Commit Graph

129 Commits

Author SHA1 Message Date
Paul E. McKenney
2c42818e96 rcu: Abstract common code for RCU grace-period-wait primitives
Pull the code that waits for an RCU grace period into a single function,
which is then called by synchronize_rcu() and friends in the case of
TREE_RCU and TREE_PREEMPT_RCU, and from rcu_barrier() and friends in
the case of TINY_RCU and TINY_PREEMPT_RCU.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-09-28 21:36:42 -07:00
Shaohua Li
1eb521210a rcu: Avoid unnecessary self-wakeup of per-CPU kthreads
There are a number of cases where the RCU can find additional work
for the per-CPU kthread within the context of that per-CPU kthread.
In such cases, the per-CPU kthread is already running, so attempting
to wake itself up does nothing except waste CPU cycles.  This commit
therefore checks to see if it is in the per-CPU kthread context,
omitting the wakeup in this case.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-09-28 21:36:34 -07:00
Eric Dumazet
1f28809480 rcu: Use kthread_create_on_node()
Commit a26ac2455f (move TREE_RCU from softirq to kthread) added
per-CPU kthreads.  However, kthread creation uses kthread_create(), which
can put the kthread's stack and task struct on the wrong NUMA node.
Therefore, use kthread_create_on_node() instead of kthread_create()
so that the stacks and task structs are placed on the correct NUMA node.

A similar change was carried out in commit 94dcf29a11 (kthread:
use kthread_create_on_node()).

Also change rcutorture's priority-boost-test kthread creation.

Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
CC: Tejun Heo <tj@kernel.org>
CC: Rusty Russell <rusty@rustcorp.com.au>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Andi Kleen <ak@linux.intel.com>
CC: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-09-28 21:36:33 -07:00
Peter Zijlstra
ec433f0c51 softirq,rcu: Inform RCU of irq_exit() activity
The rcu_read_unlock_special() function relies on in_irq() to exclude
scheduler activity from interrupt level.  This fails because exit_irq()
can invoke the scheduler after clearing the preempt_count() bits that
in_irq() uses to determine that it is at interrupt level.  This situation
can result in failures as follows:

 $task			IRQ		SoftIRQ

 rcu_read_lock()

 /* do stuff */

 <preempt> |= UNLOCK_BLOCKED

 rcu_read_unlock()
   --t->rcu_read_lock_nesting

			irq_enter();
			/* do stuff, don't use RCU */
			irq_exit();
			  sub_preempt_count(IRQ_EXIT_OFFSET);
			  invoke_softirq()

					ttwu();
					  spin_lock_irq(&pi->lock)
					  rcu_read_lock();
					  /* do stuff */
					  rcu_read_unlock();
					    rcu_read_unlock_special()
					      rcu_report_exp_rnp()
					        ttwu()
					          spin_lock_irq(&pi->lock) /* deadlock */

   rcu_read_unlock_special(t);

Ed can simply trigger this 'easy' because invoke_softirq() immediately
does a ttwu() of ksoftirqd/# instead of doing the in-place softirq stuff
first, but even without that the above happens.

Cure this by also excluding softirqs from the
rcu_read_unlock_special() handler and ensuring the force_irqthreads
ksoftirqd/# wakeup is done from full softirq context.

[ Alternatively, delaying the ->rcu_read_lock_nesting decrement
  until after the special handling would make the thing more robust
  in the face of interrupts as well.  And there is a separate patch
  for that. ]

Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-and-tested-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-07-20 10:50:12 -07:00
Paul E. McKenney
10f39bb1b2 rcu: protect __rcu_read_unlock() against scheduler-using irq handlers
The addition of RCU read-side critical sections within runqueue and
priority-inheritance lock critical sections introduced some deadlock
cycles, for example, involving interrupts from __rcu_read_unlock()
where the interrupt handlers call wake_up().  This situation can cause
the instance of __rcu_read_unlock() invoked from interrupt to do some
of the processing that would otherwise have been carried out by the
task-level instance of __rcu_read_unlock().  When the interrupt-level
instance of __rcu_read_unlock() is called with a scheduler lock held
from interrupt-entry/exit situations where in_irq() returns false,
deadlock can result.

This commit resolves these deadlocks by using negative values of
the per-task ->rcu_read_lock_nesting counter to indicate that an
instance of __rcu_read_unlock() is in flight, which in turn prevents
instances from interrupt handlers from doing any special processing.
This patch is inspired by Steven Rostedt's earlier patch that similarly
made __rcu_read_unlock() guard against interrupt-mediated recursion
(see https://lkml.org/lkml/2011/7/15/326), but this commit refines
Steven's approach to avoid the need for preemption disabling on the
__rcu_read_unlock() fastpath and to also avoid the need for manipulating
a separate per-CPU variable.

This patch avoids need for preempt_disable() by instead using negative
values of the per-task ->rcu_read_lock_nesting counter.  Note that nested
rcu_read_lock()/rcu_read_unlock() pairs are still permitted, but they will
never see ->rcu_read_lock_nesting go to zero, and will therefore never
invoke rcu_read_unlock_special(), thus preventing them from seeing the
RCU_READ_UNLOCK_BLOCKED bit should it be set in ->rcu_read_unlock_special.
This patch also adds a check for ->rcu_read_unlock_special being negative
in rcu_check_callbacks(), thus preventing the RCU_READ_UNLOCK_NEED_QS
bit from being set should a scheduling-clock interrupt occur while
__rcu_read_unlock() is exiting from an outermost RCU read-side critical
section.

Of course, __rcu_read_unlock() can be preempted during the time that
->rcu_read_lock_nesting is negative.  This could result in the setting
of the RCU_READ_UNLOCK_BLOCKED bit after __rcu_read_unlock() checks it,
and would also result it this task being queued on the corresponding
rcu_node structure's blkd_tasks list.  Therefore, some later RCU read-side
critical section would enter rcu_read_unlock_special() to clean up --
which could result in deadlock if that critical section happened to be in
the scheduler where the runqueue or priority-inheritance locks were held.

This situation is dealt with by making rcu_preempt_note_context_switch()
check for negative ->rcu_read_lock_nesting, thus refraining from
queuing the task (and from setting RCU_READ_UNLOCK_BLOCKED) if we are
already exiting from the outermost RCU read-side critical section (in
other words, we really are no longer actually in that RCU read-side
critical section).  In addition, rcu_preempt_note_context_switch()
invokes rcu_read_unlock_special() to carry out the cleanup in this case,
which clears out the ->rcu_read_unlock_special bits and dequeues the task
(if necessary), in turn avoiding needless delay of the current RCU grace
period and needless RCU priority boosting.

It is still illegal to call rcu_read_unlock() while holding a scheduler
lock if the prior RCU read-side critical section has ever had either
preemption or irqs enabled.  However, the common use case is legal,
namely where then entire RCU read-side critical section executes with
irqs disabled, for example, when the scheduler lock is held across the
entire lifetime of the RCU read-side critical section.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-07-20 10:50:11 -07:00
Paul E. McKenney
be0e1e21ef rcu: Streamline code produced by __rcu_read_unlock()
Given some common flag combinations, particularly -Os, gcc will inline
rcu_read_unlock_special() despite its being in an unlikely() clause.
Use noinline to prohibit this misoptimization.

In addition, move the second barrier() in __rcu_read_unlock() so that
it is not on the common-case code path.  This will allow the compiler to
generate better code for the common-case path through __rcu_read_unlock().

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
2011-07-19 21:38:53 -07:00
Paul E. McKenney
7765be2fec rcu: Fix RCU_BOOST race handling current->rcu_read_unlock_special
The RCU_BOOST commits for TREE_PREEMPT_RCU introduced an other-task
write to a new RCU_READ_UNLOCK_BOOSTED bit in the task_struct structure's
->rcu_read_unlock_special field, but, as noted by Steven Rostedt, without
correctly synchronizing all accesses to ->rcu_read_unlock_special.
This could result in bits in ->rcu_read_unlock_special being spuriously
set and cleared due to conflicting accesses, which in turn could result
in deadlocks between the rcu_node structure's ->lock and the scheduler's
rq and pi locks.  These deadlocks would result from RCU incorrectly
believing that the just-ended RCU read-side critical section had been
preempted and/or boosted.  If that RCU read-side critical section was
executed with either rq or pi locks held, RCU's ensuing (incorrect)
calls to the scheduler would cause the scheduler to attempt to once
again acquire the rq and pi locks, resulting in deadlock.  More complex
deadlock cycles are also possible, involving multiple rq and pi locks
as well as locks from multiple rcu_node structures.

This commit fixes synchronization by creating ->rcu_boosted field in
task_struct that is accessed and modified only when holding the ->lock
in the rcu_node structure on which the task is queued (on that rcu_node
structure's ->blkd_tasks list).  This results in tasks accessing only
their own current->rcu_read_unlock_special fields, making unsynchronized
access once again legal, and keeping the rcu_read_unlock() fastpath free
of atomic instructions and memory barriers.

The reason that the rcu_read_unlock() fastpath does not need to access
the new current->rcu_boosted field is that this new field cannot
be non-zero unless the RCU_READ_UNLOCK_BLOCKED bit is set in the
current->rcu_read_unlock_special field.  Therefore, rcu_read_unlock()
need only test current->rcu_read_unlock_special: if that is zero, then
current->rcu_boosted must also be zero.

This bug does not affect TINY_PREEMPT_RCU because this implementation
of RCU accesses current->rcu_read_unlock_special with irqs disabled,
thus preventing races on the !SMP systems that TINY_PREEMPT_RCU runs on.

Maybe-reported-by: Dave Jones <davej@redhat.com>
Maybe-reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-19 21:38:52 -07:00
Paul E. McKenney
131906b006 rcu: decrease rcu_report_exp_rnp coupling with scheduler
PREEMPT_RCU read-side critical sections blocking an expedited grace
period invoke rcu_report_exp_rnp().  When the last such critical section
has completed, rcu_report_exp_rnp() invokes the scheduler to wake up the
task that invoked synchronize_rcu_expedited() -- needlessly holding the
root rcu_node structure's lock while doing so, thus needlessly providing
a way for RCU and the scheduler to deadlock.

This commit therefore releases the root rcu_node structure's lock before
calling wake_up().

Reported-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-07-19 21:38:51 -07:00
Paul E. McKenney
b0d304172f rcu: Prevent RCU callbacks from executing before scheduler initialized
Under some rare but real combinations of configuration parameters, RCU
callbacks are posted during early boot that use kernel facilities that
are not yet initialized.  Therefore, when these callbacks are invoked,
hard hangs and crashes ensue.  This commit therefore prevents RCU
callbacks from being invoked until after the scheduler is fully up and
running, as in after multiple tasks have been spawned.

It might well turn out that a better approach is to identify the specific
RCU callbacks that are causing this problem, but that discussion will
wait until such time as someone really needs an RCU callback to be invoked
(as opposed to merely registered) during early boot.

Reported-by: julie Sullivan <kernelmail.jms@gmail.com>
Reported-by: RKK <kulkarni.ravi4@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: julie Sullivan <kernelmail.jms@gmail.com>
Tested-by: RKK <kulkarni.ravi4@gmail.com>
2011-07-13 08:17:56 -07:00
Paul E. McKenney
f8b7fc6b51 rcu: Move RCU_BOOST #ifdefs to header file
The commit "use softirq instead of kthreads except when RCU_BOOST=y"
just applied #ifdef in place.  This commit is a cleanup that moves
the newly #ifdef'ed code to the header file kernel/rcutree_plugin.h.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-16 16:12:05 -07:00
Paul E. McKenney
a46e0899ee rcu: use softirq instead of kthreads except when RCU_BOOST=y
This patch #ifdefs RCU kthreads out of the kernel unless RCU_BOOST=y,
thus eliminating context-switch overhead if RCU priority boosting has
not been configured.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-15 23:07:21 -07:00
Shaohua Li
09223371de rcu: Use softirq to address performance regression
Commit a26ac2455ffcf3(rcu: move TREE_RCU from softirq to kthread)
introduced performance regression. In an AIM7 test, this commit degraded
performance by about 40%.

The commit runs rcu callbacks in a kthread instead of softirq. We observed
high rate of context switch which is caused by this. Out test system has
64 CPUs and HZ is 1000, so we saw more than 64k context switch per second
which is caused by RCU's per-CPU kthread.  A trace showed that most of
the time the RCU per-CPU kthread doesn't actually handle any callbacks,
but instead just does a very small amount of work handling grace periods.
This means that RCU's per-CPU kthreads are making the scheduler do quite
a bit of work in order to allow a very small amount of RCU-related
processing to be done.

Alex Shi's analysis determined that this slowdown is due to lock
contention within the scheduler.  Unfortunately, as Peter Zijlstra points
out, the scheduler's real-time semantics require global action, which
means that this contention is inherent in real-time scheduling.  (Yes,
perhaps someone will come up with a workaround -- otherwise, -rt is not
going to do well on large SMP systems -- but this patch will work around
this issue in the meantime.  And "the meantime" might well be forever.)

This patch therefore re-introduces softirq processing to RCU, but only
for core RCU work.  RCU callbacks are still executed in kthread context,
so that only a small amount of RCU work runs in softirq context in the
common case.  This should minimize ksoftirqd execution, allowing us to
skip boosting of ksoftirqd for CONFIG_RCU_BOOST=y kernels.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Tested-by: "Alex,Shi" <alex.shi@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-14 15:25:39 -07:00
Paul E. McKenney
9a43273690 rcu: Simplify curing of load woes
Make the functions creating the kthreads wake them up.  Leverage the
fact that the per-node and boost kthreads can run anywhere, thus
dispensing with the need to wake them up once the incoming CPU has
gone fully online.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Daniel J Blueman <daniel.blueman@gmail.com>
2011-06-14 15:25:15 -07:00
Peter Zijlstra
d72bce0e67 rcu: Cure load woes
Commit cc3ce5176d (rcu: Start RCU kthreads in TASK_INTERRUPTIBLE
state) fudges a sleeping task' state, resulting in the scheduler seeing
a TASK_UNINTERRUPTIBLE task going to sleep, but a TASK_INTERRUPTIBLE
task waking up. The result is unbalanced load calculation.

The problem that patch tried to address is that the RCU threads could
stay in UNINTERRUPTIBLE state for quite a while and triggering the hung
task detector due to on-demand wake-ups.

Cure the problem differently by always giving the tasks at least one
wake-up once the CPU is fully up and running, this will kick them out of
the initial UNINTERRUPTIBLE state and into the regular INTERRUPTIBLE
wait state.

[ The alternative would be teaching kthread_create() to start threads as
  INTERRUPTIBLE but that needs a tad more thought. ]

Reported-by: Damien Wyart <damien.wyart@free.fr>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul E. McKenney <paul.mckenney@linaro.org>
Link: http://lkml.kernel.org/r/1306755291.1200.2872.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-31 10:01:48 +02:00
Paul E. McKenney
cc3ce5176d rcu: Start RCU kthreads in TASK_INTERRUPTIBLE state
Upon creation, kthreads are in TASK_UNINTERRUPTIBLE state, which can
result in softlockup warnings.  Because some of RCU's kthreads can
legitimately be idle indefinitely, start them in TASK_INTERRUPTIBLE
state in order to avoid those warnings.

Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-28 17:41:56 +02:00
Peter Zijlstra
08bca60a69 rcu: Remove waitqueue usage for cpu, node, and boost kthreads
It is not necessary to use waitqueues for the RCU kthreads because
we always know exactly which thread is to be awakened.  In addition,
wake_up() only issues an actual wakeup when there is a thread waiting on
the queue, which was why there was an extra explicit wake_up_process()
to get the RCU kthreads started.

Eliminating the waitqueues (and wake_up()) in favor of wake_up_process()
eliminates the need for the initial wake_up_process() and also shrinks
the data structure size a bit.  The wakeup logic is placed in a new
rcu_wait() macro.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-28 17:41:52 +02:00
Paul E. McKenney
23b5c8fa01 rcu: Decrease memory-barrier usage based on semi-formal proof
(Note: this was reverted, and is now being re-applied in pieces, with
this being the fifth and final piece.  See below for the reason that
it is now felt to be safe to re-apply this.)

Commit d09b62d fixed grace-period synchronization, but left some smp_mb()
invocations in rcu_process_callbacks() that are no longer needed, but
sheer paranoia prevented them from being removed.  This commit removes
them and provides a proof of correctness in their absence.  It also adds
a memory barrier to rcu_report_qs_rsp() immediately before the update to
rsp->completed in order to handle the theoretical possibility that the
compiler or CPU might move massive quantities of code into a lock-based
critical section.  This also proves that the sheer paranoia was not
entirely unjustified, at least from a theoretical point of view.

In addition, the old dyntick-idle synchronization depended on the fact
that grace periods were many milliseconds in duration, so that it could
be assumed that no dyntick-idle CPU could reorder a memory reference
across an entire grace period.  Unfortunately for this design, the
addition of expedited grace periods breaks this assumption, which has
the unfortunate side-effect of requiring atomic operations in the
functions that track dyntick-idle state for RCU.  (There is some hope
that the algorithms used in user-level RCU might be applied here, but
some work is required to handle the NMIs that user-space applications
can happily ignore.  For the short term, better safe than sorry.)

This proof assumes that neither compiler nor CPU will allow a lock
acquisition and release to be reordered, as doing so can result in
deadlock.  The proof is as follows:

1.	A given CPU declares a quiescent state under the protection of
	its leaf rcu_node's lock.

2.	If there is more than one level of rcu_node hierarchy, the
	last CPU to declare a quiescent state will also acquire the
	->lock of the next rcu_node up in the hierarchy,  but only
	after releasing the lower level's lock.  The acquisition of this
	lock clearly cannot occur prior to the acquisition of the leaf
	node's lock.

3.	Step 2 repeats until we reach the root rcu_node structure.
	Please note again that only one lock is held at a time through
	this process.  The acquisition of the root rcu_node's ->lock
	must occur after the release of that of the leaf rcu_node.

4.	At this point, we set the ->completed field in the rcu_state
	structure in rcu_report_qs_rsp().  However, if the rcu_node
	hierarchy contains only one rcu_node, then in theory the code
	preceding the quiescent state could leak into the critical
	section.  We therefore precede the update of ->completed with a
	memory barrier.  All CPUs will therefore agree that any updates
	preceding any report of a quiescent state will have happened
	before the update of ->completed.

5.	Regardless of whether a new grace period is needed, rcu_start_gp()
	will propagate the new value of ->completed to all of the leaf
	rcu_node structures, under the protection of each rcu_node's ->lock.
	If a new grace period is needed immediately, this propagation
	will occur in the same critical section that ->completed was
	set in, but courtesy of the memory barrier in #4 above, is still
	seen to follow any pre-quiescent-state activity.

6.	When a given CPU invokes __rcu_process_gp_end(), it becomes
	aware of the end of the old grace period and therefore makes
	any RCU callbacks that were waiting on that grace period eligible
	for invocation.

	If this CPU is the same one that detected the end of the grace
	period, and if there is but a single rcu_node in the hierarchy,
	we will still be in the single critical section.  In this case,
	the memory barrier in step #4 guarantees that all callbacks will
	be seen to execute after each CPU's quiescent state.

	On the other hand, if this is a different CPU, it will acquire
	the leaf rcu_node's ->lock, and will again be serialized after
	each CPU's quiescent state for the old grace period.

On the strength of this proof, this commit therefore removes the memory
barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp().
The effect is to reduce the number of memory barriers by one and to
reduce the frequency of execution from about once per scheduling tick
per CPU to once per grace period.

This was reverted do to hangs found during testing by Yinghai Lu and
Ingo Molnar.  Frederic Weisbecker supplied Yinghai with tracing that
located the underlying problem, and Frederic also provided the fix.

The underlying problem was that the HARDIRQ_ENTER() macro from
lib/locking-selftest.c invoked irq_enter(), which in turn invokes
rcu_irq_enter(), but HARDIRQ_EXIT() invoked __irq_exit(), which
does not invoke rcu_irq_exit().  This situation resulted in calls
to rcu_irq_enter() that were not balanced by the required calls to
rcu_irq_exit().  Therefore, after these locking selftests completed,
RCU's dyntick-idle nesting count was a large number (for example,
72), which caused RCU to to conclude that the affected CPU was not in
dyntick-idle mode when in fact it was.

RCU would therefore incorrectly wait for this dyntick-idle CPU, resulting
in hangs.

In contrast, with Frederic's patch, which replaces the irq_enter()
in HARDIRQ_ENTER() with an __irq_enter(), these tests don't ever call
either rcu_irq_enter() or rcu_irq_exit(), which works because the CPU
running the test is already marked as not being in dyntick-idle mode.
This means that the rcu_irq_enter() and rcu_irq_exit() calls and RCU
then has no problem working out which CPUs are in dyntick-idle mode and
which are not.

The reason that the imbalance was not noticed before the barrier patch
was applied is that the old implementation of rcu_enter_nohz() ignored
the nesting depth.  This could still result in delays, but much shorter
ones.  Whenever there was a delay, RCU would IPI the CPU with the
unbalanced nesting level, which would eventually result in rcu_enter_nohz()
being called, which in turn would force RCU to see that the CPU was in
dyntick-idle mode.

The reason that very few people noticed the problem is that the mismatched
irq_enter() vs. __irq_exit() occured only when the kernel was built with
CONFIG_DEBUG_LOCKING_API_SELFTESTS.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-26 09:42:23 -07:00
Paul E. McKenney
80d02085d9 Revert "rcu: Decrease memory-barrier usage based on semi-formal proof"
This reverts commit e59fb3120b.

This reversion was due to (extreme) boot-time slowdowns on SPARC seen by
Yinghai Lu and on x86 by Ingo
.
This is a non-trivial reversion due to intervening commits.

Conflicts:

	Documentation/RCU/trace.txt
	kernel/rcutree.c

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-19 23:25:29 +02:00
Paul E. McKenney
1217ed1ba5 rcu: permit rcu_read_unlock() to be called while holding runqueue locks
Avoid calling into the scheduler while holding core RCU locks.  This
allows rcu_read_unlock() to be called while holding the runqueue locks,
but only as long as there was no chance of the RCU read-side critical
section having been preempted.  (Otherwise, if RCU priority boosting
is enabled, rcu_read_unlock() might call into the scheduler in order to
unboost itself, which might allows self-deadlock on the runqueue locks
within the scheduler.)

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-07 22:50:45 -07:00
Paul E. McKenney
6cc68793e3 rcu: fix spelling
The "preemptible" spelling is preferable.  May as well fix it.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:59 -07:00
Lai Jiangshan
13491a0ee1 rcu: call __rcu_read_unlock() in exit_rcu for tree RCU
Using __rcu_read_lock() in place of rcu_read_lock() leaves any debug
state as it really should be, namely with the lock still held.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:58 -07:00
Paul E. McKenney
a9f4793d89 rcu: fix tracing bug thinko on boost-balk attribution
The rcu_initiate_boost_trace() function mis-attributed refusals to
initiate RCU priority boosting that were in fact due to its not yet
being time to boost.  This patch fixes the faulty comparison.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-05 23:16:56 -07:00
Paul E. McKenney
d71df90ead rcu: add tracing for RCU's kthread run states.
Add tracing to help debugging situations when RCU's kthreads are not
running but are supposed to be.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:56 -07:00
Paul E. McKenney
0ea1f2ebeb rcu: Add boosting to TREE_PREEMPT_RCU tracing
Includes total number of tasks boosted, number boosted on behalf of each
of normal and expedited grace periods, and statistics on attempts to
initiate boosting that failed for various reasons.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:55 -07:00
Paul E. McKenney
0f962a5e72 rcu: Force per-rcu_node kthreads off of the outgoing CPU
The scheduler has had some heartburn in the past when too many real-time
kthreads were affinitied to the outgoing CPU.  So, this commit lightens
the load by forcing the per-rcu_node and the boost kthreads off of the
outgoing CPU.  Note that RCU's per-CPU kthread remains on the outgoing
CPU until the bitter end, as it must in order to preserve correctness.

Also avoid disabling hardirqs across calls to set_cpus_allowed_ptr(),
given that this function can block.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-05 23:16:55 -07:00
Paul E. McKenney
27f4d28057 rcu: priority boosting for TREE_PREEMPT_RCU
Add priority boosting for TREE_PREEMPT_RCU, similar to that for
TINY_PREEMPT_RCU.  This is enabled by the default-off RCU_BOOST
kernel parameter.  The priority to which to boost preempted
RCU readers is controlled by the RCU_BOOST_PRIO kernel parameter
(defaulting to real-time priority 1) and the time to wait before
boosting the readers who are blocking a given grace period is
controlled by the RCU_BOOST_DELAY kernel parameter (defaulting to
500 milliseconds).

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:55 -07:00
Paul E. McKenney
a26ac2455f rcu: move TREE_RCU from softirq to kthread
If RCU priority boosting is to be meaningful, callback invocation must
be boosted in addition to preempted RCU readers.  Otherwise, in presence
of CPU real-time threads, the grace period ends, but the callbacks don't
get invoked.  If the callbacks don't get invoked, the associated memory
doesn't get freed, so the system is still subject to OOM.

But it is not reasonable to priority-boost RCU_SOFTIRQ, so this commit
moves the callback invocations to a kthread, which can be boosted easily.

Also add comments and properly synchronized all accesses to
rcu_cpu_kthread_task, as suggested by Lai Jiangshan.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:54 -07:00
Paul E. McKenney
12f5f524ca rcu: merge TREE_PREEPT_RCU blocked_tasks[] lists
Combine the current TREE_PREEMPT_RCU ->blocked_tasks[] lists in the
rcu_node structure into a single ->blkd_tasks list with ->gp_tasks
and ->exp_tasks tail pointers.  This is in preparation for RCU priority
boosting, which will add a third dimension to the combinatorial explosion
in the ->blocked_tasks[] case, but simply a third pointer in the new
->blkd_tasks case.

Also update documentation to reflect blocked_tasks[] merge

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:54 -07:00
Paul E. McKenney
e59fb3120b rcu: Decrease memory-barrier usage based on semi-formal proof
Commit d09b62d fixed grace-period synchronization, but left some smp_mb()
invocations in rcu_process_callbacks() that are no longer needed, but
sheer paranoia prevented them from being removed.  This commit removes
them and provides a proof of correctness in their absence.  It also adds
a memory barrier to rcu_report_qs_rsp() immediately before the update to
rsp->completed in order to handle the theoretical possibility that the
compiler or CPU might move massive quantities of code into a lock-based
critical section.  This also proves that the sheer paranoia was not
entirely unjustified, at least from a theoretical point of view.

In addition, the old dyntick-idle synchronization depended on the fact
that grace periods were many milliseconds in duration, so that it could
be assumed that no dyntick-idle CPU could reorder a memory reference
across an entire grace period.  Unfortunately for this design, the
addition of expedited grace periods breaks this assumption, which has
the unfortunate side-effect of requiring atomic operations in the
functions that track dyntick-idle state for RCU.  (There is some hope
that the algorithms used in user-level RCU might be applied here, but
some work is required to handle the NMIs that user-space applications
can happily ignore.  For the short term, better safe than sorry.)

This proof assumes that neither compiler nor CPU will allow a lock
acquisition and release to be reordered, as doing so can result in
deadlock.  The proof is as follows:

1.	A given CPU declares a quiescent state under the protection of
	its leaf rcu_node's lock.

2.	If there is more than one level of rcu_node hierarchy, the
	last CPU to declare a quiescent state will also acquire the
	->lock of the next rcu_node up in the hierarchy,  but only
	after releasing the lower level's lock.  The acquisition of this
	lock clearly cannot occur prior to the acquisition of the leaf
	node's lock.

3.	Step 2 repeats until we reach the root rcu_node structure.
	Please note again that only one lock is held at a time through
	this process.  The acquisition of the root rcu_node's ->lock
	must occur after the release of that of the leaf rcu_node.

4.	At this point, we set the ->completed field in the rcu_state
	structure in rcu_report_qs_rsp().  However, if the rcu_node
	hierarchy contains only one rcu_node, then in theory the code
	preceding the quiescent state could leak into the critical
	section.  We therefore precede the update of ->completed with a
	memory barrier.  All CPUs will therefore agree that any updates
	preceding any report of a quiescent state will have happened
	before the update of ->completed.

5.	Regardless of whether a new grace period is needed, rcu_start_gp()
	will propagate the new value of ->completed to all of the leaf
	rcu_node structures, under the protection of each rcu_node's ->lock.
	If a new grace period is needed immediately, this propagation
	will occur in the same critical section that ->completed was
	set in, but courtesy of the memory barrier in #4 above, is still
	seen to follow any pre-quiescent-state activity.

6.	When a given CPU invokes __rcu_process_gp_end(), it becomes
	aware of the end of the old grace period and therefore makes
	any RCU callbacks that were waiting on that grace period eligible
	for invocation.

	If this CPU is the same one that detected the end of the grace
	period, and if there is but a single rcu_node in the hierarchy,
	we will still be in the single critical section.  In this case,
	the memory barrier in step #4 guarantees that all callbacks will
	be seen to execute after each CPU's quiescent state.

	On the other hand, if this is a different CPU, it will acquire
	the leaf rcu_node's ->lock, and will again be serialized after
	each CPU's quiescent state for the old grace period.

On the strength of this proof, this commit therefore removes the memory
barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp().
The effect is to reduce the number of memory barriers by one and to
reduce the frequency of execution from about once per scheduling tick
per CPU to once per grace period.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:54 -07:00
Paul E. McKenney
a00e0d714f rcu: Remove conditional compilation for RCU CPU stall warnings
The RCU CPU stall warnings can now be controlled using the
rcu_cpu_stall_suppress boot-time parameter or via the same parameter
from sysfs.  There is therefore no longer any reason to have
kernel config parameters for this feature.  This commit therefore
removes the RCU_CPU_STALL_DETECTOR and RCU_CPU_STALL_DETECTOR_RUNNABLE
kernel config parameters.  The RCU_CPU_STALL_TIMEOUT parameter remains
to allow the timeout to be tuned and the RCU_CPU_STALL_VERBOSE parameter
remains to allow task-stall information to be suppressed if desired.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-05 23:16:54 -07:00
Tejun Heo
e27fc9641e rcu: increase synchronize_sched_expedited() batching
The fix in commit #6a0cc49 requires more than three concurrent instances
of synchronize_sched_expedited() before batching is possible.  This
patch uses a ticket-counter-like approach that is also not unrelated to
Lai Jiangshan's Ring RCU to allow sharing of expedited grace periods even
when there are only two concurrent instances of synchronize_sched_expedited().

This commit builds on Tejun's original posting, which may be found at
http://lkml.org/lkml/2010/11/9/204, adding memory barriers, avoiding
overflow of signed integers (other than via atomic_t), and fixing the
detection of batching.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-12-17 12:34:08 -08:00
Paul E. McKenney
db3a892099 rcu: fix race condition in synchronize_sched_expedited()
The new (early 2010) implementation of synchronize_sched_expedited() uses
try_stop_cpu() to force a context switch on every CPU.  It also permits
concurrent calls to synchronize_sched_expedited() to share a single call
to try_stop_cpu() through use of an atomically incremented
synchronize_sched_expedited_count variable.  Unfortunately, this is
subject to failure as follows:

o	Task A invokes synchronize_sched_expedited(), try_stop_cpus()
	succeeds, but Task A is preempted before getting to the atomic
	increment of synchronize_sched_expedited_count.

o	Task B also invokes synchronize_sched_expedited(), with exactly
	the same outcome as Task A.

o	Task C also invokes synchronize_sched_expedited(), again with
	exactly the same outcome as Tasks A and B.

o	Task D also invokes synchronize_sched_expedited(), but only
	gets as far as acquiring the mutex within try_stop_cpus()
	before being preempted, interrupted, or otherwise delayed.

o	Task E also invokes synchronize_sched_expedited(), but only
	gets to the snapshotting of synchronize_sched_expedited_count.

o	Tasks A, B, and C all increment synchronize_sched_expedited_count.

o	Task E fails to get the mutex, so checks the new value
	of synchronize_sched_expedited_count.  It finds that the
	value has increased, so (wrongly) assumes that its work
	has been done, returning despite there having been no
	expedited grace period since it began.

The solution is to have the lowest-numbered CPU atomically increment
the synchronize_sched_expedited_count variable within the
synchronize_sched_expedited_cpu_stop() function, which is under
the protection of the mutex acquired by try_stop_cpus().  However, this
also requires that piggybacking tasks wait for three rather than two
instances of try_stop_cpu(), because we cannot control the order in
which the per-CPU callback function occur.

Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-11-29 22:02:00 -08:00
Paul E. McKenney
2d999e03b7 rcu: update documentation/comments for Lai's adoption patch
Lai's RCU-callback immediate-adoption patch changes the RCU tracing
output, so update tracing.txt.  Also update a few comments to clarify
the synchronization design.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-11-29 22:01:59 -08:00
Lai Jiangshan
29494be71a rcu,cleanup: simplify the code when cpu is dying
When we handle the CPU_DYING notifier, the whole system is stopped except
for the current CPU.  We therefore need no synchronization with the other
CPUs.  This allows us to move any orphaned RCU callbacks directly to the
list of any online CPU without needing to run them through the global
orphan lists.  These global orphan lists can therefore be dispensed with.
This commit makes thes changes, though currently victimizes CPU 0 @@@.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-11-29 22:01:58 -08:00
Lai Jiangshan
7b27d5475f rcu,cleanup: move synchronize_sched_expedited() out of sched.c
The first version of synchronize_sched_expedited() used the migration
code in the scheduler, and was therefore implemented in kernel/sched.c.
However, the more recent version of this code no longer uses the
migration code, so this commit moves it to the main RCU source files.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-11-29 22:01:58 -08:00
Paul E. McKenney
81a294c44e rcu: fix _oddness handling of verbose stall warnings
CONFIG_RCU_CPU_STALL_VERBOSE depends on CONFIG_TREE_PREEMPT_RCU, but
rcu_bootup_announce_oddness() complains if CONFIG_RCU_CPU_STALL_VERBOSE
is not set even in the case of CONFIG_TREE_RCU.  This commit therefore
fixes rcu_bootup_announce_oddness() to avoid insisting on impossibilities.

Reported-by: Guy Martin <gmsoft@tuxicoman.be>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-09-02 16:15:30 -07:00
Paul E. McKenney
80dcf60e6b rcu: apply TINY_PREEMPT_RCU read-side speedup to TREE_PREEMPT_RCU
Replace one of the ACCESS_ONCE() calls in each of __rcu_read_lock()
and __rcu_read_unlock() with barrier() as suggested by Steve Rostedt in
order to avoid the potential compiler-optimization-induced bug noted by
Mathieu Desnoyers.

Located-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-08-20 09:00:17 -07:00
Paul E. McKenney
7b0b759b65 rcu: combine duplicate code, courtesy of CONFIG_PREEMPT_RCU
The CONFIG_PREEMPT_RCU kernel configuration parameter was recently
re-introduced, but as an indication of the type of RCU (preemptible
vs. non-preemptible) instead of as selecting a given implementation.
This commit uses CONFIG_PREEMPT_RCU to combine duplicate code
from include/linux/rcutiny.h and include/linux/rcutree.h into
include/linux/rcupdate.h.  This commit also combines a few other pieces
of duplicate code that have accumulated.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-08-20 09:00:16 -07:00
Paul E. McKenney
53d84e004d rcu: permit suppressing current grace period's CPU stall warnings
When using a kernel debugger, a long sojourn in the debugger can get
you lots of RCU CPU stall warnings once you resume.  This might not be
helpful, especially if you are using the system console.  This patch
therefore allows RCU CPU stall warnings to be suppressed, but only for
the duration of the current set of grace periods.

This differs from Jason's original patch in that it adds support for
tiny RCU and preemptible RCU, and uses a slightly different method for
suppressing the RCU CPU stall warning messages.

Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Jason Wessel <jason.wessel@windriver.com>
2010-08-20 09:00:12 -07:00
Paul E. McKenney
77d8485a8b rcu: improve kerneldoc for rcu_read_lock(), call_rcu(), and synchronize_rcu()
Make it explicit that new RCU read-side critical sections that start
after call_rcu() and synchronize_rcu() start might still be running
after the end of the relevant grace period.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2010-08-19 17:18:02 -07:00
Lai Jiangshan
394f99a900 rcu: simplify the usage of percpu data
&percpu_data is compatible with allocated percpu data.

And we use it and remove the "->rda[NR_CPUS]" array, saving significant
storage on systems with large numbers of CPUs.  This does add an additional
level of indirection and thus an additional cache line referenced, but
because ->rda is not used on the read side, this is OK.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2010-08-19 17:18:01 -07:00
Paul E. McKenney
72d5a9f7a9 rcu: remove all rcu head initializations, except on_stack initializations
Remove all rcu head inits. We don't care about the RCU head state before passing
it to call_rcu() anyway. Only leave the "on_stack" variants so debugobjects can
keep track of objects on stack.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-05-11 16:10:47 -07:00
Paul E. McKenney
d822ed1094 rcu: fix build bug in RCU_FAST_NO_HZ builds
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-05-10 11:08:35 -07:00
Paul E. McKenney
77e38ed347 rcu: RCU_FAST_NO_HZ must check RCU dyntick state
The current version of RCU_FAST_NO_HZ reproduces the old CLASSIC_RCU
dyntick-idle bug, as it fails to detect CPUs that have interrupted
or NMIed out of dyntick-idle mode.  Fix this by making rcu_needs_cpu()
check the state in the per-CPU rcu_dynticks variables, thus correctly
detecting the dyntick-idle state from an RCU perspective.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-05-10 11:08:35 -07:00
Paul E. McKenney
26845c2860 rcu: print boot-time console messages if RCU configs out of ordinary
Print boot-time messages if tracing is enabled, if fanout is set
to non-default values, if exact fanout is specified, if accelerated
dyntick-idle grace periods have been enabled, if RCU-lockdep is enabled,
if rcutorture has been boot-time enabled, if the CPU stall detector has
been disabled, or if four-level hierarchy has been enabled.

This is all for TREE_RCU and TREE_PREEMPT_RCU.  TINY_RCU will be handled
separately, if at all.

Suggested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-05-10 11:08:34 -07:00
Paul E. McKenney
25502a6c13 rcu: refactor RCU's context-switch handling
The addition of preemptible RCU to treercu resulted in a bit of
confusion and inefficiency surrounding the handling of context switches
for RCU-sched and for RCU-preempt.  For RCU-sched, a context switch
is a quiescent state, pure and simple, just like it always has been.
For RCU-preempt, a context switch is in no way a quiescent state, but
special handling is required when a task blocks in an RCU read-side
critical section.

However, the callout from the scheduler and the outer loop in ksoftirqd
still calls something named rcu_sched_qs(), whose name is no longer
accurate.  Furthermore, when rcu_check_callbacks() notes an RCU-sched
quiescent state, it ends up unnecessarily (though harmlessly, aside
from the performance hit) enqueuing the current task if it happens to
be running in an RCU-preempt read-side critical section.  This not only
increases the maximum latency of scheduler_tick(), it also needlessly
increases the overhead of the next outermost rcu_read_unlock() invocation.

This patch addresses this situation by separating the notion of RCU's
context-switch handling from that of RCU-sched's quiescent states.
The context-switch handling is covered by rcu_note_context_switch() in
general and by rcu_preempt_note_context_switch() for preemptible RCU.
This permits rcu_sched_qs() to handle quiescent states and only quiescent
states.  It also reduces the maximum latency of scheduler_tick(), though
probably by much less than a microsecond.  Finally, it means that tasks
within preemptible-RCU read-side critical sections avoid incurring the
overhead of queuing unless there really is a context switch.

Suggested-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
2010-05-10 11:08:33 -07:00
Lai Jiangshan
5db356736a rcu: ignore offline CPUs in last non-dyntick-idle CPU check
Offline CPUs are not in nohz_cpu_mask, but can be ignored when checking
for the last non-dyntick-idle CPU.  This patch therefore only checks
online CPUs for not being dyntick idle, allowing fast entry into
full-system dyntick-idle state even when there are some offline CPUs.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-05-10 11:08:31 -07:00
Paul E. McKenney
622ea685f1 rcu: Fix holdoff for accelerated GPs for last non-dynticked CPU
Make the holdoff only happen when the full number of attempts
have been made.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1267311188-16603-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-28 09:17:42 +01:00
Paul E. McKenney
71da81324c rcu: Fix accelerated GPs for last non-dynticked CPU
This patch disables irqs across the call to rcu_needs_cpu().  It
also enforces a hold-off period so that the idle loop doesn't
softirq itself to death when there are lots of RCU callbacks in
flight on the last non-dynticked CPU.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1267231138-27856-3-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-27 09:53:53 +01:00
Paul E. McKenney
a47cd880b5 rcu: Fix accelerated grace periods for last non-dynticked CPU
It is invalid to invoke __rcu_process_callbacks() with irqs
disabled, so do it indirectly via raise_softirq().  This
requires a state-machine implementation to cycle through the
grace-period machinery the required number of times.

Located-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1267231138-27856-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-27 09:53:52 +01:00
Paul E. McKenney
1ed509a225 rcu: Add RCU_CPU_STALL_VERBOSE to dump detailed per-task information
When RCU detects a grace-period stall, it currently just prints
out the PID of any tasks doing the stalling.  This patch adds
RCU_CPU_STALL_VERBOSE, which enables the more-verbose reporting
from sched_show_task().

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-21-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 10:35:02 +01:00
Paul E. McKenney
3acd9eb31c rcu: Fix deadlock in TREE_PREEMPT_RCU CPU stall detection
Under TREE_PREEMPT_RCU, print_other_cpu_stall() invokes
rcu_print_task_stall() with the root rcu_node structure's ->lock
held, and rcu_print_task_stall() acquires that same lock for
self-deadlock. Fix this by removing the lock acquisition from
rcu_print_task_stall(), and making all callers acquire the lock
instead.

Tested-by: John Kacur <jkacur@redhat.com>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Located-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-19-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 10:34:59 +01:00
Paul E. McKenney
1304afb225 rcu: Convert to raw_spinlocks
The spinlocks in rcutree need to be real spinlocks in
preempt-rt. Convert them to raw_spinlocks.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-18-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 10:34:58 +01:00
Paul E. McKenney
8bd93a2c5d rcu: Accelerate grace period if last non-dynticked CPU
Currently, rcu_needs_cpu() simply checks whether the current CPU
has an outstanding RCU callback, which means that the last CPU
to go into dyntick-idle mode might wait a few ticks for the
relevant grace periods to complete.  However, if all the other
CPUs are in dyntick-idle mode, and if this CPU is in a quiescent
state (which it is for RCU-bh and RCU-sched any time that we are
considering going into dyntick-idle mode), then the grace period
is instantly complete.

This patch therefore repeatedly invokes the RCU grace-period
machinery in order to force any needed grace periods to complete
quickly.  It does so a limited number of times in order to
prevent starvation by an RCU callback function that might pass
itself to call_rcu().

However, if any CPU other than the current one is not in
dyntick-idle mode, fall back to simply checking (with fix to bug
noted by Lai Jiangshan).  Also, take advantage of last
grace-period forcing, the opportunity to do so noted by Steve
Rostedt.  And apply simplified #ifdef condition suggested by
Frederic Weisbecker.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-15-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 10:34:55 +01:00
Paul E. McKenney
cba8244a0f rcu: Add debug check for too many rcu_read_unlock()
TREE_PREEMPT_RCU maintains an rcu_read_lock_nesting counter in
the task structure, which happens to be a signed int.  So this
patch adds a check for this counter being negative at the end of
__rcu_read_unlock(). This check is under CONFIG_PROVE_LOCKING,
so can be thought of as being part of lockdep.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12626498423064-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 09:06:06 +01:00
Paul E. McKenney
bf66f18e79 rcu: Add force_quiescent_state() testing to rcutorture
Add force_quiescent_state() testing to rcutorture, with a
separate thread that repeatedly invokes force_quiescent_state()
in bursts. This can greatly increase the probability of
encountering certain types of race conditions.

Suggested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1262646551116-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-13 09:06:05 +01:00
Paul E. McKenney
d9a3da0699 rcu: Add expedited grace-period support for preemptible RCU
Implement an synchronize_rcu_expedited() for preemptible RCU
that actually is expedited.  This uses
synchronize_sched_expedited() to force all threads currently
running in a preemptible-RCU read-side critical section onto the
appropriate ->blocked_tasks[] list, then takes a snapshot of all
of these lists and waits for them to drain.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1259784616158-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 11:35:25 +01:00
Paul E. McKenney
d3f6bad391 rcu: Rename "quiet" functions
The number of "quiet" functions has grown recently, and the
names are no longer very descriptive.  The point of all of these
functions is to do some portion of the task of reporting a
quiescent state, so rename them accordingly:

o	cpu_quiet() becomes rcu_report_qs_rdp(), which reports a
	quiescent state to the per-CPU rcu_data structure.  If this
	turns out to be a new quiescent state for this grace period,
	then rcu_report_qs_rnp() will be invoked to propagate the
	quiescent state up the rcu_node hierarchy.

o	cpu_quiet_msk() becomes rcu_report_qs_rnp(), which reports
	a quiescent state for a given CPU (or possibly a set of CPUs)
	up the rcu_node hierarchy.

o	cpu_quiet_msk_finish() becomes rcu_report_qs_rsp(), which
	reports a full set of quiescent states to the global rcu_state
	structure.

o	task_quiet() becomes rcu_report_unblock_qs_rnp(), which reports
	a quiescent state due to a task exiting an RCU read-side critical
	section that had previously blocked in that same critical section.
	As indicated by the new name, this type of quiescent state is
	reported up the rcu_node hierarchy (using rcu_report_qs_rnp()
	to do so).

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12597846163698-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-03 11:34:26 +01:00
Paul E. McKenney
6ebb237bec rcu: Re-arrange code to reduce #ifdef pain
Remove #ifdefs from kernel/rcupdate.c and
include/linux/rcupdate.h by moving code to
include/linux/rcutiny.h, include/linux/rcutree.h, and
kernel/rcutree.c.

Also remove some definitions that are no longer used.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1258908830885-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-22 18:58:16 +01:00
Paul E. McKenney
b668c9cf3e rcu: Fix grace-period-stall bug on large systems with CPU hotplug
When the last CPU of a given leaf rcu_node structure goes
offline, all of the tasks queued on that leaf rcu_node structure
(due to having blocked in their current RCU read-side critical
sections) are requeued onto the root rcu_node structure.  This
requeuing is carried out by rcu_preempt_offline_tasks().
However, it is possible that these queued tasks are the only
thing preventing the leaf rcu_node structure from reporting a
quiescent state up the rcu_node hierarchy.  Unfortunately, the
old code would fail to do this reporting, resulting in a
grace-period stall given the following sequence of events:

1.	Kernel built for more than 32 CPUs on 32-bit systems or for more
	than 64 CPUs on 64-bit systems, so that there is more than one
	rcu_node structure.  (Or CONFIG_RCU_FANOUT is artificially set
	to a number smaller than CONFIG_NR_CPUS.)

2.	The kernel is built with CONFIG_TREE_PREEMPT_RCU.

3.	A task running on a CPU associated with a given leaf rcu_node
	structure blocks while in an RCU read-side critical section
	-and- that CPU has not yet passed through a quiescent state
	for the current RCU grace period.  This will cause the task
	to be queued on the leaf rcu_node's blocked_tasks[] array, in
	particular, on the element of this array corresponding to the
	current grace period.

4.	Each of the remaining CPUs corresponding to this same leaf rcu_node
	structure pass through a quiescent state.  However, the task is
	still in its RCU read-side critical section, so these quiescent
	states cannot be reported further up the rcu_node hierarchy.
	Nevertheless, all bits in the leaf rcu_node structure's ->qsmask
	field are now zero.

5.	Each of the remaining CPUs go offline.  (The events in step
	#4 and #5 can happen in any order as long as each CPU passes
	through a quiescent state before going offline.)

6.	When the last CPU goes offline, __rcu_offline_cpu() will invoke
	rcu_preempt_offline_tasks(), which will move the task to the
	root rcu_node structure, but without reporting a quiescent state
	up the rcu_node hierarchy (and this failure to report a quiescent
	state is the bug).

	But because this leaf rcu_node structure's ->qsmask field is
	already zero and its ->block_tasks[] entries are all empty,
	force_quiescent_state() will skip this rcu_node structure.

	Therefore, grace periods are now hung.

This patch abstracts some code out of rcu_read_unlock_special(),
calling the result task_quiet() by analogy with cpu_quiet(), and
invokes task_quiet() from both rcu_read_lock_special() and
__rcu_offline_cpu().  Invoking task_quiet() from
__rcu_offline_cpu() reports the quiescent state up the rcu_node
hierarchy, fixing the bug.  This ends up requiring a separate
lock_class_key per level of the rcu_node hierarchy, which this
patch also provides.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12589088301770-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-22 18:58:15 +01:00
Paul E. McKenney
0e0fc1c23e rcu: Mark init-time-only rcu_bootup_announce() as __init
Because rcu_bootup_announce() is used only at boot time, mark it
as __init, presumably so that its memory can be reclaimed.

Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <20091111192806.GA10073@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-11 21:27:42 +01:00
Paul E. McKenney
c64ac3ce06 rcu: Simplify association of quiescent states with grace periods
The rdp->passed_quiesc_completed fields are used to properly
associate the recorded quiescent state with a grace period.  It
is OK to wrongly associate a given quiescent state with a
preceding grace period, but it is fatal to associate a given
quiescent state with a grace period that begins after the
quiescent state occurred.  Grace periods are numbered, and the
following fields track them:

o	->gpnum is the number of the grace period currently in
	progress, or the number of the last grace period to
	complete if no grace period is currently in progress.

o	->completed is the number of the last grace period to
	have completed.

These two fields are equal if there is no grace period in
progress, otherwise ->gpnum is one greater than ->completed.
But the rdp->passed_quiesc_completed field compared against
->completed, and if equal, the quiescent state is presumed to
count against the current grace period.

The earlier code copied rdp->completed to
rdp->passed_quiesc_completed, which has been made to work, but
is error-prone.  In contrast, copying one less than rdp->gpnum
is guaranteed safe, because rdp->gpnum is not incremented until
after the start of the corresponding grace period. At the end of
the grace period, when ->completed has incremented, then any
quiescent periods recorded previously will be discarded.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12578890421011-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-10 22:48:50 +01:00
Paul E. McKenney
dbe01350fa rcu: Remove inline from forward-referenced functions
Some variants of gcc are reputed to dislike forward references
to functions declared "inline".  Remove the "inline" keyword
from such functions.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12578890422402-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-10 22:48:49 +01:00
Paul E. McKenney
237c80c5c8 rcu: Fix TREE_PREEMPT_RCU CPU_HOTPLUG bad-luck hang
If the following sequence of events occurs, then
TREE_PREEMPT_RCU will hang waiting for a grace period to
complete, eventually OOMing the system:

o	A TREE_PREEMPT_RCU build of the kernel is booted on a system
	with more than 64 physical CPUs present (32 on a 32-bit system).
	Alternatively, a TREE_PREEMPT_RCU build of the kernel is booted
	with RCU_FANOUT set to a sufficiently small value that the
	physical CPUs populate two or more leaf rcu_node structures.

o	A task is preempted in an RCU read-side critical section
	while running on a CPU corresponding to a given leaf rcu_node
	structure.

o	All CPUs corresponding to this same leaf rcu_node structure
	record quiescent states for the current grace period.

o	All of these same CPUs go offline (hence the need for enough
	physical CPUs to populate more than one leaf rcu_node structure).
	This causes the preempted task to be moved to the root rcu_node
	structure.

At this point, there is nothing left to cause the quiescent
state to be propagated up the rcu_node tree, so the current
grace period never completes.

The simplest fix, especially after considering the deadlock
possibilities, is to detect this situation when the last CPU is
offlined, and to set that CPU's ->qsmask bit in its leaf
rcu_node structure.  This will cause the next invocation of
force_quiescent_state() to end the grace period.

Without this fix, this hang can be triggered in an hour or so on
some machines with rcutorture and random CPU onlining/offlining.
With this fix, these same machines pass a full 10 hours of this
sort of abuse.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <20091015162614.GA19131@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-15 20:33:01 +02:00
Paul E. McKenney
019129d595 rcu: Stopgap fix for synchronize_rcu_expedited() for TREE_PREEMPT_RCU
For the short term, map synchronize_rcu_expedited() to
synchronize_rcu() for TREE_PREEMPT_RCU and to
synchronize_sched_expedited() for TREE_RCU.

Longer term, there needs to be a real expedited grace period for
TREE_PREEMPT_RCU, but candidate patches to date are considerably
more complex and intrusive.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
Cc: npiggin@suse.de
Cc: jens.axboe@oracle.com
LKML-Reference: <12555405592331-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-15 11:17:17 +02:00
Paul E. McKenney
e74f4c4564 rcu: Make hot-unplugged CPU relinquish its own RCU callbacks
The current interaction between RCU and CPU hotplug requires that
RCU block in CPU notifiers waiting for callbacks to drain.

This can be greatly simplified by having each CPU relinquish its
own callbacks, and for both _rcu_barrier() and CPU_DEAD notifiers
to adopt all callbacks that were previously relinquished.

This change also eliminates the possibility of certain types of
hangs due to the previous practice of waiting for callbacks to be
invoked from within CPU notifiers.  If you don't every wait, you
cannot hang.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1254890898456-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-07 08:11:20 +02:00
Paul E. McKenney
a0b6c9a78c rcu: Clean up code based on review feedback from Josh Triplett, part 4
These issues identified during an old-fashioned face-to-face code
review extending over many hours.  This group improves an existing
abstraction and introduces two new ones.  It also fixes an RCU
stall-warning bug found while making the other changes.

o	Make RCU_INIT_FLAVOR() declare its own variables, removing
	the need to declare them at each call site.

o	Create an rcu_for_each_leaf() macro that scans the leaf
	nodes of the rcu_node tree.

o	Create an rcu_for_each_node_breadth_first() macro that does
	a breadth-first traversal of the rcu_node tree, AKA
	stepping through the array in index-number order.

o	If all CPUs corresponding to a given leaf rcu_node
	structure go offline, then any tasks queued on that leaf
	will be moved to the root rcu_node structure.  Therefore,
	the stall-warning code must dump out tasks queued on the
	root rcu_node structure as well as those queued on the leaf
	rcu_node structures.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12541491934126-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-05 21:02:04 +02:00
Paul E. McKenney
1eba8f8438 rcu: Clean up code based on review feedback from Josh Triplett, part 2
These issues identified during an old-fashioned face-to-face code
review extending over many hours.

o	Add comments for tricky parts of code, and correct comments
	that have passed their sell-by date.

o	Get rid of the vestiges of rcu_init_sched(), which is no
	longer needed now that PREEMPT_RCU is gone.

o	Move the #include of rcutree_plugin.h to the end of
	rcutree.c, which means that, rather than having a random
	collection of forward declarations, the new set of forward
	declarations document the set of plugins.  The new home for
	this #include also allows __rcu_init_preempt() to move into
	rcutree_plugin.h.

o	Fix rcu_preempt_check_callbacks() to be static.

Suggested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12537246443924-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Peter Zijlstra <peterz@infradead.org>
2009-09-23 19:46:29 +02:00
Paul E. McKenney
fc2219d49e rcu: Clean up code based on review feedback from Josh Triplett
These issues identified during an old-fashioned face-to-face code
review extended over many hours.

o	Bury various forms of the "rsp->completed == rsp->gpnum"
	comparison into an rcu_gp_in_progress() function, which has
	the beneficial side-effect of forcing consistent use of
	ACCESS_ONCE().

o	Replace hand-coded arithmetic with DIV_ROUND_UP().

o	Bury several "!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x01])"
	instances into an rcu_preempted_readers() function, as this
	expression indicates that there are no readers blocked
	within RCU read-side critical sections blocking the current
	grace period.  (Though there might well be similar readers
	blocking the next grace period.)

o	Remove a dangling rcu_restart_cpu() declaration that has
	been dangling for almost 20 minor releases of the kernel.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <12537246442687-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-23 19:46:29 +02:00
Paul E. McKenney
a71fca58b7 rcu: Fix whitespace inconsistencies
Fix a number of whitespace ^Ierrors in the include/linux/rcu*
and the kernel/rcu* files.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
LKML-Reference: <20090918172819.GA24405@linux.vnet.ibm.com>
[ did more checkpatch fixlets ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-19 08:53:22 +02:00
Paul E. McKenney
49e291266d rcu: Fix thinko, actually initialize full tree
Commit de078d8 ("rcu: Need to update rnp->gpnum if preemptable RCU
is to be reliable") repeatedly and incorrectly initializes the root
rcu_node structure's ->gpnum field rather than initializing the
->gpnum field of each node in the tree.  Fix this.  Also add an
additional consistency check to catch this in the future.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
LKML-Reference: <125329262011-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-19 08:53:21 +02:00
Paul E. McKenney
e7d8842ed3 rcu: Apply results of code inspection of kernel/rcutree_plugin.h
o Drop the calls to cpu_quiet() from the online/offline code.
  These are unnecessary, since force_quiescent_state() will
  clean up, and removing them simplifies the code a bit.

o Add a warning to check that we don't enqueue the same blocked
  task twice onto the ->blocked_tasks[] lists.

o Rework the phase computation in rcu_preempt_note_context_switch()
  to be more readable, as suggested by Josh Triplett.

o Disable irqs to close a race between the scheduling clock
  interrupt and rcu_preempt_note_context_switch() WRT the
  ->rcu_read_unlock_special field.

o Add comments to rnp->lock acquisition and release within
  rcu_read_unlock_special() noting that irqs are already
  disabled.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
LKML-Reference: <12532926201851-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-19 08:53:21 +02:00
Paul E. McKenney
28ecd58020 rcu: Add WARN_ON_ONCE() consistency checks covering state transitions
o Verify that qsmask bits stay clear through GP
  initialization.

o Verify that cpu_quiet_msk_finish() is never invoked unless
  there actually is an RCU grace period in progress.

o Verify that all internal-node rcu_node structures have empty
  blocked_tasks[] lists.

o Verify that child rcu_node structure's bits remain clear after
  acquiring parent's lock.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
LKML-Reference: <12532926191947-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-19 08:53:19 +02:00
Paul E. McKenney
c3422bea5f rcu: Simplify rcu_read_unlock_special() quiescent-state accounting
The earlier approach required two scheduling-clock ticks to note an
preemptable-RCU quiescent state in the situation in which the
scheduling-clock interrupt is unlucky enough to always interrupt an
RCU read-side critical section.

With this change, the quiescent state is instead noted by the
outermost rcu_read_unlock() immediately following the first
scheduling-clock tick, or, alternatively, by the first subsequent
context switch.  Therefore, this change also speeds up grace
periods.

Suggested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
LKML-Reference: <12528585111945-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-18 00:06:33 +02:00
Paul E. McKenney
b0e165c035 rcu: Add debug checks to TREE_PREEMPT_RCU for premature grace periods
Check to make sure that there are no blocked tasks for the previous
grace period while initializing for the next grace period, verify
that rcu_preempt_qs() is given the correct CPU number and is never
called for an offline CPU.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
LKML-Reference: <12528585111986-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-18 00:06:13 +02:00
Paul E. McKenney
868489660d rcu: Changes from reviews: avoid casts, fix/add warnings, improve comments
Changes suggested by review comments from Josh Triplett and
Mathieu Desnoyers.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <20090827220012.GA30525@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-29 15:34:40 +02:00
Paul E. McKenney
dd5d19bafd rcu: Create rcutree plugins to handle hotplug CPU for multi-level trees
When offlining CPUs from a multi-level tree, there is the
possibility of offlining the last CPU from a given node when
there are preempted RCU read-side critical sections that
started life on one of the CPUs on that node.

In this case, the corresponding tasks will be enqueued via the
task_struct's rcu_node_entry list_head onto one of the
rcu_node's blocked_tasks[] lists.  These tasks need to be moved
somewhere else so that they will prevent the current grace
period from ending. That somewhere is the root rcu_node.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <20090827215816.GA30472@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-29 15:34:39 +02:00
Paul E. McKenney
33f76148ce rcu: Add CPU-offline processing for single-node configurations
Add preemptable-RCU plugin to handle the CPU-offline
processing.

An additional plugin is forthcoming to handle multinode RCU
trees, but this current plugin works for configurations up to
32 CPUs (64 CPUs for 64-bit kernels).

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12511321213336-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-24 20:37:04 +02:00
Paul E. McKenney
f41d911f8c rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.

This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU.  Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.

The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 10:32:40 +02:00