Rick reported performance regressions in bugzilla because of cpu frequency
being lower than before:
https://bugzilla.kernel.org/show_bug.cgi?id=215045
He bisected the problem to:
commit 1c35b07e6d ("sched/fair: Ensure _sum and _avg values stay consistent")
This commit forces util_sum to be synced with the new util_avg after
removing the contribution of a task and before the next periodic sync. By
doing so util_sum is rounded to its lower bound and might lost up to
LOAD_AVG_MAX-1 of accumulated contribution which has not yet been
reflected in util_avg.
Instead of always setting util_sum to the low bound of util_avg, which can
significantly lower the utilization of root cfs_rq after propagating the
change down into the hierarchy, we revert the change of util_sum and
propagate the difference.
In addition, we also check that cfs's util_sum always stays above the
lower bound for a given util_avg as it has been observed that
sched_entity's util_sum is sometimes above cfs one.
Fixes: 1c35b07e6d ("sched/fair: Ensure _sum and _avg values stay consistent")
Reported-by: Rick Yiu <rickyiu@google.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Link: https://lkml.kernel.org/r/20220111134659.24961-2-vincent.guittot@linaro.org
This commit in sched/urgent moved the cfs_rq_is_decayed() function:
a7b359fc6a: ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
and this fresh commit in sched/core modified it in the old location:
9e077b52d8: ("sched/pelt: Check that *_avg are null when *_sum are")
Merge the two variants.
Conflicts:
kernel/sched/fair.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The util_est internal UTIL_AVG_UNCHANGED flag which is used to prevent
unnecessary util_est updates uses the LSB of util_est.enqueued. It is
exposed via _task_util_est() (and task_util_est()).
Commit 92a801e5d5 ("sched/fair: Mask UTIL_AVG_UNCHANGED usages")
mentions that the LSB is lost for util_est resolution but
find_energy_efficient_cpu() checks if task_util_est() returns 0 to
return prev_cpu early.
_task_util_est() returns the max value of util_est.ewma and
util_est.enqueued or'ed w/ UTIL_AVG_UNCHANGED.
So task_util_est() returning the max of task_util() and
_task_util_est() will never return 0 under the default
SCHED_FEAT(UTIL_EST, true).
To fix this use the MSB of util_est.enqueued instead and keep the flag
util_est internal, i.e. don't export it via _task_util_est().
The maximal possible util_avg value for a task is 1024 so the MSB of
'unsigned int util_est.enqueued' isn't used to store a util value.
As a caveat the code behind the util_est_se trace point has to filter
UTIL_AVG_UNCHANGED to see the real util_est.enqueued value which should
be easy to do.
This also fixes an issue report by Xuewen Yan that util_est_update()
only used UTIL_AVG_UNCHANGED for the subtrahend of the equation:
last_enqueued_diff = ue.enqueued - (task_util() | UTIL_AVG_UNCHANGED)
Fixes: b89997aa88 sched/pelt: Fix task util_est update filtering
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Xuewen Yan <xuewen.yan@unisoc.com>
Reviewed-by: Vincent Donnefort <vincent.donnefort@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210602145808.1562603-1-dietmar.eggemann@arm.com
In preparation of playing games with rq->lock, abstract the thing
using an accessor.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.136465446@infradead.org
Fix ~42 single-word typos in scheduler code comments.
We have accumulated a few fun ones over the years. :-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-kernel@vger.kernel.org
Factorize in a single place the calculation of the divider to be used to
to compute *_avg from *_sum value
Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200612154703.23555-1-vincent.guittot@linaro.org
Extrapolating on the existing framework to track rt/dl utilization using
pelt signals, add a similar mechanism to track thermal pressure. The
difference here from rt/dl utilization tracking is that, instead of
tracking time spent by a CPU running a RT/DL task through util_avg, the
average thermal pressure is tracked through load_avg. This is because
thermal pressure signal is weighted time "delta" capacity unlike util_avg
which is binary. "delta capacity" here means delta between the actual
capacity of a CPU and the decreased capacity a CPU due to a thermal event.
In order to track average thermal pressure, a new sched_avg variable
avg_thermal is introduced. Function update_thermal_load_avg can be called
to do the periodic bookkeeping (accumulate, decay and average) of the
thermal pressure.
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-2-thara.gopinath@linaro.org
The current implementation of load tracking invariance scales the
contribution with current frequency and uarch performance (only for
utilization) of the CPU. One main result of this formula is that the
figures are capped by current capacity of CPU. Another one is that the
load_avg is not invariant because not scaled with uarch.
The util_avg of a periodic task that runs r time slots every p time slots
varies in the range :
U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p)
with U is the max util_avg value = SCHED_CAPACITY_SCALE
At a lower capacity, the range becomes:
U * C * (1-y^r')/(1-y^p) * y^i' < Utilization < U * C * (1-y^r')/(1-y^p)
with C reflecting the compute capacity ratio between current capacity and
max capacity.
so C tries to compensate changes in (1-y^r') but it can't be accurate.
Instead of scaling the contribution value of PELT algo, we should scale the
running time. The PELT signal aims to track the amount of computation of
tasks and/or rq so it seems more correct to scale the running time to
reflect the effective amount of computation done since the last update.
In order to be fully invariant, we need to apply the same amount of
running time and idle time whatever the current capacity. Because running
at lower capacity implies that the task will run longer, we have to ensure
that the same amount of idle time will be applied when system becomes idle
and no idle time has been "stolen". But reaching the maximum utilization
value (SCHED_CAPACITY_SCALE) means that the task is seen as an
always-running task whatever the capacity of the CPU (even at max compute
capacity). In this case, we can discard this "stolen" idle times which
becomes meaningless.
In order to achieve this time scaling, a new clock_pelt is created per rq.
The increase of this clock scales with current capacity when something
is running on rq and synchronizes with clock_task when rq is idle. With
this mechanism, we ensure the same running and idle time whatever the
current capacity. This also enables to simplify the pelt algorithm by
removing all references of uarch and frequency and applying the same
contribution to utilization and loads. Furthermore, the scaling is done
only once per update of clock (update_rq_clock_task()) instead of during
each update of sched_entities and cfs/rt/dl_rq of the rq like the current
implementation. This is interesting when cgroup are involved as shown in
the results below:
On a hikey (octo Arm64 platform).
Performance cpufreq governor and only shallowest c-state to remove variance
generated by those power features so we only track the impact of pelt algo.
each test runs 16 times:
./perf bench sched pipe
(higher is better)
kernel tip/sched/core + patch
ops/seconds ops/seconds diff
cgroup
root 59652(+/- 0.18%) 59876(+/- 0.24%) +0.38%
level1 55608(+/- 0.27%) 55923(+/- 0.24%) +0.57%
level2 52115(+/- 0.29%) 52564(+/- 0.22%) +0.86%
hackbench -l 1000
(lower is better)
kernel tip/sched/core + patch
duration(sec) duration(sec) diff
cgroup
root 4.453(+/- 2.37%) 4.383(+/- 2.88%) -1.57%
level1 4.859(+/- 8.50%) 4.830(+/- 7.07%) -0.60%
level2 5.063(+/- 9.83%) 4.928(+/- 9.66%) -2.66%
Then, the responsiveness of PELT is improved when CPU is not running at max
capacity with this new algorithm. I have put below some examples of
duration to reach some typical load values according to the capacity of the
CPU with current implementation and with this patch. These values has been
computed based on the geometric series and the half period value:
Util (%) max capacity half capacity(mainline) half capacity(w/ patch)
972 (95%) 138ms not reachable 276ms
486 (47.5%) 30ms 138ms 60ms
256 (25%) 13ms 32ms 26ms
On my hikey (octo Arm64 platform) with schedutil governor, the time to
reach max OPP when starting from a null utilization, decreases from 223ms
with current scale invariance down to 121ms with the new algorithm.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Create a config for enabling irq load tracking in the scheduler.
irq load tracking is useful only when irq or paravirtual time is
accounted but it's only possible with SMP for now.
Also use __maybe_unused to remove the compilation warning in
update_rq_clock_task() that has been introduced by:
2e62c4743a ("sched/fair: Remove #ifdefs from scale_rt_capacity()")
Suggested-by: Ingo Molnar <mingo@redhat.com>
Reported-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reported-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: dou_liyang@163.com
Fixes: 2e62c4743a ("sched/fair: Remove #ifdefs from scale_rt_capacity()")
Link: http://lkml.kernel.org/r/1537867062-27285-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
interrupt and steal time are the only remaining activities tracked by
rt_avg. Like for sched classes, we can use PELT to track their average
utilization of the CPU. But unlike sched class, we don't track when
entering/leaving interrupt; Instead, we take into account the time spent
under interrupt context when we update rqs' clock (rq_clock_task).
This also means that we have to decay the normal context time and account
for interrupt time during the update.
That's also important to note that because:
rq_clock == rq_clock_task + interrupt time
and rq_clock_task is used by a sched class to compute its utilization, the
util_avg of a sched class only reflects the utilization of the time spent
in normal context and not of the whole time of the CPU. The utilization of
interrupt gives an more accurate level of utilization of CPU.
The CPU utilization is:
avg_irq + (1 - avg_irq / max capacity) * /Sum avg_rq
Most of the time, avg_irq is small and neglictible so the use of the
approximation CPU utilization = /Sum avg_rq was enough.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>