The legacy hypercall handlers were originally added with
a comment explaining that "copying the argument structures in
HYPERVISOR_event_channel_op() and HYPERVISOR_physdev_op() into the local
variable is sufficiently safe" and only made sure to not write
past the end of the argument structure, the checks in linux/string.h
disagree with that, when link-time optimizations are used:
In function 'memcpy',
inlined from 'pirq_query_unmask' at drivers/xen/fallback.c:53:2,
inlined from '__startup_pirq' at drivers/xen/events/events_base.c:529:2,
inlined from 'restore_pirqs' at drivers/xen/events/events_base.c:1439:3,
inlined from 'xen_irq_resume' at drivers/xen/events/events_base.c:1581:2:
include/linux/string.h:350:3: error: call to '__read_overflow2' declared with attribute error: detected read beyond size of object passed as 2nd parameter
__read_overflow2();
^
Further research turned out that only Xen 3.0.2 or earlier required the
fallback at all, while all versions in use today don't need it.
As far as I can tell, it is not even possible to run a mainline kernel
on those old Xen releases, at the time when they were in use, only
a patched kernel was supported anyway.
Fixes: cf47a83fb0 ("xen/hypercall: fix hypercall fallback code for very old hypervisors")
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
Every in-kernel use of this function defined it to KERNEL_DS (either as
an actual define, or as an inline function). It's an entirely
historical artifact, and long long long ago used to actually read the
segment selector valueof '%ds' on x86.
Which in the kernel is always KERNEL_DS.
Inspired by a patch from Jann Horn that just did this for a very small
subset of users (the ones in fs/), along with Al who suggested a script.
I then just took it to the logical extreme and removed all the remaining
gunk.
Roughly scripted with
git grep -l '(get_ds())' -- :^tools/ | xargs sed -i 's/(get_ds())/(KERNEL_DS)/'
git grep -lw 'get_ds' -- :^tools/ | xargs sed -i '/^#define get_ds()/d'
plus manual fixups to remove a few unusual usage patterns, the couple of
inline function cases and to fix up a comment that had become stale.
The 'get_ds()' function remains in an x86 kvm selftest, since in user
space it actually does something relevant.
Inspired-by: Jann Horn <jannh@google.com>
Inspired-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Thomas Gleixner:
"Two last minute fixes:
- Prevent value evaluation via functions happening in the user access
enabled region of __put_user() (put another way: make sure to
evaluate the value to be stored in user space _before_ enabling
user space accesses)
- Correct the definition of a Hyper-V hypercall constant"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyper-v: Fix definition of HV_MAX_FLUSH_REP_COUNT
x86/uaccess: Don't leak the AC flag into __put_user() value evaluation
This was caught while staring at the whole {set,get}_fs() machinery.
It's last user, the 32-bit version of strnlen_user() went away with
5723aa993d ("x86: use the new generic strnlen_user() function")
so drop it.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: the arch/x86 maintainers <x86@kernel.org>
Cc: "Tobin C. Harding" <tobin@kernel.org>
Link: https://lkml.kernel.org/r/20190225191109.7671-1-bp@alien8.de
When calling __put_user(foo(), ptr), the __put_user() macro would call
foo() in between __uaccess_begin() and __uaccess_end(). If that code
were buggy, then those bugs would be run without SMAP protection.
Fortunately, there seem to be few instances of the problem in the
kernel. Nevertheless, __put_user() should be fixed to avoid doing this.
Therefore, evaluate __put_user()'s argument before setting AC.
This issue was noticed when an objtool hack by Peter Zijlstra complained
about genregs_get() and I compared the assembly output to the C source.
[ bp: Massage commit message and fixed up whitespace. ]
Fixes: 11f1a4b975 ("x86: reorganize SMAP handling in user space accesses")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20190225125231.845656645@infradead.org
Three conflicts, one of which, for marvell10g.c is non-trivial and
requires some follow-up from Heiner or someone else.
The issue is that Heiner converted the marvell10g driver over to
use the generic c45 code as much as possible.
However, in 'net' a bug fix appeared which makes sure that a new
local mask (MDIO_AN_10GBT_CTRL_ADV_NBT_MASK) with value 0x01e0
is cleared.
Signed-off-by: David S. Miller <davem@davemloft.net>
Previously, commit 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow
MMU reconfiguration is needed") offered some optimization to avoid
the unnecessary reconfiguration. Yet one scenario is broken - when
cpuid changes VM's maximum physical address width, reconfiguration
is needed to reset the reserved bits. Also, the TDP may need to
reset its shadow_root_level when this value is changed.
To fix this, a new field, maxphyaddr, is introduced in the extended
role structure to keep track of the configured guest physical address
width.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu") brought one subtle
change: previously, when switching back from L2 to L1, we were resetting
MMU hooks (like mmu->get_cr3()) in kvm_init_mmu() called from
nested_vmx_load_cr3() and now we do that in nested_ept_uninit_mmu_context()
when we re-target vcpu->arch.mmu pointer.
The change itself looks logical: if nested_ept_init_mmu_context() changes
something than nested_ept_uninit_mmu_context() restores it back. There is,
however, one thing: the following call chain:
nested_vmx_load_cr3()
kvm_mmu_new_cr3()
__kvm_mmu_new_cr3()
fast_cr3_switch()
cached_root_available()
now happens with MMU hooks pointing to the new MMU (root MMU in our case)
while previously it was happening with the old one. cached_root_available()
tries to stash current root but it is incorrect to read current CR3 with
mmu->get_cr3(), we need to use old_mmu->get_cr3() which in case we're
switching from L2 to L1 is guest_mmu. (BTW, in shadow page tables case this
is a non-issue because we don't switch MMU).
While we could've tried to guess that we're switching between MMUs and call
the right ->get_cr3() from cached_root_available() this seems to be overly
complicated. Instead, just stash the corresponding CR3 when setting
root_hpa and make cached_root_available() use the stashed value.
Fixes: 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove x86 KVM's fast invalidate mechanism, i.e. revert all patches
from the original series[1], now that all users of the fast invalidate
mechanism are gone.
This reverts commit 5304b8d37c.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].
This reverts commit 365c886860.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert back to a dedicated (and slower) mechanism for handling the
scenario where all MMIO shadow PTEs need to be zapped due to overflowing
the MMIO generation number. The MMIO generation scenario is almost
literally a one-in-a-million occurrence, i.e. is not a performance
sensitive scenario.
Restoring kvm_mmu_zap_mmio_sptes() leaves VM teardown as the only user
of kvm_mmu_invalidate_zap_all_pages() and paves the way for removing
the fast invalidate mechanism altogether.
This reverts commit a8eca9dcc6.
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove x86 KVM's fast invalidate mechanism, i.e. revert all patches
from the original series[1].
Though not explicitly stated, for all intents and purposes the fast
invalidate mechanism was added to speed up the scenario where removing
a memslot, e.g. as part of accessing reading PCI ROM, caused KVM to
flush all shadow entries[1]. Now that the memslot case flushes only
shadow entries belonging to the memslot, i.e. doesn't use the fast
invalidate mechanism, the only remaining usage of the mechanism are
when the VM is being destroyed and when the MMIO generation rolls
over.
When a VM is being destroyed, either there are no active vcpus, i.e.
there's no lock contention, or the VM has ungracefully terminated, in
which case we want to reclaim its pages as quickly as possible, i.e.
not release the MMU lock if there are still CPUs executing in the VM.
The MMIO generation scenario is almost literally a one-in-a-million
occurrence, i.e. is not a performance sensitive scenario.
Given that lock-breaking is not desirable (VM teardown) or irrelevant
(MMIO generation overflow), remove the fast invalidate mechanism to
simplify the code (a small amount) and to discourage future code from
zapping all pages as using such a big hammer should be a last restort.
This reverts commit f6f8adeef5.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_arch_memslots_updated() is at this point in time an x86-specific
hook for handling MMIO generation wraparound. x86 stashes 19 bits of
the memslots generation number in its MMIO sptes in order to avoid
full page fault walks for repeat faults on emulated MMIO addresses.
Because only 19 bits are used, wrapping the MMIO generation number is
possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that
the generation has changed so that it can invalidate all MMIO sptes in
case the effective MMIO generation has wrapped so as to avoid using a
stale spte, e.g. a (very) old spte that was created with generation==0.
Given that the purpose of kvm_arch_memslots_updated() is to prevent
consuming stale entries, it needs to be called before the new generation
is propagated to memslots. Invalidating the MMIO sptes after updating
memslots means that there is a window where a vCPU could dereference
the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO
spte that was created with (pre-wrap) generation==0.
Fixes: e59dbe09f8 ("KVM: Introduce kvm_arch_memslots_updated()")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Declaring the VCPU_REGS_* as enums allows for more robust C code, but it
prevents using the values in assembly files. Expliciting #define the
indices in an asm-friendly file to prepare for VMX moving its transition
code to a proper assembly file, but keep the enums for general usage.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 fixes from Ingo Molnar:
"Three changes:
- An UV fix/quirk to pull UV BIOS calls into the efi_runtime_lock
locking regime. (This done by aliasing __efi_uv_runtime_lock to
efi_runtime_lock, which should make the quirk nature obvious and
maintain the general policy that the EFI lock (name...) isn't
exposed to drivers.)
- Our version of MAGA: Make a.out Great Again.
- Add a new Intel model name enumerator to an upstream header to help
reduce dependencies going forward"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/platform/UV: Use efi_runtime_lock to serialise BIOS calls
x86/CPU: Add Icelake model number
x86/a.out: Clear the dump structure initially
The netfilter conflicts were rather simple overlapping
changes.
However, the cls_tcindex.c stuff was a bit more complex.
On the 'net' side, Cong is fixing several races and memory
leaks. Whilst on the 'net-next' side we have Vlad adding
the rtnl-ness support.
What I've decided to do, in order to resolve this, is revert the
conversion over to using a workqueue that Cong did, bringing us back
to pure RCU. I did it this way because I believe that either Cong's
races don't apply with have Vlad did things, or Cong will have to
implement the race fix slightly differently.
Signed-off-by: David S. Miller <davem@davemloft.net>
Previous AMD systems have had a bit in MCA_STATUS to indicate that an
error was detected on a scrub operation. However, this bit was defined
differently within different banks and families/models.
Starting with Family 17h, MCA_STATUS[40] is either Reserved/Read-as-Zero
or defined as "Scrub", for all MCA banks and CPU models. Therefore, this
bit can be defined as the "Scrub" bit.
Define MCA_STATUS[40] as "Scrub" and decode it in the AMD MCE decoding
module for Family 17h and newer systems.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190212212417.107049-1-Yazen.Ghannam@amd.com
Add the CPUID model number of Icelake (ICL) mobile processors to the
Intel family list. Icelake U/Y series uses model number 0x7E.
Signed-off-by: Rajneesh Bhardwaj <rajneesh.bhardwaj@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David E. Box" <david.e.box@intel.com>
Cc: dvhart@infradead.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: platform-driver-x86@vger.kernel.org
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190214115712.19642-2-rajneesh.bhardwaj@linux.intel.com
User space tools which do automated task placement need information
about AVX-512 usage of tasks, because AVX-512 usage could cause core
turbo frequency drop and impact the running task on the sibling CPU.
The XSAVE hardware structure has bits that indicate when valid state
is present in registers unique to AVX-512 use. Use these bits to
indicate when AVX-512 has been in use and add per-task AVX-512 state
timestamp tracking to context switch.
Well-written AVX-512 applications are expected to clear the AVX-512
state when not actively using AVX-512 registers, so the tracking
mechanism is imprecise and can theoretically miss AVX-512 usage during
context switch. But it has been measured to be precise enough to be
useful under real-world workloads like tensorflow and linpack.
If higher precision is required, suggest user space tools to use the
PMU-based mechanisms in combination.
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: aubrey.li@intel.com
Link: http://lkml.kernel.org/r/20190117183822.31333-1-aubrey.li@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Thomas noticed that the new arch/x86/include/asm/cpu_device_id.h header is
a train-wreck that didn't incorporate review feedback like not using __u8
in kernel-only headers.
While at it also fix all the *other* problems this header has:
- Use canonical names for the header guards. It's inexplicable why a non-standard
guard was used.
- Don't define the header guard to 1. Plus annotate the closing #endif as done
absolutely every other header. Again, an inexplicable source of noise.
- Move the kernel API calls provided by this header next to each other, there's
absolutely no reason to have them spread apart in the header.
- Align the INTEL_CPU_DESC() macro initializations vertically, this is easier to
read and it's also the canonical style.
- Actually name the macro arguments properly: instead of 'mod, step, rev',
spell out 'model, stepping, revision' - it's not like we have a lack of
characters in this header.
- Actually make arguments macro-safe - again it's inexplicable why it wasn't
done properly to begin with.
Quite amazing how many problems a 41 lines header can contain.
This kind of code quality is unacceptable, and it slipped through the
review net of 2 developers and 2 maintainers, including myself, until
Thomas noticed it. :-/
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'write' parameter is unused in gup_fast_permitted() so remove it.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20190210223424.13934-1-ira.weiny@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For bug workarounds or checks, it is useful to check for specific
microcode revisions.
Add a new generic function to match the CPU with stepping.
Add the other function to check the min microcode revisions for
the matched CPU.
A new table format is introduced to facilitate the quirk to
fill the related information.
This does not change the existing x86_cpu_id because it's an ABI
shared with modules, and also has quite different requirements,
as in no wildcards, but everything has to be matched exactly.
Originally-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: eranian@google.com
Link: https://lkml.kernel.org/r/1549319013-4522-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This series finally gets us to the point of having system calls with
64-bit time_t on all architectures, after a long time of incremental
preparation patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures
using the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call
that includes a 'struct timespec' argument, or a structure containing
a timespec or (in case of clock_adjtime) timeval. Not included here
are new versions of getitimer/setitimer and getrusage/waitid, which
are planned for the future but only needed to make a consistent API
rather than for correct operation beyond y2038. These four system
calls are based on 'timeval', and it has not been finally decided
what the replacement kernel interface will use instead.
So far, I have done a lot of build testing across most architectures,
which has found a number of bugs. Runtime testing so far included
testing LTP on 32-bit ARM with the existing system calls, to ensure
we do not regress for existing binaries, and a test with a 32-bit
x86 build of LTP against a modified version of the musl C library
that has been adapted to the new system call interface [3].
This library can be used for testing on all architectures supported
by musl-1.1.21, but it is not how the support is getting integrated
into the official musl release. Official musl support is planned
but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcXf7/AAoJEGCrR//JCVInPSUP/RhsQSCKMGtONB/vVICQhwep
PybhzBSpHWFxszzTi6BEPN1zS9B069G9mDollRBYZCckyPqL/Bv6sI/vzQZdNk01
Q6Nw92OnNE1QP8owZ5TjrZhpbtopWdqIXjsbGZlloUemvuJP2JwvKovQUcn5CPTQ
jbnqU04CVyFFJYVxAnGJ+VSeWNrjW/cm/m+rhLFjUcwW7Y3aodxsPqPP6+K9hY9P
yIWfcH42WBeEWGm1RSBOZOScQl4SGCPUAhFydl/TqyEQagyegJMIyMOv9wZ5AuTT
xK644bDVmNsrtJDZDpx+J8hytXCk1LrnKzkHR/uK80iUIraF/8D7PlaPgTmEEjko
XcrywEkvkXTVU3owCm2/sbV+8fyFKzSPipnNfN1JNxEX71A98kvMRtPjDueQq/GA
Yh81rr2YLF2sUiArkc2fNpENT7EGhrh1q6gviK3FB8YDgj1kSgPK5wC/X0uolC35
E7iC2kg4NaNEIjhKP/WKluCaTvjRbvV+0IrlJLlhLTnsqbA57ZKCCteiBrlm7wQN
4csUtCyxchR9Ac2o/lj+Mf53z68Zv74haIROp18K2dL7ZpVcOPnA3XHeauSAdoyp
wy2Ek6ilNvlNB+4x+mRntPoOsyuOUGv7JXzB9JvweLWUd9G7tvYeDJQp/0YpDppb
K4UWcKnhtEom0DgK08vY
=IZVb
-----END PGP SIGNATURE-----
Merge tag 'y2038-new-syscalls' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull y2038 - time64 system calls from Arnd Bergmann:
This series finally gets us to the point of having system calls with 64-bit
time_t on all architectures, after a long time of incremental preparation
patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures using
the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call that
includes a 'struct timespec' argument, or a structure containing a timespec
or (in case of clock_adjtime) timeval. Not included here are new versions
of getitimer/setitimer and getrusage/waitid, which are planned for the
future but only needed to make a consistent API rather than for correct
operation beyond y2038. These four system calls are based on 'timeval', and
it has not been finally decided what the replacement kernel interface will
use instead.
So far, I have done a lot of build testing across most architectures, which
has found a number of bugs. Runtime testing so far included testing LTP on
32-bit ARM with the existing system calls, to ensure we do not regress for
existing binaries, and a test with a 32-bit x86 build of LTP against a
modified version of the musl C library that has been adapted to the new
system call interface [3]. This library can be used for testing on all
architectures supported by musl-1.1.21, but it is not how the support is
getting integrated into the official musl release. Official musl support is
planned but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
Pull x86 fixes from Ingo Molnar:
"A handful of fixes:
- Fix an MCE corner case bug/crash found via MCE injection testing
- Fix 5-level paging boot crash
- Fix MCE recovery cache invalidation bug
- Fix regression on Xen guests caused by a recent PMD level mremap
speedup optimization"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Make set_pmd_at() paravirt aware
x86/mm/cpa: Fix set_mce_nospec()
x86/boot/compressed/64: Do not corrupt EDX on EFER.LME=1 setting
x86/MCE: Initialize mce.bank in the case of a fatal error in mce_no_way_out()
set_pmd_at() calls native_set_pmd() unconditionally on x86. This was
fine as long as only huge page entries were written via set_pmd_at(),
as Xen pv guests don't support those.
Commit 2c91bd4a4e ("mm: speed up mremap by 20x on large regions")
introduced a usage of set_pmd_at() possible on pv guests, leading to
failures like:
BUG: unable to handle kernel paging request at ffff888023e26778
#PF error: [PROT] [WRITE]
RIP: e030:move_page_tables+0x7c1/0xae0
move_vma.isra.3+0xd1/0x2d0
__se_sys_mremap+0x3c6/0x5b0
do_syscall_64+0x49/0x100
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Make set_pmd_at() paravirt aware by just letting it use set_pmd().
Fixes: 2c91bd4a4e ("mm: speed up mremap by 20x on large regions")
Reported-by: Sander Eikelenboom <linux@eikelenboom.it>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Cc: boris.ostrovsky@oracle.com
Cc: sstabellini@kernel.org
Cc: hpa@zytor.com
Cc: bp@alien8.de
Cc: torvalds@linux-foundation.org
Link: https://lkml.kernel.org/r/20190210074056.11842-1-jgross@suse.com
An ipvlan bug fix in 'net' conflicted with the abstraction away
of the IPV6 specific support in 'net-next'.
Similarly, a bug fix for mlx5 in 'net' conflicted with the flow
action conversion in 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
The time, stime, utime, utimes, and futimesat system calls are only
used on older architectures, and we do not provide y2038 safe variants
of them, as they are replaced by clock_gettime64, clock_settime64,
and utimensat_time64.
However, for consistency it seems better to have the 32-bit architectures
that still use them call the "time32" entry points (leaving the
traditional handlers for the 64-bit architectures), like we do for system
calls that now require two versions.
Note: We used to always define __ARCH_WANT_SYS_TIME and
__ARCH_WANT_SYS_UTIME and only set __ARCH_WANT_COMPAT_SYS_TIME and
__ARCH_WANT_SYS_UTIME32 for compat mode on 64-bit kernels. Now this is
reversed: only 64-bit architectures set __ARCH_WANT_SYS_TIME/UTIME, while
we need __ARCH_WANT_SYS_TIME32/UTIME32 for 32-bit architectures and compat
mode. The resulting asm/unistd.h changes look a bit counterintuitive.
This is only a cleanup patch and it should not change any behavior.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
This adds an smp_acquire__after_ctrl_dep() barrier on successful
decrease of refcounter value from 1 to 0 for refcount_dec(sub)_and_test
variants and therefore gives stronger memory ordering guarantees than
prior versions of these functions.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: dvyukov@google.com
Cc: keescook@chromium.org
Cc: stern@rowland.harvard.edu
Link: https://lkml.kernel.org/r/1548847131-27854-2-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the x86 EFI earlyprintk implementation to a shared location under
drivers/firmware and tweak it slightly so we can expose it as an earlycon
implementation (which is generic) rather than earlyprintk (which is only
implemented for a few architectures)
This also involves switching to write-combine mappings by default (which
is required on ARM since device mappings lack memory semantics, and so
memcpy/memset may not be used on them), and adding support for shared
memory framebuffers on cache coherent non-x86 systems (which do not
tolerate mismatched attributes).
Note that 32-bit ARM does not populate its struct screen_info early
enough for earlycon=efifb to work, so it is disabled there.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Alexander Graf <agraf@suse.de>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190202094119.13230-10-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"A few updates for x86:
- Fix an unintended sign extension issue in the fault handling code
- Rename the new resource control config switch so it's less
confusing
- Avoid setting up EFI info in kexec when the EFI runtime is
disabled.
- Fix the microcode version check in the AMD microcode loader so it
only loads higher version numbers and never downgrades
- Set EFER.LME in the 32bit trampoline before returning to long mode
to handle older AMD/KVM behaviour properly.
- Add Darren and Andy as x86/platform reviewers"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Avoid confusion over the new X86_RESCTRL config
x86/kexec: Don't setup EFI info if EFI runtime is not enabled
x86/microcode/amd: Don't falsely trick the late loading mechanism
MAINTAINERS: Add Andy and Darren as arch/x86/platform/ reviewers
x86/fault: Fix sign-extend unintended sign extension
x86/boot/compressed/64: Set EFER.LME=1 in 32-bit trampoline before returning to long mode
x86/cpu: Add Atom Tremont (Jacobsville)
The existing CS, PSP, and SMU SMCA bank types will see new versions (as
indicated by their McaTypes) in future SMCA systems.
Add the new (HWID, MCATYPE) tuples for these new versions. Reuse the
same names as the older versions, since they are logically the same to
the user. SMCA systems won't mix and match IP blocks with different
McaType versions in the same system, so there isn't a need to
distinguish them. The MCA_IPID register is saved when logging an MCA
error, and that can be used to triage the error.
Also, add the new error descriptions to edac_mce_amd. Some error types
(positions in the list) are overloaded compared to the previous
McaTypes. Therefore, just create new lists of the error descriptions to
keep things simple even if some of the error descriptions are the same
between versions.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Shirish S <Shirish.S@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190201225534.8177-3-Yazen.Ghannam@amd.com
"Resource Control" is a very broad term for this CPU feature, and a term
that is also associated with containers, cgroups etc. This can easily
cause confusion.
Make the user prompt more specific. Match the config symbol name.
[ bp: In the future, the corresponding ARM arch-specific code will be
under ARM_CPU_RESCTRL and the arch-agnostic bits will be carved out
under the CPU_RESCTRL umbrella symbol. ]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: linux-doc@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190130195621.GA30653@cmpxchg.org
If the kernel is configured with KASAN_EXTRA, the stack size is
increasted significantly because this option sets "-fstack-reuse" to
"none" in GCC [1]. As a result, it triggers stack overrun quite often
with 32k stack size compiled using GCC 8. For example, this reproducer
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/madvise/madvise06.c
triggers a "corrupted stack end detected inside scheduler" very reliably
with CONFIG_SCHED_STACK_END_CHECK enabled.
There are just too many functions that could have a large stack with
KASAN_EXTRA due to large local variables that have been called over and
over again without being able to reuse the stacks. Some noticiable ones
are
size
7648 shrink_page_list
3584 xfs_rmap_convert
3312 migrate_page_move_mapping
3312 dev_ethtool
3200 migrate_misplaced_transhuge_page
3168 copy_process
There are other 49 functions are over 2k in size while compiling kernel
with "-Wframe-larger-than=" even with a related minimal config on this
machine. Hence, it is too much work to change Makefiles for each object
to compile without "-fsanitize-address-use-after-scope" individually.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81715#c23
Although there is a patch in GCC 9 to help the situation, GCC 9 probably
won't be released in a few months and then it probably take another
6-month to 1-year for all major distros to include it as a default.
Hence, the stack usage with KASAN_EXTRA can be revisited again in 2020
when GCC 9 is everywhere. Until then, this patch will help users avoid
stack overrun.
This has already been fixed for arm64 for the same reason via
6e8830674e ("arm64: kasan: Increase stack size for KASAN_EXTRA").
Link: http://lkml.kernel.org/r/20190109215209.2903-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no early_trap_pf_init() implementation, hence remove this useless
declaration.
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1546591579-23502-1-git-send-email-kernelfans@gmail.com
Add the Atom Tremont model number to the Intel family list.
[ Tony: Also update comment at head of file to say "_X" suffix is
also used for microserver parts. ]
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Aristeu Rozanski <aris@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Cc: Megha Dey <megha.dey@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190125195902.17109-4-tony.luck@intel.com
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for x86:
- Fix the swapped outb() parameters in the KASLR code
- Fix the PKEY handling at fork which missed to preserve the pkey
state for the child. Comes with a test case to validate that.
- Fix the entry stack handling for XEN PV to respect that XEN PV
systems enter the function already on the current thread stack and
not on the trampoline.
- Fix kexec load failure caused by using a stale value when the
kexec_buf structure is reused for subsequent allocations.
- Fix a bogus sizeof() in the memory encryption code
- Enforce PCI dependency for the Intel Low Power Subsystem
- Enforce PCI_LOCKLESS_CONFIG when PCI is enabled"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/Kconfig: Select PCI_LOCKLESS_CONFIG if PCI is enabled
x86/entry/64/compat: Fix stack switching for XEN PV
x86/kexec: Fix a kexec_file_load() failure
x86/mm/mem_encrypt: Fix erroneous sizeof()
x86/selftests/pkeys: Fork() to check for state being preserved
x86/pkeys: Properly copy pkey state at fork()
x86/kaslr: Fix incorrect i8254 outb() parameters
x86/intel/lpss: Make PCI dependency explicit
This was a "workaround" to probe for binutils which could generate
FXSAVEQ, apparently gas with min version 2.16. In the meantime, minimal
required gas version is 2.20 so all those workarounds for older binutils
can be dropped.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20190117232408.GH5023@zn.tnic
Commit 594cc251fd ("make 'user_access_begin()' do 'access_ok()'")
makes the access_ok() check part of the user_access_begin() preceding a
series of 'unsafe' accesses. This has the desirable effect of ensuring
that all 'unsafe' accesses have been range-checked, without having to
pick through all of the callsites to verify whether the appropriate
checking has been made.
However, the consolidated range check does not inhibit speculation, so
it is still up to the caller to ensure that they are not susceptible to
any speculative side-channel attacks for user addresses that ultimately
fail the access_ok() check.
This is an oversight, so use __uaccess_begin_nospec() to ensure that
speculation is inhibited until the access_ok() check has passed.
Reported-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the kernel uses
[LM]FENCE; RDTSC
in the timekeeping code, to guarantee monotonicity of time where the
*FENCE is selected based on vendor.
Replace that sequence with RDTSCP which is faster or on-par and gives
the same guarantees.
A microbenchmark on Intel shows that the change is on-par.
On AMD, the change is either on-par with the current LFENCE-prefixed
RDTSC or slightly better with RDTSCP.
The comparison is done with the LFENCE-prefixed RDTSC (and not with the
MFENCE-prefixed one, as one would normally expect) because all modern
AMD families make LFENCE serializing and thus avoid the heavy MFENCE by
effectively enabling X86_FEATURE_LFENCE_RDTSC.
Co-developed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20181119184556.11479-1-bp@alien8.de
Similar to ALTERNATIVE_2(), ALTERNATIVE_3() selects between 3 possible
variants. Will be used for adding RDTSCP to the rdtsc_ordered()
alternatives.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: X86 ML <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181211222326.14581-4-bp@alien8.de
... so that when one stares at the .s output, one can find her way
around the resulting asm magic.
With it, ALTERNATIVE looks like this now:
# ALT: oldnstr
661:
...
662:
# ALT: padding
.skip ...
663:
.pushsection .altinstructions,"a"
...
.popsection
.pushsection .altinstr_replacement, "ax"
# ALT: replacement 1
6641:
...
6651:
.popsection
Merge __OLDINSTR() into OLDINSTR(), while at it.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: X86 ML <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181211222326.14581-2-bp@alien8.de
Memory protection key behavior should be the same in a child as it was
in the parent before a fork. But, there is a bug that resets the
state in the child at fork instead of preserving it.
The creation of new mm's is a bit convoluted. At fork(), the code
does:
1. memcpy() the parent mm to initialize child
2. mm_init() to initalize some select stuff stuff
3. dup_mmap() to create true copies that memcpy() did not do right
For pkeys two bits of state need to be preserved across a fork:
'execute_only_pkey' and 'pkey_allocation_map'.
Those are preserved by the memcpy(), but mm_init() invokes
init_new_context() which overwrites 'execute_only_pkey' and
'pkey_allocation_map' with "new" values.
The author of the code erroneously believed that init_new_context is *only*
called at execve()-time. But, alas, init_new_context() is used at execve()
and fork().
The result is that, after a fork(), the child's pkey state ends up looking
like it does after an execve(), which is totally wrong. pkeys that are
already allocated can be allocated again, for instance.
To fix this, add code called by dup_mmap() to copy the pkey state from
parent to child explicitly. Also add a comment above init_new_context() to
make it more clear to the next poor sod what this code is used for.
Fixes: e8c24d3a23 ("x86/pkeys: Allocation/free syscalls")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: peterz@infradead.org
Cc: mpe@ellerman.id.au
Cc: will.deacon@arm.com
Cc: luto@kernel.org
Cc: jroedel@suse.de
Cc: stable@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20190102215655.7A69518C@viggo.jf.intel.com
The minimum supported gcc version is >= 4.6, so these can be removed.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190111084931.24601-1-linux@rasmusvillemoes.dk
CONFIG_RESCTRL is too generic. The final goal is to have a generic
option called like this which is selected by the arch-specific ones
CONFIG_X86_RESCTRL and CONFIG_ARM64_RESCTRL. The generic one will
cover the resctrl filesystem and other generic and shared bits of
functionality.
Signed-off-by: Borislav Petkov <bp@suse.de>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Morse <james.morse@arm.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20190108171401.GC12235@zn.tnic
Now that Kbuild automatically creates asm-generic wrappers for missing
mandatory headers, it is redundant to list the same headers in
generic-y and mandatory-y.
Suggested-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
These comments are leftovers of commit fcc8487d47 ("uapi: export all
headers under uapi directories").
Prior to that commit, exported headers must be explicitly added to
header-y. Now, all headers under the uapi/ directories are exported.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".
The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.
Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Merge more updates from Andrew Morton:
- procfs updates
- various misc bits
- lib/ updates
- epoll updates
- autofs
- fatfs
- a few more MM bits
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (58 commits)
mm/page_io.c: fix polled swap page in
checkpatch: add Co-developed-by to signature tags
docs: fix Co-Developed-by docs
drivers/base/platform.c: kmemleak ignore a known leak
fs: don't open code lru_to_page()
fs/: remove caller signal_pending branch predictions
mm/: remove caller signal_pending branch predictions
arch/arc/mm/fault.c: remove caller signal_pending_branch predictions
kernel/sched/: remove caller signal_pending branch predictions
kernel/locking/mutex.c: remove caller signal_pending branch predictions
mm: select HAVE_MOVE_PMD on x86 for faster mremap
mm: speed up mremap by 20x on large regions
mm: treewide: remove unused address argument from pte_alloc functions
initramfs: cleanup incomplete rootfs
scripts/gdb: fix lx-version string output
kernel/kcov.c: mark write_comp_data() as notrace
kernel/sysctl: add panic_print into sysctl
panic: add options to print system info when panic happens
bfs: extra sanity checking and static inode bitmap
exec: separate MM_ANONPAGES and RLIMIT_STACK accounting
...
This has been broken forever, and nobody ever really noticed because
it's purely a performance issue.
Long long ago, in commit 6175ddf06b ("x86: Clean up mem*io functions")
Brian Gerst simplified the memory copies to and from iomem, since on
x86, the instructions to access iomem are exactly the same as the
regular instructions.
That is technically true, and things worked, and nobody said anything.
Besides, back then the regular memcpy was pretty simple and worked fine.
Nobody noticed except for David Laight, that is. David has a testing a
TLP monitor he was writing for an FPGA, and has been occasionally
complaining about how memcpy_toio() writes things one byte at a time.
Which is completely unacceptable from a performance standpoint, even if
it happens to technically work.
The reason it's writing one byte at a time is because while it's
technically true that accesses to iomem are the same as accesses to
regular memory on x86, the _granularity_ (and ordering) of accesses
matter to iomem in ways that they don't matter to regular cached memory.
In particular, when ERMS is set, we default to using "rep movsb" for
larger memory copies. That is indeed perfectly fine for real memory,
since the whole point is that the CPU is going to do cacheline
optimizations and executes the memory copy efficiently for cached
memory.
With iomem? Not so much. With iomem, "rep movsb" will indeed work, but
it will copy things one byte at a time. Slowly and ponderously.
Now, originally, back in 2010 when commit 6175ddf06b was done, we
didn't use ERMS, and this was much less noticeable.
Our normal memcpy() was simpler in other ways too.
Because in fact, it's not just about using the string instructions. Our
memcpy() these days does things like "read and write overlapping values"
to handle the last bytes of the copy. Again, for normal memory,
overlapping accesses isn't an issue. For iomem? It can be.
So this re-introduces the specialized memcpy_toio(), memcpy_fromio() and
memset_io() functions. It doesn't particularly optimize them, but it
tries to at least not be horrid, or do overlapping accesses. In fact,
this uses the existing __inline_memcpy() function that we still had
lying around that uses our very traditional "rep movsl" loop followed by
movsw/movsb for the final bytes.
Somebody may decide to try to improve on it, but if we've gone almost a
decade with only one person really ever noticing and complaining, maybe
it's not worth worrying about further, once it's not _completely_ broken?
Reported-by: David Laight <David.Laight@aculab.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This actually enables the __put_user_goto() functionality in
unsafe_put_user().
For an example of the effect of this, this is the code generated for the
unsafe_put_user(signo, &infop->si_signo, Efault);
in the waitid() system call:
movl %ecx,(%rbx) # signo, MEM[(struct __large_struct *)_2]
It's just one single store instruction, along with generating an
exception table entry pointing to the Efault label case in case that
instruction faults.
Before, we would generate this:
xorl %edx, %edx
movl %ecx,(%rbx) # signo, MEM[(struct __large_struct *)_3]
testl %edx, %edx
jne .L309
with the exception table generated for that 'mov' instruction causing us
to jump to a stub that set %edx to -EFAULT and then jumped back to the
'testl' instruction.
So not only do we now get rid of the extra code in the normal sequence,
we also avoid unnecessarily keeping that extra error register live
across it all.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is finally the actual reason for the odd error handling in the
"unsafe_get/put_user()" functions, introduced over three years ago.
Using a "jump to error label" interface is somewhat odd, but very
convenient as a programming interface, and more importantly, it fits
very well with simply making the target be the exception handler address
directly from the inline asm.
The reason it took over three years to actually do this? We need "asm
goto" support for it, which only became the default on x86 last year.
It's now been a year that we've forced asm goto support (see commit
e501ce957a "x86: Force asm-goto"), and so let's just do it here too.
[ Side note: this commit was originally done back in 2016. The above
commentary about timing is obviously about it only now getting merged
into my real upstream tree - Linus ]
Sadly, gcc still only supports "asm goto" with asms that do not have any
outputs, so we are limited to only the put_user case for this. Maybe in
several more years we can do the get_user case too.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Add support for fast mremap".
This series speeds up the mremap(2) syscall by copying page tables at
the PMD level even for non-THP systems. There is concern that the extra
'address' argument that mremap passes to pte_alloc may do something
subtle architecture related in the future that may make the scheme not
work. Also we find that there is no point in passing the 'address' to
pte_alloc since its unused. This patch therefore removes this argument
tree-wide resulting in a nice negative diff as well. Also ensuring
along the way that the enabled architectures do not do anything funky
with the 'address' argument that goes unnoticed by the optimization.
Build and boot tested on x86-64. Build tested on arm64. The config
enablement patch for arm64 will be posted in the future after more
testing.
The changes were obtained by applying the following Coccinelle script.
(thanks Julia for answering all Coccinelle questions!).
Following fix ups were done manually:
* Removal of address argument from pte_fragment_alloc
* Removal of pte_alloc_one_fast definitions from m68k and microblaze.
// Options: --include-headers --no-includes
// Note: I split the 'identifier fn' line, so if you are manually
// running it, please unsplit it so it runs for you.
virtual patch
@pte_alloc_func_def depends on patch exists@
identifier E2;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
type T2;
@@
fn(...
- , T2 E2
)
{ ... }
@pte_alloc_func_proto_noarg depends on patch exists@
type T1, T2, T3, T4;
identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
(
- T3 fn(T1, T2);
+ T3 fn(T1);
|
- T3 fn(T1, T2, T4);
+ T3 fn(T1, T2);
)
@pte_alloc_func_proto depends on patch exists@
identifier E1, E2, E4;
type T1, T2, T3, T4;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
(
- T3 fn(T1 E1, T2 E2);
+ T3 fn(T1 E1);
|
- T3 fn(T1 E1, T2 E2, T4 E4);
+ T3 fn(T1 E1, T2 E2);
)
@pte_alloc_func_call depends on patch exists@
expression E2;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
fn(...
-, E2
)
@pte_alloc_macro depends on patch exists@
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
identifier a, b, c;
expression e;
position p;
@@
(
- #define fn(a, b, c) e
+ #define fn(a, b) e
|
- #define fn(a, b) e
+ #define fn(a) e
)
Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When testing in userspace, UBSAN pointed out that shifting into the sign
bit is undefined behaviour. It doesn't really make sense to ask for the
highest set bit of a negative value, so just turn the argument type into
an unsigned int.
Some architectures (eg ppc) already had it declared as an unsigned int,
so I don't expect too many problems.
Link: http://lkml.kernel.org/r/20181105221117.31828-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Originally, the rule used to be that you'd have to do access_ok()
separately, and then user_access_begin() before actually doing the
direct (optimized) user access.
But experience has shown that people then decide not to do access_ok()
at all, and instead rely on it being implied by other operations or
similar. Which makes it very hard to verify that the access has
actually been range-checked.
If you use the unsafe direct user accesses, hardware features (either
SMAP - Supervisor Mode Access Protection - on x86, or PAN - Privileged
Access Never - on ARM) do force you to use user_access_begin(). But
nothing really forces the range check.
By putting the range check into user_access_begin(), we actually force
people to do the right thing (tm), and the range check vill be visible
near the actual accesses. We have way too long a history of people
trying to avoid them.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
and propagate through down the call stack.
Link: http://lkml.kernel.org/r/20181124091411.GC10969@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 mm updates from Ingo Molnar:
"The main changes in this cycle were:
- Update and clean up x86 fault handling, by Andy Lutomirski.
- Drop usage of __flush_tlb_all() in kernel_physical_mapping_init()
and related fallout, by Dan Williams.
- CPA cleanups and reorganization by Peter Zijlstra: simplify the
flow and remove a few warts.
- Other misc cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
x86/mm/dump_pagetables: Use DEFINE_SHOW_ATTRIBUTE()
x86/mm/cpa: Rename @addrinarray to @numpages
x86/mm/cpa: Better use CLFLUSHOPT
x86/mm/cpa: Fold cpa_flush_range() and cpa_flush_array() into a single cpa_flush() function
x86/mm/cpa: Make cpa_data::numpages invariant
x86/mm/cpa: Optimize cpa_flush_array() TLB invalidation
x86/mm/cpa: Simplify the code after making cpa->vaddr invariant
x86/mm/cpa: Make cpa_data::vaddr invariant
x86/mm/cpa: Add __cpa_addr() helper
x86/mm/cpa: Add ARRAY and PAGES_ARRAY selftests
x86/mm: Drop usage of __flush_tlb_all() in kernel_physical_mapping_init()
x86/mm: Validate kernel_physical_mapping_init() PTE population
generic/pgtable: Introduce set_pte_safe()
generic/pgtable: Introduce {p4d,pgd}_same()
generic/pgtable: Make {pmd, pud}_same() unconditionally available
x86/fault: Clean up the page fault oops decoder a bit
x86/fault: Decode page fault OOPSes better
x86/vsyscall/64: Use X86_PF constants in the simulated #PF error code
x86/oops: Show the correct CS value in show_regs()
x86/fault: Don't try to recover from an implicit supervisor access
...
Pull x86 fpu updates from Ingo Molnar:
"Misc preparatory changes for an upcoming FPU optimization that will
delay the loading of FPU registers to return-to-userspace"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Don't export __kernel_fpu_{begin,end}()
x86/fpu: Update comment for __raw_xsave_addr()
x86/fpu: Add might_fault() to user_insn()
x86/pkeys: Make init_pkru_value static
x86/thread_info: Remove _TIF_ALLWORK_MASK
x86/process/32: Remove asm/math_emu.h include
x86/fpu: Use unsigned long long shift in xfeature_uncompacted_offset()
Pull x86 asm updates from Ingo Molnar:
"Two changes:
- Remove (some) remnants of the vDSO's fake section table mechanism
that were left behind when the vDSO build process reverted to using
"objdump -S" to strip the userspace image.
- Remove hardcoded POPCNT mnemonics now that the minimum binutils
version supports the symbolic form"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Remove a stale/misleading comment from the linker script
x86/vdso: Remove obsolete "fake section table" reservation
x86: Use POPCNT mnemonics in arch_hweight.h
Pull EFI updates from Ingo Molnar:
"The main changes in this cycle were:
- Allocate the E820 buffer before doing the
GetMemoryMap/ExitBootServices dance so we don't run out of space
- Clear EFI boot services mappings when freeing the memory
- Harden efivars against callers that invoke it on non-EFI boots
- Reduce the number of memblock reservations resulting from extensive
use of the new efi_mem_reserve_persistent() API
- Other assorted fixes and cleanups"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/efi: Don't unmap EFI boot services code/data regions for EFI_OLD_MEMMAP and EFI_MIXED_MODE
efi: Reduce the amount of memblock reservations for persistent allocations
efi: Permit multiple entries in persistent memreserve data structure
efi/libstub: Disable some warnings for x86{,_64}
x86/efi: Move efi_<reserve/free>_boot_services() to arch/x86
x86/efi: Unmap EFI boot services code/data regions from efi_pgd
x86/mm/pageattr: Introduce helper function to unmap EFI boot services
efi/fdt: Simplify the get_fdt() flow
efi/fdt: Indentation fix
firmware/efi: Add NULL pointer checks in efivars API functions
Pull x86 cache control updates from Borislav Petkov:
- The generalization of the RDT code to accommodate the addition of
AMD's very similar implementation of the cache monitoring feature.
This entails a subsystem move into a separate and generic
arch/x86/kernel/cpu/resctrl/ directory along with adding
vendor-specific initialization and feature detection helpers.
Ontop of that is the unification of user-visible strings, both in the
resctrl filesystem error handling and Kconfig.
Provided by Babu Moger and Sherry Hurwitz.
- Code simplifications and error handling improvements by Reinette
Chatre.
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix rdt_find_domain() return value and checks
x86/resctrl: Remove unnecessary check for cbm_validate()
x86/resctrl: Use rdt_last_cmd_puts() where possible
MAINTAINERS: Update resctrl filename patterns
Documentation: Rename and update intel_rdt_ui.txt to resctrl_ui.txt
x86/resctrl: Introduce AMD QOS feature
x86/resctrl: Fixup the user-visible strings
x86/resctrl: Add AMD's X86_FEATURE_MBA to the scattered CPUID features
x86/resctrl: Rename the config option INTEL_RDT to RESCTRL
x86/resctrl: Add vendor check for the MBA software controller
x86/resctrl: Bring cbm_validate() into the resource structure
x86/resctrl: Initialize the vendor-specific resource functions
x86/resctrl: Move all the macros to resctrl/internal.h
x86/resctrl: Re-arrange the RDT init code
x86/resctrl: Rename the RDT functions and definitions
x86/resctrl: Rename and move rdt files to a separate directory
single-stepping fixes, improved tracing, various timer and vGIC
fixes
* x86: Processor Tracing virtualization, STIBP support, some correctness fixes,
refactorings and splitting of vmx.c, use the Hyper-V range TLB flush hypercall,
reduce order of vcpu struct, WBNOINVD support, do not use -ftrace for __noclone
functions, nested guest support for PAUSE filtering on AMD, more Hyper-V
enlightenments (direct mode for synthetic timers)
* PPC: nested VFIO
* s390: bugfixes only this time
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJcH0vFAAoJEL/70l94x66Dw/wH/2FZp1YOM5OgiJzgqnXyDbyf
dNEfWo472MtNiLsuf+ZAfJojVIu9cv7wtBfXNzW+75XZDfh/J88geHWNSiZDm3Fe
aM4MOnGG0yF3hQrRQyEHe4IFhGFNERax8Ccv+OL44md9CjYrIrsGkRD08qwb+gNh
P8T/3wJEKwUcVHA/1VHEIM8MlirxNENc78p6JKd/C7zb0emjGavdIpWFUMr3SNfs
CemabhJUuwOYtwjRInyx1y34FzYwW3Ejuc9a9UoZ+COahUfkuxHE8u+EQS7vLVF6
2VGVu5SA0PqgmLlGhHthxLqVgQYo+dB22cRnsLtXlUChtVAq8q9uu5sKzvqEzuE=
=b4Jx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- selftests improvements
- large PUD support for HugeTLB
- single-stepping fixes
- improved tracing
- various timer and vGIC fixes
x86:
- Processor Tracing virtualization
- STIBP support
- some correctness fixes
- refactorings and splitting of vmx.c
- use the Hyper-V range TLB flush hypercall
- reduce order of vcpu struct
- WBNOINVD support
- do not use -ftrace for __noclone functions
- nested guest support for PAUSE filtering on AMD
- more Hyper-V enlightenments (direct mode for synthetic timers)
PPC:
- nested VFIO
s390:
- bugfixes only this time"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: x86: Add CPUID support for new instruction WBNOINVD
kvm: selftests: ucall: fix exit mmio address guessing
Revert "compiler-gcc: disable -ftracer for __noclone functions"
KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
KVM: Make kvm_set_spte_hva() return int
KVM: Replace old tlb flush function with new one to flush a specified range.
KVM/MMU: Add tlb flush with range helper function
KVM/VMX: Add hv tlb range flush support
x86/hyper-v: Add HvFlushGuestAddressList hypercall support
KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
KVM: x86: Disable Intel PT when VMXON in L1 guest
KVM: x86: Set intercept for Intel PT MSRs read/write
KVM: x86: Implement Intel PT MSRs read/write emulation
...
In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC that
is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine() invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32 optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJcE4TmAAoJELescNyEwWM0Nr0H/iaU7/wQSzHyNXtZoImyKTul
Blu2ga4/EqUrTU7AVVfmkl/3NBILWlgQVpY6tH6EfXQuvnxqD7CizbHyLdyO+z0S
B5PsFUH2GLMNAi48AUNqGqkgb2knFbg+T+9IimijDBkKg1G/KhQnRg6bXX32mLJv
Une8oshUPBVJMsHN1AcQknzKariuoE3u0SgJ+eOZ9yA2ZwKxP4yy1SkDt3xQrtI0
lojeRjxcyjTP1oGRNZC+BWUtGOT35p7y6cGTnBd/4TlqBGz5wVAJUcdoxnZ6JYVR
O8+ob9zU+4I0+SKt80s7pTLqQiL9rxkKZ5joWK1pr1g9e0s5N5yoETXKFHgJYP8=
=sYdt
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 festive updates from Will Deacon:
"In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC
that is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine()
invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32
optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits)
arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset()
arm64: sysreg: Use _BITUL() when defining register bits
arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches
arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
arm64: docs: document pointer authentication
arm64: ptr auth: Move per-thread keys from thread_info to thread_struct
arm64: enable pointer authentication
arm64: add prctl control for resetting ptrauth keys
arm64: perf: strip PAC when unwinding userspace
arm64: expose user PAC bit positions via ptrace
arm64: add basic pointer authentication support
arm64/cpufeature: detect pointer authentication
arm64: Don't trap host pointer auth use to EL2
arm64/kvm: hide ptrauth from guests
arm64/kvm: consistently handle host HCR_EL2 flags
arm64: add pointer authentication register bits
arm64: add comments about EC exception levels
arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned
arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field
arm64: enable per-task stack canaries
...
Pull x86 pti updates from Thomas Gleixner:
"No point in speculating what's in this parcel:
- Drop the swap storage limit when L1TF is disabled so the full space
is available
- Add support for the new AMD STIBP always on mitigation mode
- Fix a bunch of STIPB typos"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add support for STIBP always-on preferred mode
x86/speculation/l1tf: Drop the swap storage limit restriction when l1tf=off
x86/speculation: Change misspelled STIPB to STIBP
- Update the ACPICA code in the kernel to the 20181213 upstream
revision including:
* New Windows _OSI strings (Bob Moore, Jung-uk Kim).
* Buffers-to-string conversions update (Bob Moore).
* Removal of support for expressions in package elements (Bob
Moore).
* New option to display method/object evaluation in debug output
(Bob Moore).
* Compiler improvements (Bob Moore, Erik Schmauss).
* Minor debugger fix (Erik Schmauss).
* Disassembler improvement (Erik Schmauss).
* Assorted cleanups (Bob Moore, Colin Ian King, Erik Schmauss).
- Add support for a new OEM _OSI string to indicate special handling
of secondary graphics adapters on some systems (Alex Hung).
- Make it possible to build the ACPI subystem without PCI support
(Sinan Kaya).
- Make the SPCR table handling regard baud rate 0 in accordance with
the specification of it and make the DSDT override code support
DSDT code names generated by recent ACPICA (Andy Shevchenko, Wang
Dongsheng, Nathan Chancellor).
- Add clock frequency for Hisilicon Hip08 SPI controller to the ACPI
driver for AMD SoCs (APD) (Jay Fang).
- Fix the PM handling during device init in the ACPI driver for
Intel SoCs (LPSS) (Hans de Goede).
- Avoid double panic()s by clearing the APEI GHES block_status
before panic() (Lenny Szubowicz).
- Clean up a function invocation in the ACPI core and get rid of
some code duplication by using the DEFINE_SHOW_ATTRIBUTE macro
in the APEI support code (Alexey Dobriyan, Yangtao Li).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcHMSBAAoJEILEb/54YlRxZmEQAIbRXKOwvvt3my9HLBC/6V1u
+Wed0yNBQ9HkVWQzFuppDq97/kk5DRODnPNu9RaeS7QXxVOBfwElinm8NhzVI7Fm
FP5iPwnNq8EAkDTBOoG139Fs82EkaVSa2x9FHy84Jge3BXmauQM13bWP/kF5TjCn
Frjuh0TfhQ+ub853GisAr/SW7ixCWp81FZaW/xFcDuJU2E6AvjNQusdiAocgAqQ8
rnl8D0gjSW6m6HcauaTizRMXOIyePkfT86xQKwU7259ByRW20iQtsl/6+Rnyy3wG
cCrlsaHd0bP6qwVAQyh6cURq8hdLAUYI9tzBW0EL+UEpJ289j51s+RSh2nZNyIKO
wfbr2DdK3aaWcUygSxoP4FFHqINch/IRwaP2huT9szO1yLCikAN8Xmrb1BPZvOIK
m6Lywb1B+SOfGgJl4Z1GjzIc6dimrXVbgxjN1+Bpe1NeKqe/M6vMdbcvPIsMs7b8
iE/1gJPeJ5pvAgsQiWncZvyaOKaSmrLWbaw/ITQnNXVLDlTI3hIQExiPPl5hJ00v
Z4egVMdCCxYqZxxkZKEYnEe/lb9BRAMIvbkkocPBdmtNAWPuVnCqdR26BppaEt7i
r2tnEd84aISCDcBc2sIpo/pVUwncw5GtK20z8Ke+3rlg8lDZ0hAdHQWgBtj4xnnw
grImzXnKvSdajfZnvjRg
=yxXc
-----END PGP SIGNATURE-----
Merge tag 'acpi-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to the 20181213 upstream
revision, make it possible to build the ACPI subsystem without PCI
support, and a new OEM _OSI string, add a new device support to the
ACPI driver for AMD SoCs and fix PM handling in the ACPI driver for
Intel SoCs, fix the SPCR table handling and do some assorted fixes and
cleanups.
Specifics:
- Update the ACPICA code in the kernel to the 20181213 upstream
revision including:
* New Windows _OSI strings (Bob Moore, Jung-uk Kim).
* Buffers-to-string conversions update (Bob Moore).
* Removal of support for expressions in package elements (Bob
Moore).
* New option to display method/object evaluation in debug output
(Bob Moore).
* Compiler improvements (Bob Moore, Erik Schmauss).
* Minor debugger fix (Erik Schmauss).
* Disassembler improvement (Erik Schmauss).
* Assorted cleanups (Bob Moore, Colin Ian King, Erik Schmauss).
- Add support for a new OEM _OSI string to indicate special handling
of secondary graphics adapters on some systems (Alex Hung).
- Make it possible to build the ACPI subystem without PCI support
(Sinan Kaya).
- Make the SPCR table handling regard baud rate 0 in accordance with
the specification of it and make the DSDT override code support
DSDT code names generated by recent ACPICA (Andy Shevchenko, Wang
Dongsheng, Nathan Chancellor).
- Add clock frequency for Hisilicon Hip08 SPI controller to the ACPI
driver for AMD SoCs (APD) (Jay Fang).
- Fix the PM handling during device init in the ACPI driver for Intel
SoCs (LPSS) (Hans de Goede).
- Avoid double panic()s by clearing the APEI GHES block_status before
panic() (Lenny Szubowicz).
- Clean up a function invocation in the ACPI core and get rid of some
code duplication by using the DEFINE_SHOW_ATTRIBUTE macro in the
APEI support code (Alexey Dobriyan, Yangtao Li)"
* tag 'acpi-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (31 commits)
ACPI / tables: Add an ifdef around amlcode and dsdt_amlcode
ACPI/APEI: Clear GHES block_status before panic()
ACPI: Make PCI slot detection driver depend on PCI
ACPI/IORT: Stub out ACS functions when CONFIG_PCI is not set
arm64: select ACPI PCI code only when both features are enabled
PCI/ACPI: Allow ACPI to be built without CONFIG_PCI set
ACPICA: Remove PCI bits from ACPICA when CONFIG_PCI is unset
ACPI: Allow CONFIG_PCI to be unset for reboot
ACPI: Move PCI reset to a separate function
ACPI / OSI: Add OEM _OSI string to enable dGPU direct output
ACPI / tables: add DSDT AmlCode new declaration name support
ACPICA: Update version to 20181213
ACPICA: change coding style to match ACPICA, no functional change
ACPICA: Debug output: Add option to display method/object evaluation
ACPICA: disassembler: disassemble OEMx tables as AML
ACPICA: Add "Windows 2018.2" string in the _OSI support
ACPICA: Expressions in package elements are not supported
ACPICA: Update buffer-to-string conversions
ACPICA: add comments, no functional change
ACPICA: Remove defines that use deprecated flag
...
Pull x86 fixes from Ingo Molnar:
"The biggest part is a series of reverts for the macro based GCC
inlining workarounds. It caused regressions in distro build and other
kernel tooling environments, and the GCC project was very receptive to
fixing the underlying inliner weaknesses - so as time ran out we
decided to do a reasonably straightforward revert of the patches. The
plan is to rely on the 'asm inline' GCC 9 feature, which might be
backported to GCC 8 and could thus become reasonably widely available
on modern distros.
Other than those reverts, there's misc fixes from all around the
place.
I wish our final x86 pull request for v4.20 was smaller..."
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs"
Revert "x86/objtool: Use asm macros to work around GCC inlining bugs"
Revert "x86/refcount: Work around GCC inlining bug"
Revert "x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs"
Revert "x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs"
Revert "x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops"
Revert "x86/extable: Macrofy inline assembly code to work around GCC inlining bugs"
Revert "x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs"
Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"
x86/mtrr: Don't copy uninitialized gentry fields back to userspace
x86/fsgsbase/64: Fix the base write helper functions
x86/mm/cpa: Fix cpa_flush_array() TLB invalidation
x86/vdso: Pass --eh-frame-hdr to the linker
x86/mm: Fix decoy address handling vs 32-bit builds
x86/intel_rdt: Ensure a CPU remains online for the region's pseudo-locking sequence
x86/dump_pagetables: Fix LDT remap address marker
x86/mm: Fix guard hole handling
____kvm_handle_fault_on_reboot() provides a generic exception fixup
handler that is used to cleanly handle faults on VMX/SVM instructions
during reboot (or at least try to). If there isn't a reboot in
progress, ____kvm_handle_fault_on_reboot() treats any exception as
fatal to KVM and invokes kvm_spurious_fault(), which in turn generates
a BUG() to get a stack trace and die.
When it was originally added by commit 4ecac3fd6d ("KVM: Handle
virtualization instruction #UD faults during reboot"), the "call" to
kvm_spurious_fault() was handcoded as PUSH+JMP, where the PUSH'd value
is the RIP of the faulting instructing.
The PUSH+JMP trickery is necessary because the exception fixup handler
code lies outside of its associated function, e.g. right after the
function. An actual CALL from the .fixup code would show a slightly
bogus stack trace, e.g. an extra "random" function would be inserted
into the trace, as the return RIP on the stack would point to no known
function (and the unwinder will likely try to guess who owns the RIP).
Unfortunately, the JMP was replaced with a CALL when the macro was
reworked to not spin indefinitely during reboot (commit b7c4145ba2
"KVM: Don't spin on virt instruction faults during reboot"). This
causes the aforementioned behavior where a bogus function is inserted
into the stack trace, e.g. my builds like to blame free_kvm_area().
Revert the CALL back to a JMP. The changelog for commit b7c4145ba2
("KVM: Don't spin on virt instruction faults during reboot") contains
nothing that indicates the switch to CALL was deliberate. This is
backed up by the fact that the PUSH <insn RIP> was left intact.
Note that an alternative to the PUSH+JMP magic would be to JMP back
to the "real" code and CALL from there, but that would require adding
a JMP in the non-faulting path to avoid calling kvm_spurious_fault()
and would add no value, i.e. the stack trace would be the same.
Using CALL:
------------[ cut here ]------------
kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356!
invalid opcode: 0000 [#1] SMP
CPU: 4 PID: 1057 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm]
Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41
RSP: 0018:ffffc900004bbcc8 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff888273fd8000 R08: 00000000000003e8 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000371fb0
R13: 0000000000000000 R14: 000000026d763cf4 R15: ffff888273fd8000
FS: 00007f3d69691700(0000) GS:ffff888277800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f89bc56fe0 CR3: 0000000271a5a001 CR4: 0000000000362ee0
Call Trace:
free_kvm_area+0x1044/0x43ea [kvm_intel]
? vmx_vcpu_run+0x156/0x630 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? __set_task_blocked+0x38/0x90
? __set_current_blocked+0x50/0x60
? __fpu__restore_sig+0x97/0x490
? do_vfs_ioctl+0xa1/0x620
? __x64_sys_futex+0x89/0x180
? ksys_ioctl+0x66/0x70
? __x64_sys_ioctl+0x16/0x20
? do_syscall_64+0x4f/0x100
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc
---[ end trace 9775b14b123b1713 ]---
Using JMP:
------------[ cut here ]------------
kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356!
invalid opcode: 0000 [#1] SMP
CPU: 6 PID: 1067 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm]
Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41
RSP: 0018:ffffc90000497cd0 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff88827058bd40 R08: 00000000000003e8 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000369fb0
R13: 0000000000000000 R14: 00000003c8fc6642 R15: ffff88827058bd40
FS: 00007f3d7219e700(0000) GS:ffff888277900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f3d64001000 CR3: 0000000271c6b004 CR4: 0000000000362ee0
Call Trace:
vmx_vcpu_run+0x156/0x630 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? __set_task_blocked+0x38/0x90
? __set_current_blocked+0x50/0x60
? __fpu__restore_sig+0x97/0x490
? do_vfs_ioctl+0xa1/0x620
? __x64_sys_futex+0x89/0x180
? ksys_ioctl+0x66/0x70
? __x64_sys_ioctl+0x16/0x20
? do_syscall_64+0x4f/0x100
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc
---[ end trace f9daedb85ab3ddba ]---
Fixes: b7c4145ba2 ("KVM: Don't spin on virt instruction faults during reboot")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recently the minimum required version of binutils was changed to 2.20,
which supports all SVM instruction mnemonics. The patch removes
all .byte #defines and uses real instruction mnemonics instead.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The patch is to make kvm_set_spte_hva() return int and caller can
check return value to determine flush tlb or not.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V provides HvFlushGuestAddressList() hypercall to flush EPT tlb
with specified ranges. This patch is to add the hypercall support.
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add flush range call back in the kvm_x86_ops and platform can use it
to register its associated function. The parameter "kvm_tlb_range"
accepts a single range and flush list which contains a list of ranges.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose Intel Processor Trace to guest only when
the PT works in Host-Guest mode.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel Processor Trace virtualization can be work in one
of 2 possible modes:
a. System-Wide mode (default):
When the host configures Intel PT to collect trace packets
of the entire system, it can leave the relevant VMX controls
clear to allow VMX-specific packets to provide information
across VMX transitions.
KVM guest will not aware this feature in this mode and both
host and KVM guest trace will output to host buffer.
b. Host-Guest mode:
Host can configure trace-packet generation while in
VMX non-root operation for guests and root operation
for native executing normally.
Intel PT will be exposed to KVM guest in this mode, and
the trace output to respective buffer of host and guest.
In this mode, tht status of PT will be saved and disabled
before VM-entry and restored after VM-exit if trace
a virtual machine.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds support for "output to Trace Transport subsystem"
capability of Intel PT. It means that PT can output its
trace to an MMIO address range rather than system memory buffer.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add bit definitions for Intel PT MSRs to support trace output
directed to the memeory subsystem and holds a count if packet
bytes that have been sent out.
These are required by the upcoming PT support in KVM guests
for MSRs read/write emulation.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
intel_pt_validate_hw_cap() validates whether a given PT capability is
supported by the hardware. It checks the PT capability array which
reflects the capabilities of the hardware on which the code is executed.
For setting up PT for KVM guests this is not correct as the capability
array for the guest can be different from the host array.
Provide a new function to check against a given capability array.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
pt_cap_get() is required by the upcoming PT support in KVM guests.
Export it and move the capabilites enum to a global header.
As a global functions, "pt_*" is already used for ptrace and
other things, so it makes sense to use "intel_pt_*" as a prefix.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Intel Processor Trace (PT) MSR bit defines are in a private
header. The upcoming support for PT virtualization requires these defines
to be accessible from KVM code.
Move them to the global MSR header file.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We are compiling PCI code today for systems with ACPI and no PCI
device present. Remove the useless code and reduce the tight
dependency.
Signed-off-by: Sinan Kaya <okaya@kernel.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # PCI parts
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>