org
Fixes init failures on polaris cards with harvested UVD.
Signed-off-by: Leo Liu <leo.liu@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Cc: stable@vger.kernel.org
VMAs are about to not take references on the VMM they belong to, which
means more care is required when handling delayed unmapping.
Queuing it on the client workqueue ensures all pending VMA unmaps will
have completed before the VMM is destroyed.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This is already handled in the top-level gem_new() ioctl in another manner,
but this will be removed in a future commit.
Ideally we'd not need to check up-front at all, and let the VMM code handle
error checking, but there are paths in the current BO management code where
this isn't possible due to map() not always being called during BO creation,
and map() calls not being allowed to fail during buffer migration.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
If the VMA is being deleted, we don't need to explicity unmap first
anymore. The MMU code will automatically merge the operations into
a single page tree walk.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
These are the new priviledged interfaces to the VMM backends, and expose
some functionality that wasn't previously available.
It's now possible to allocate a chunk of address-space (even all of it),
without causing page tables to be allocated up-front, and then map into
it at arbitrary locations. This is the basic primitive used to support
features such as sparse mapping, or to allow userspace control over its
own address-space, or HMM (where the GPU driver isn't in control of the
address-space layout).
Rather than being tied to a subtle combination of memory object and VMA
properties, arguments that control map flags (ro, kind, etc) are passed
explicitly at map time.
The compatibility hacks to implement the old frontend on top of the new
driver backends have been replaced with something similar to implement
the old frontend's interfaces on top of the new frontend.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Adds support for:
- 64KiB/2MiB big page sizes (128KiB not supported by HW with new PT layout).
- System-memory PTs.
- LPTE "invalid" state.
- (Tegra) Use of video memory aperture.
- Sparse PDEs/PTEs.
- Additional blocklinear kinds.
- 49-bit address-space.
GP100 supports an entirely new 5-level page table layout that provides
an expanded 49-bit address-space. It also supports the layout present
on previous generations, which we've been making do with until now.
This commit implements support for the new layout, and enables it by
default.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Adds support for:
- 64KiB big page size.
- System-memory PTs.
- LPTE "invalid" state.
- (Tegra) Use of video memory aperture.
Adds support for marking LPTEs invalid, resulting in the corresponding
SPTEs being ignored, which is supposed to speed up TLB invalidates.
On The Tegra side, this will switch to using the video memory aperture
for all mappings. The HW will still target non-coherent system memory,
but this aperture needs to be selected in order to support compression.
Tegra's instmem backend somewhat cheated to get this effect previously.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This is the common code to support a rework of the VMM backends.
It adds support for more than 2 levels of page table nesting, which
is required to be able to support GP100's MMU layout.
Sparse mappings (that don't cause MMU faults when accessed) are now
supported, where the backend provides it.
Dual-PT handling had to become more sophisticated to support sparse,
but this also allows us to support an optimisation the MMU provides
on GK104 and newer.
Certain operations can now be combined into a single page tree walk
to avoid some overhead, but also enables optimsations like skipping
PTE unmap writes when the PT will be destroyed anyway.
The old backend has been hacked up to forward requests onto the new
backend, if present, so that it's possible to bisect between issues
in the backend changes vs the upcoming frontend changes.
Until the new frontend has been merged, new backends will leak BAR2
page tables on module unload. This is expected, and it's not worth
the effort of hacking around this as it doesn't effect runtime.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
To avoid wasting compression tags when using 64KiB pages, we need to
enable this so we can select between upper/lower comptagline in PTEs.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
If NV_PFB_MMU_CTRL_USE_FULL_COMP_TAG_LINE is TRUE, then the last bit of
NV_MMU_PTE_COMPTAGLINE is re-purposed to select the upper/lower half of
a compression tag when using 64KiB big pages.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
We previously required each VMM user to allocate their own page directory
and fill in the instance block themselves.
It makes more sense to handle this in a common location.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Adds support for:
- Selection of old/new-style page table layout (GP100MmuLayout=0/1).
- System-memory PDs.
New layout disabled by default for the moment, as we don't have a
backend that can handle it yet.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This is the first chunk of the new VMM code that provides the structures
needed to describe a GPU virtual address-space layout, as well as common
interfaces to handle VMM creation, and connecting instances to a VMM.
The constructor now allocates the PD itself, rather than having the user
handle that manually. This won't/can't be used until after all backends
have been ported to these interfaces, so a little bit of memory will be
wasted on Fermi and newer for a couple of commits in the series.
Compatibility has been hacked into the old code to allow each GPU backend
to be ported individually.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
GP100 "big" (which is a funny name, when it supports "even bigger") page
tables are small enough that we want to be able to suballocate them from
a larger block of memory.
This builds on the previous page table cache interfaces so that the VMM
code doesn't need to know the difference.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Builds up and maintains a small cache of each page table size in order
to reduce the frequency of expensive allocations, particularly in the
pathological case where an address range ping-pongs between allocated
and free.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Removes the need to expose internals outside of MMU, and GP100 is both
different, and a lot harder to deal with.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This will cause a subtle behaviour change on GPUs that are in mixed-memory
configurations in that VRAM in the degraded section of VRAM will no longer
be used for TTM buffer objects.
That section of VRAM is not meant to be used for displayable/compressed
surfaces, and we have no reliable way with the current interfaces to be
able to make that decision properly.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Another transition step to allow finer-grained patches transitioning to
new MMU backends.
Old backends will continue operate as before (accessing nvkm_mem::tag),
and new backends will get a reference to the tags allocated here.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Upcoming MMU changes use nvkm_memory as its basic representation of memory,
so we need to be able to allocate VRAM like this.
The code is basically identical to the current chipset-specific allocators,
minus support for compression tags (which will be handled elsewhere anyway).
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Adds support for 64-bit writes, and optimised filling of buffers with
fixed 32/64-bit values.
These will all be used by the upcoming MMU changes.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
We need to be able to prevent memory from being freed while it's still
mapped in a GPU's address-space.
Will be used by upcoming MMU changes.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Needed by VMM code to determine whether an allocation is compatible with
a given page size (ie. you can't map 4KiB system memory pages into 64KiB
GPU pages).
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Map flags (access, kind, etc) are currently defined in either the VMA,
or the memory object, which turns out to not be ideal for things like
suballocated buffers, etc.
These will become per-map flags instead, so we need to support passing
these arguments in nvkm_memory_map().
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
nvkm_memory is going to be used by the upcoming mmu rework for the basic
representation of a memory allocation, as such, this commit adds support
for comptag allocation to nvkm_memory.
This is very simple for now, in that it requires comptags for the entire
memory allocation even if only certain ranges are compressed.
Support for tracking ranges will be added at a later date.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
We're moving towards having a central place to handle comptag allocation,
and as some GPUs don't have a ram submodule (ie. Tegra), we need to move
the mm somewhere else.
It probably never belonged in ram anyways.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Different sections of VRAM may have different properties (ie. can't be used
for compression/display, can't be mapped, etc).
We currently already support this, but it's a bit magic. This change makes
it more obvious where we're allocating from.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
TTM memory allocations will be hanging off the DRM's client, but the
locking needed to do so gets really tricky with all the other use of
the DRM's object tree.
To solve this, we make the normal DRM client a child of a new master,
where the memory allocations will be done from instead.
This also solves a potential race with client creation.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
We don't really care about where the memory is, just that it's compatible
with a VMA allocated for a given page size.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Before: "imem: init completed in 299277us"
After: "imem: init completed in 11574us"
Suspend from Fedora 26 gnome desktop on GP102.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Before: "imem: suspend completed in 5540487us"
After: "imem: suspend completed in 1871526us"
Suspend from Fedora 26 gnome desktop on GP102.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
A good deal of the structures we map into here aren't accessed very often
at all, and Fedora 26 has exposed an issue where after creating a heap of
channels, BAR2 space would run out, and we'd need to make use of the slow
path while accessing important structures like page tables.
This implements an LRU on BAR2 space, which allows eviction of mappings
that aren't currently needed, to make space for other objects.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Another piece of solving the "GP100 BAR2 VMM bootstrap" puzzle.
Without doing this, we'd attempt to write PDEs for the lower page table
levels through BAR2 before BAR2 access has been fully initialised.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This is not as simple as it was for earlier GPUs, due to the need to swap
accessor functions depending on whether BAR2 is usable or not.
We were previously protected by nvkm_instobj's accessor functions keeping
an object mapped permanently, with some unclear magic that managed to hit
the slow-path where needed even if an object was marked as mapped.
That's been replaced here by reference counting maps (some objects, like
page tables can be accessed concurrently), and swapping the functions as
necessary.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This is to simplify upcoming changes. The slow-path is something that
currently occurs during bootstrap of the BAR2 VMM, while backing up an
object during suspend/resume, or when BAR2 address space runs out.
The latter is a real problem that can happen at runtime, and occurs in
Fedora 26 already (due to some change that causes a lot of channels to
be created at login), so ideally we'd prefer not to make it any slower.
We'd also like suspend/resume speed to not suffer.
Upcoming commits will solve those problems in a better way, making the
extra overhead of moving the locking here a non-issue.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
The accessor functions can change as a result of acquire()/release() calls,
and are protected by any refcounting done there.
Other functions must remain constant, as they can be called any time.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Discovered by accident while working to use BAR2 access to instmem objects
on more paths.
We've apparently been relying on luck up until now!
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
GP100's page table nests a lot more deeply than the GF100-compatible
layout we're currently using, which means our hackish-but-simple way
of dealing with BAR2 VMM teardown won't work anymore.
In order to sanely handle the chicken-and-egg (BAR2's PTs get mapped
into themselves) problem, we need prevent page tables getting mapped
back into BAR2 during the destruction of its VMM.
To do this, we simply key off the state that's now maintained by the
BAR2 init/fini functions.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Upcoming changes will remove the nvkm_vmm pointer from nvkm_vma, instead
requiring it to be explicitly specified on each operation.
It's not currently possible to get this information for BAR1 mappings,
so let's fix that ahead of time.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Will prevent spurious MMU fault interrupts if something decides to touch
BAR1 after we've unloaded the driver.
Exposed external to BAR so that INSTMEM can use it to better control the
suspend/resume fast-path access.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
If we want to be able to hit the instmem fast-path in a few trickier cases,
we need to be more flexible with when we can initialise BAR2 access.
There's probably a decent case to be made for merging BAR/INSTMEM into BUS,
but that's something to ponder another day.
Flushes have been added after the write to bind the instance block,
as later commits will reveal the need for them.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Will prevent spurious MMU fault interrupts if something decides to touch
BAR1 after we've unloaded the driver.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
BAR2 being done for practical reasons, this is just for consistency.
Flushes have been added after the write to bind the instance block,
as later commits will reveal the need for them.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
NVIDIA call it BAR2, Linux APIs treat it as BAR3 due to BAR1 being a
64-bit BAR, which I presume take two slots or something.
No actual code changes here, just to make future commits less messy.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Will already be done by MMU as a result of the PT writes that occur
during BAR2 bootstrapping.
This is likely just a left-over from the days when it was hardcoded.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
RM appears to do this really early in its initialisation, before DEVINIT.
We currently do this before BAR2 initialisation for some reason.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>