Alexei Starovoitov says:
====================
pull-request: bpf-next 2020-01-22
The following pull-request contains BPF updates for your *net-next* tree.
We've added 92 non-merge commits during the last 16 day(s) which contain
a total of 320 files changed, 7532 insertions(+), 1448 deletions(-).
The main changes are:
1) function by function verification and program extensions from Alexei.
2) massive cleanup of selftests/bpf from Toke and Andrii.
3) batched bpf map operations from Brian and Yonghong.
4) tcp congestion control in bpf from Martin.
5) bulking for non-map xdp_redirect form Toke.
6) bpf_send_signal_thread helper from Yonghong.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
MPTCP will make use of tcp_send_mss() and tcp_push() when sending
data to specific TCP subflows.
tcp_request_sock_ipvX_ops and ipvX_specific will be referenced
during TCP subflow creation.
Co-developed-by: Peter Krystad <peter.krystad@linux.intel.com>
Signed-off-by: Peter Krystad <peter.krystad@linux.intel.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes "struct tcp_congestion_ops" to be the first user
of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops
in bpf.
The BPF implemented tcp_congestion_ops can be used like
regular kernel tcp-cc through sysctl and setsockopt. e.g.
[root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion
net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic
net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic
net.ipv4.tcp_congestion_control = bpf_cubic
There has been attempt to move the TCP CC to the user space
(e.g. CCP in TCP). The common arguments are faster turn around,
get away from long-tail kernel versions in production...etc,
which are legit points.
BPF has been the continuous effort to join both kernel and
userspace upsides together (e.g. XDP to gain the performance
advantage without bypassing the kernel). The recent BPF
advancements (in particular BTF-aware verifier, BPF trampoline,
BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc)
possible in BPF. It allows a faster turnaround for testing algorithm
in the production while leveraging the existing (and continue growing)
BPF feature/framework instead of building one specifically for
userspace TCP CC.
This patch allows write access to a few fields in tcp-sock
(in bpf_tcp_ca_btf_struct_access()).
The optional "get_info" is unsupported now. It can be added
later. One possible way is to output the info with a btf-id
to describe the content.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
Add support for userspace to specify a device index to limit the scope
of an entry via the TCP_MD5SIG_EXT setsockopt. The existing __tcpm_pad
is renamed to tcpm_ifindex and the new field is only checked if the new
TCP_MD5SIG_FLAG_IFINDEX is set in tcpm_flags. For now, the device index
must point to an L3 master device (e.g., VRF). The API and error
handling are setup to allow the constraint to be relaxed in the future
to any device index.
Signed-off-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add l3index to tcp_md5sig_key to represent the L3 domain of a key, and
add l3index to tcp_md5_do_add and tcp_md5_do_del to fill in the key.
With the key now based on an l3index, add the new parameter to the
lookup functions and consider the l3index when looking for a match.
The l3index comes from the skb when processing ingress packets leveraging
the helpers created for socket lookups, tcp_v4_sdif and inet_iif (and the
v6 variants). When the sdif index is set it means the packet ingressed a
device that is part of an L3 domain and inet_iif points to the VRF device.
For egress, the L3 domain is determined from the socket binding and
sk_bound_dev_if.
Signed-off-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The original ingress device index is saved to the cb space of the skb
and the cb is moved during tcp processing. Since tcp_v4_inbound_md5_hash
can be called before and after the cb move, pass dif and sdif to it so
the caller can save both prior to the cb move. Both are used by a later
patch.
Signed-off-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extract the typecast to (union tcp_md5_addr *) to a local variable
rather than the current long, inline declaration with function calls.
No functional change intended.
Signed-off-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Michal Kubecek and Firo Yang did a very nice analysis of crashes
happening in __inet_lookup_established().
Since a TCP socket can go from TCP_ESTABLISH to TCP_LISTEN
(via a close()/socket()/listen() cycle) without a RCU grace period,
I should not have changed listeners linkage in their hash table.
They must use the nulls protocol (Documentation/RCU/rculist_nulls.txt),
so that a lookup can detect a socket in a hash list was moved in
another one.
Since we added code in commit d296ba60d8 ("soreuseport: Resolve
merge conflict for v4/v6 ordering fix"), we have to add
hlist_nulls_add_tail_rcu() helper.
Fixes: 3b24d854cb ("tcp/dccp: do not touch listener sk_refcnt under synflood")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Michal Kubecek <mkubecek@suse.cz>
Reported-by: Firo Yang <firo.yang@suse.com>
Reviewed-by: Michal Kubecek <mkubecek@suse.cz>
Link: https://lore.kernel.org/netdev/20191120083919.GH27852@unicorn.suse.cz/
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
This patch introduces a sysctl knob "net.ipv4.tcp_no_ssthresh_metrics_save"
that disables TCP ssthresh metrics cache by default. Other parts of TCP
metrics cache, e.g. rtt, cwnd, remain unchanged.
As modern networks becoming more and more dynamic, TCP metrics cache
today often causes more harm than benefits. For example, the same IP
address is often shared by different subscribers behind NAT in residential
networks. Even if the IP address is not shared by different users,
caching the slow-start threshold of a previous short flow using loss-based
congestion control (e.g. cubic) often causes the future longer flows of
the same network path to exit slow-start prematurely with abysmal
throughput.
Caching ssthresh is very risky and can lead to terrible performance.
Therefore it makes sense to make disabling ssthresh caching by
default and opt-in for specific networks by the administrators.
This practice also has worked well for several years of deployment with
CUBIC congestion control at Google.
Acked-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Kevin(Yudong) Yang <yyd@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk->sk_ack_backlog can be read without any lock being held.
We need to use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing
and/or potential KCSAN warnings.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The only slightly tricky merge conflict was the netdevsim because the
mutex locking fix overlapped a lot of driver reload reorganization.
The rest were (relatively) trivial in nature.
Signed-off-by: David S. Miller <davem@davemloft.net>
Historically linux tried to stick to RFC 791, 1122, 2003
for IPv4 ID field generation.
RFC 6864 made clear that no matter how hard we try,
we can not ensure unicity of IP ID within maximum
lifetime for all datagrams with a given source
address/destination address/protocol tuple.
Linux uses a per socket inet generator (inet_id), initialized
at connection startup with a XOR of 'jiffies' and other
fields that appear clear on the wire.
Thiemo Nagel pointed that this strategy is a privacy
concern as this provides 16 bits of entropy to fingerprint
devices.
Let's switch to a random starting point, this is just as
good as far as RFC 6864 is concerned and does not leak
anything critical.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Thiemo Nagel <tnagel@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_max_syn_backlog default value depends on memory size
and TCP ehash size. Before this patch, the max value
was 2048 [1], which is considered too small nowadays.
Increase it to 4096 to match the recent SOMAXCONN change.
[1] This is with TCP ehash size being capped to 524288 buckets.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Yue Cao <ycao009@ucr.edu>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are few places where we fetch tp->write_seq while
this field can change from IRQ or other cpu.
We need to add READ_ONCE() annotations, and also make
sure write sides use corresponding WRITE_ONCE() to avoid
store-tearing.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are few places where we fetch tp->copied_seq while
this field can change from IRQ or other cpu.
We need to add READ_ONCE() annotations, and also make
sure write sides use corresponding WRITE_ONCE() to avoid
store-tearing.
Note that tcp_inq_hint() was already using READ_ONCE(tp->copied_seq)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are few places where we fetch tp->rcv_nxt while
this field can change from IRQ or other cpu.
We need to add READ_ONCE() annotations, and also make
sure write sides use corresponding WRITE_ONCE() to avoid
store-tearing.
Note that tcp_inq_hint() was already using READ_ONCE(tp->rcv_nxt)
syzbot reported :
BUG: KCSAN: data-race in tcp_poll / tcp_queue_rcv
write to 0xffff888120425770 of 4 bytes by interrupt on cpu 0:
tcp_rcv_nxt_update net/ipv4/tcp_input.c:3365 [inline]
tcp_queue_rcv+0x180/0x380 net/ipv4/tcp_input.c:4638
tcp_rcv_established+0xbf1/0xf50 net/ipv4/tcp_input.c:5616
tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1542
tcp_v4_rcv+0x1a03/0x1bf0 net/ipv4/tcp_ipv4.c:1923
ip_protocol_deliver_rcu+0x51/0x470 net/ipv4/ip_input.c:204
ip_local_deliver_finish+0x110/0x140 net/ipv4/ip_input.c:231
NF_HOOK include/linux/netfilter.h:305 [inline]
NF_HOOK include/linux/netfilter.h:299 [inline]
ip_local_deliver+0x133/0x210 net/ipv4/ip_input.c:252
dst_input include/net/dst.h:442 [inline]
ip_rcv_finish+0x121/0x160 net/ipv4/ip_input.c:413
NF_HOOK include/linux/netfilter.h:305 [inline]
NF_HOOK include/linux/netfilter.h:299 [inline]
ip_rcv+0x18f/0x1a0 net/ipv4/ip_input.c:523
__netif_receive_skb_one_core+0xa7/0xe0 net/core/dev.c:5004
__netif_receive_skb+0x37/0xf0 net/core/dev.c:5118
netif_receive_skb_internal+0x59/0x190 net/core/dev.c:5208
napi_skb_finish net/core/dev.c:5671 [inline]
napi_gro_receive+0x28f/0x330 net/core/dev.c:5704
receive_buf+0x284/0x30b0 drivers/net/virtio_net.c:1061
read to 0xffff888120425770 of 4 bytes by task 7254 on cpu 1:
tcp_stream_is_readable net/ipv4/tcp.c:480 [inline]
tcp_poll+0x204/0x6b0 net/ipv4/tcp.c:554
sock_poll+0xed/0x250 net/socket.c:1256
vfs_poll include/linux/poll.h:90 [inline]
ep_item_poll.isra.0+0x90/0x190 fs/eventpoll.c:892
ep_send_events_proc+0x113/0x5c0 fs/eventpoll.c:1749
ep_scan_ready_list.constprop.0+0x189/0x500 fs/eventpoll.c:704
ep_send_events fs/eventpoll.c:1793 [inline]
ep_poll+0xe3/0x900 fs/eventpoll.c:1930
do_epoll_wait+0x162/0x180 fs/eventpoll.c:2294
__do_sys_epoll_pwait fs/eventpoll.c:2325 [inline]
__se_sys_epoll_pwait fs/eventpoll.c:2311 [inline]
__x64_sys_epoll_pwait+0xcd/0x170 fs/eventpoll.c:2311
do_syscall_64+0xcf/0x2f0 arch/x86/entry/common.c:296
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 7254 Comm: syz-fuzzer Not tainted 5.3.0+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Both tcp_v4_err() and tcp_v6_err() do the following operations
while they do not own the socket lock :
fastopen = tp->fastopen_rsk;
snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
The problem is that without appropriate barrier, the compiler
might reload tp->fastopen_rsk and trigger a NULL deref.
request sockets are protected by RCU, we can simply add
the missing annotations and barriers to solve the issue.
Fixes: 168a8f5805 ("tcp: TCP Fast Open Server - main code path")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
sk_add_backlog() callers usually read sk->sk_rcvbuf without
owning the socket lock. This means sk_rcvbuf value can
be changed by other cpus, and KCSAN complains.
Add READ_ONCE() annotations to document the lockless nature
of these reads.
Note that writes over sk_rcvbuf should also use WRITE_ONCE(),
but this will be done in separate patches to ease stable
backports (if we decide this is relevant for stable trees).
BUG: KCSAN: data-race in tcp_add_backlog / tcp_recvmsg
write to 0xffff88812ab369f8 of 8 bytes by interrupt on cpu 1:
__sk_add_backlog include/net/sock.h:902 [inline]
sk_add_backlog include/net/sock.h:933 [inline]
tcp_add_backlog+0x45a/0xcc0 net/ipv4/tcp_ipv4.c:1737
tcp_v4_rcv+0x1aba/0x1bf0 net/ipv4/tcp_ipv4.c:1925
ip_protocol_deliver_rcu+0x51/0x470 net/ipv4/ip_input.c:204
ip_local_deliver_finish+0x110/0x140 net/ipv4/ip_input.c:231
NF_HOOK include/linux/netfilter.h:305 [inline]
NF_HOOK include/linux/netfilter.h:299 [inline]
ip_local_deliver+0x133/0x210 net/ipv4/ip_input.c:252
dst_input include/net/dst.h:442 [inline]
ip_rcv_finish+0x121/0x160 net/ipv4/ip_input.c:413
NF_HOOK include/linux/netfilter.h:305 [inline]
NF_HOOK include/linux/netfilter.h:299 [inline]
ip_rcv+0x18f/0x1a0 net/ipv4/ip_input.c:523
__netif_receive_skb_one_core+0xa7/0xe0 net/core/dev.c:5004
__netif_receive_skb+0x37/0xf0 net/core/dev.c:5118
netif_receive_skb_internal+0x59/0x190 net/core/dev.c:5208
napi_skb_finish net/core/dev.c:5671 [inline]
napi_gro_receive+0x28f/0x330 net/core/dev.c:5704
receive_buf+0x284/0x30b0 drivers/net/virtio_net.c:1061
virtnet_receive drivers/net/virtio_net.c:1323 [inline]
virtnet_poll+0x436/0x7d0 drivers/net/virtio_net.c:1428
napi_poll net/core/dev.c:6352 [inline]
net_rx_action+0x3ae/0xa50 net/core/dev.c:6418
read to 0xffff88812ab369f8 of 8 bytes by task 7271 on cpu 0:
tcp_recvmsg+0x470/0x1a30 net/ipv4/tcp.c:2047
inet_recvmsg+0xbb/0x250 net/ipv4/af_inet.c:838
sock_recvmsg_nosec net/socket.c:871 [inline]
sock_recvmsg net/socket.c:889 [inline]
sock_recvmsg+0x92/0xb0 net/socket.c:885
sock_read_iter+0x15f/0x1e0 net/socket.c:967
call_read_iter include/linux/fs.h:1864 [inline]
new_sync_read+0x389/0x4f0 fs/read_write.c:414
__vfs_read+0xb1/0xc0 fs/read_write.c:427
vfs_read fs/read_write.c:461 [inline]
vfs_read+0x143/0x2c0 fs/read_write.c:446
ksys_read+0xd5/0x1b0 fs/read_write.c:587
__do_sys_read fs/read_write.c:597 [inline]
__se_sys_read fs/read_write.c:595 [inline]
__x64_sys_read+0x4c/0x60 fs/read_write.c:595
do_syscall_64+0xcf/0x2f0 arch/x86/entry/common.c:296
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 7271 Comm: syz-fuzzer Not tainted 5.3.0+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
tcp_twsk_unique() has a hard coded assumption about ipv4 loopback
being 127/8
Lets instead use the standard ipv4_is_loopback() method,
in a new ipv6_addr_v4mapped_loopback() helper.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
commit 174e23810c
("sk_buff: drop all skb extensions on free and skb scrubbing") made napi
recycle always drop skb extensions. The additional skb_ext_del() that is
performed via nf_reset on napi skb recycle is not needed anymore.
Most nf_reset() calls in the stack are there so queued skb won't block
'rmmod nf_conntrack' indefinitely.
This removes the skb_ext_del from nf_reset, and renames it to a more
fitting nf_reset_ct().
In a few selected places, add a call to skb_ext_reset to make sure that
no active extensions remain.
I am submitting this for "net", because we're still early in the release
cycle. The patch applies to net-next too, but I think the rename causes
needless divergence between those trees.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
ctl packets sent on behalf of TIME_WAIT sockets currently
have a zero skb->priority, which can cause various problems.
In this patch we :
- add a tw_priority field in struct inet_timewait_sock.
- populate it from sk->sk_priority when a TIME_WAIT is created.
- For IPv4, change ip_send_unicast_reply() and its two
callers to propagate tw_priority correctly.
ip_send_unicast_reply() no longer changes sk->sk_priority.
- For IPv6, make sure TIME_WAIT sockets pass their tw_priority
field to tcp_v6_send_response() and tcp_v6_send_ack().
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net-next* tree.
There is a small merge conflict in libbpf (Cc Andrii so he's in the loop
as well):
for (i = 1; i <= btf__get_nr_types(btf); i++) {
t = (struct btf_type *)btf__type_by_id(btf, i);
if (!has_datasec && btf_is_var(t)) {
/* replace VAR with INT */
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
<<<<<<< HEAD
/*
* using size = 1 is the safest choice, 4 will be too
* big and cause kernel BTF validation failure if
* original variable took less than 4 bytes
*/
t->size = 1;
*(int *)(t+1) = BTF_INT_ENC(0, 0, 8);
} else if (!has_datasec && kind == BTF_KIND_DATASEC) {
=======
t->size = sizeof(int);
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 32);
} else if (!has_datasec && btf_is_datasec(t)) {
>>>>>>> 72ef80b5ee
/* replace DATASEC with STRUCT */
Conflict is between the two commits 1d4126c4e1 ("libbpf: sanitize VAR to
conservative 1-byte INT") and b03bc6853c ("libbpf: convert libbpf code to
use new btf helpers"), so we need to pick the sanitation fixup as well as
use the new btf_is_datasec() helper and the whitespace cleanup. Looks like
the following:
[...]
if (!has_datasec && btf_is_var(t)) {
/* replace VAR with INT */
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
/*
* using size = 1 is the safest choice, 4 will be too
* big and cause kernel BTF validation failure if
* original variable took less than 4 bytes
*/
t->size = 1;
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
} else if (!has_datasec && btf_is_datasec(t)) {
/* replace DATASEC with STRUCT */
[...]
The main changes are:
1) Addition of core parts of compile once - run everywhere (co-re) effort,
that is, relocation of fields offsets in libbpf as well as exposure of
kernel's own BTF via sysfs and loading through libbpf, from Andrii.
More info on co-re: http://vger.kernel.org/bpfconf2019.html#session-2
and http://vger.kernel.org/lpc-bpf2018.html#session-2
2) Enable passing input flags to the BPF flow dissector to customize parsing
and allowing it to stop early similar to the C based one, from Stanislav.
3) Add a BPF helper function that allows generating SYN cookies from XDP and
tc BPF, from Petar.
4) Add devmap hash-based map type for more flexibility in device lookup for
redirects, from Toke.
5) Improvements to XDP forwarding sample code now utilizing recently enabled
devmap lookups, from Jesper.
6) Add support for reporting the effective cgroup progs in bpftool, from Jakub
and Takshak.
7) Fix reading kernel config from bpftool via /proc/config.gz, from Peter.
8) Fix AF_XDP umem pages mapping for 32 bit architectures, from Ivan.
9) Follow-up to add two more BPF loop tests for the selftest suite, from Alexei.
10) Add perf event output helper also for other skb-based program types, from Allan.
11) Fix a co-re related compilation error in selftests, from Yonghong.
====================
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
The current implementation of TCP MTU probing can considerably
underestimate the MTU on lossy connections allowing the MSS to get down to
48. We have found that in almost all of these cases on our networks these
paths can handle much larger MTUs meaning the connections are being
artificially limited. Even though TCP MTU probing can raise the MSS back up
we have seen this not to be the case causing connections to be "stuck" with
an MSS of 48 when heavy loss is present.
Prior to pushing out this change we could not keep TCP MTU probing enabled
b/c of the above reasons. Now with a reasonble floor set we've had it
enabled for the past 6 months.
The new sysctl will still default to TCP_MIN_SND_MSS (48), but gives
administrators the ability to control the floor of MSS probing.
Signed-off-by: Josh Hunt <johunt@akamai.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch allows generation of a SYN cookie before an SKB has been
allocated, as is the case at XDP.
Signed-off-by: Petar Penkov <ppenkov@google.com>
Reviewed-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Some TCP peers announce a very small MSS option in their SYN and/or
SYN/ACK messages.
This forces the stack to send packets with a very high network/cpu
overhead.
Linux has enforced a minimal value of 48. Since this value includes
the size of TCP options, and that the options can consume up to 40
bytes, this means that each segment can include only 8 bytes of payload.
In some cases, it can be useful to increase the minimal value
to a saner value.
We still let the default to 48 (TCP_MIN_SND_MSS), for compatibility
reasons.
Note that TCP_MAXSEG socket option enforces a minimal value
of (TCP_MIN_MSS). David Miller increased this minimal value
in commit c39508d6f1 ("tcp: Make TCP_MAXSEG minimum more correct.")
from 64 to 88.
We might in the future merge TCP_MIN_SND_MSS and TCP_MIN_MSS.
CVE-2019-11479 -- tcp mss hardcoded to 48
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Jonathan Looney <jtl@netflix.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Bruce Curtis <brucec@netflix.com>
Cc: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If we want to set a EDT time for the skb we want to send
via ip_send_unicast_reply(), we have to pass a new parameter
and initialize ipc.sockc.transmit_time with it.
This fixes the EDT time for ACK/RST packets sent on behalf of
a TIME_WAIT socket.
Fixes: a842fe1425 ("tcp: add optional per socket transmit delay")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Adding delays to TCP flows is crucial for studying behavior
of TCP stacks, including congestion control modules.
Linux offers netem module, but it has unpractical constraints :
- Need root access to change qdisc
- Hard to setup on egress if combined with non trivial qdisc like FQ
- Single delay for all flows.
EDT (Earliest Departure Time) adoption in TCP stack allows us
to enable a per socket delay at a very small cost.
Networking tools can now establish thousands of flows, each of them
with a different delay, simulating real world conditions.
This requires FQ packet scheduler or a EDT-enabled NIC.
This patchs adds TCP_TX_DELAY socket option, to set a delay in
usec units.
unsigned int tx_delay = 10000; /* 10 msec */
setsockopt(fd, SOL_TCP, TCP_TX_DELAY, &tx_delay, sizeof(tx_delay));
Note that FQ packet scheduler limits might need some tweaking :
man tc-fq
PARAMETERS
limit
Hard limit on the real queue size. When this limit is
reached, new packets are dropped. If the value is lowered,
packets are dropped so that the new limit is met. Default
is 10000 packets.
flow_limit
Hard limit on the maximum number of packets queued per
flow. Default value is 100.
Use of TCP_TX_DELAY option will increase number of skbs in FQ qdisc,
so packets would be dropped if any of the previous limit is hit.
Use of a jump label makes this support runtime-free, for hosts
never using the option.
Also note that TSQ (TCP Small Queues) limits are slightly changed
with this patch : we need to account that skbs artificially delayed
wont stop us providind more skbs to feed the pipe (netem uses
skb_orphan_partial() for this purpose, but FQ can not use this trick)
Because of that, using big delays might very well trigger
old bugs in TSO auto defer logic and/or sndbuf limited detection.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some ISDN files that got removed in net-next had some changes
done in mainline, take the removals.
Signed-off-by: David S. Miller <davem@davemloft.net>
this_cpu_read(*X) is slightly faster than *this_cpu_ptr(X)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Richard and Bruno both reported that my commit added a bug,
and Bruno was able to determine the problem came when a segment
wih a FIN packet was coalesced to a prior one in tcp backlog queue.
It turns out the header prediction in tcp_rcv_established()
looks back to TCP headers in the packet, not in the metadata
(aka TCP_SKB_CB(skb)->tcp_flags)
The fast path in tcp_rcv_established() is not supposed to
handle a FIN flag (it does not call tcp_fin())
Therefore we need to make sure to propagate the FIN flag,
so that the coalesced packet does not go through the fast path,
the same than a GRO packet carrying a FIN flag.
While we are at it, make sure we do not coalesce packets with
RST or SYN, or if they do not have ACK set.
Many thanks to Richard and Bruno for pinpointing the bad commit,
and to Richard for providing a first version of the fix.
Fixes: 4f693b55c3 ("tcp: implement coalescing on backlog queue")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Richard Purdie <richard.purdie@linuxfoundation.org>
Reported-by: Bruno Prémont <bonbons@sysophe.eu>
Signed-off-by: David S. Miller <davem@davemloft.net>
Minor comment merge conflict in mlx5.
Staging driver has a fixup due to the skb->xmit_more changes
in 'net-next', but was removed in 'net'.
Signed-off-by: David S. Miller <davem@davemloft.net>
When tcp_sk_init() failed in inet_ctl_sock_create(),
'net->ipv4.tcp_congestion_control' will be left
uninitialized, but tcp_sk_exit() hasn't check for
that.
This patch add checking on 'net->ipv4.tcp_congestion_control'
in tcp_sk_exit() to prevent NULL-ptr dereference.
Fixes: 6670e15244 ("tcp: Namespace-ify sysctl_tcp_default_congestion_control")
Signed-off-by: Dust Li <dust.li@linux.alibaba.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Often times, recvmsg() system calls and BH handling for a particular
TCP socket are done on different cpus.
This means the incoming skb had to be allocated on a cpu,
but freed on another.
This incurs a high spinlock contention in slab layer for small rpc,
but also a high number of cache line ping pongs for larger packets.
A full size GRO packet might use 45 page fragments, meaning
that up to 45 put_page() can be involved.
More over performing the __kfree_skb() in the recvmsg() context
adds a latency for user applications, and increase probability
of trapping them in backlog processing, since the BH handler
might found the socket owned by the user.
This patch, combined with the prior one increases the rpc
performance by about 10 % on servers with large number of cores.
(tcp_rr workload with 10,000 flows and 112 threads reach 9 Mpps
instead of 8 Mpps)
This also increases single bulk flow performance on 40Gbit+ links,
since in this case there are often two cpus working in tandem :
- CPU handling the NIC rx interrupts, feeding the receive queue,
and (after this patch) freeing the skbs that were consumed.
- CPU in recvmsg() system call, essentially 100 % busy copying out
data to user space.
Having at most one skb in a per-socket cache has very little risk
of memory exhaustion, and since it is protected by socket lock,
its management is essentially free.
Note that if rps/rfs is used, we do not enable this feature, because
there is high chance that the same cpu is handling both the recvmsg()
system call and the TCP rx path, but that another cpu did the skb
allocations in the device driver right before the RPS/RFS logic.
To properly handle this case, it seems we would need to record
on which cpu skb was allocated, and use a different channel
to give skbs back to this cpu.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since commit eeea10b83a ("tcp: add
tcp_v4_fill_cb()/tcp_v4_restore_cb()"), tcp_vX_fill_cb is only called
after tcp_filter(). That means, TCP_SKB_CB(skb)->end_seq still points to
the IP-part of the cb.
We thus should not mock with it, as this can trigger bugs (thanks
syzkaller):
[ 12.349396] ==================================================================
[ 12.350188] BUG: KASAN: slab-out-of-bounds in ip6_datagram_recv_specific_ctl+0x19b3/0x1a20
[ 12.351035] Read of size 1 at addr ffff88006adbc208 by task test_ip6_datagr/1799
Setting end_seq is actually no more necessary in tcp_filter as it gets
initialized later on in tcp_vX_fill_cb.
Cc: Eric Dumazet <edumazet@google.com>
Fixes: eeea10b83a ("tcp: add tcp_v4_fill_cb()/tcp_v4_restore_cb()")
Signed-off-by: Christoph Paasch <cpaasch@apple.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We prefer static_branch_unlikely() over static_key_false() these days.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ICMP handlers are not very often stressed, we should
make them more resilient to bugs that might surface in
the future.
If there is no packet in retransmit queue, we should
avoid a NULL deref.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: soukjin bae <soukjin.bae@samsung.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Instead of using pingpong as a single bit information, we refactor the
code to treat it as a counter. When interactive session is detected,
we set pingpong count to TCP_PINGPONG_THRESH. And when pingpong count
is >= TCP_PINGPONG_THRESH, we consider the session in pingpong mode.
This patch is a pure refactor and sets foundation for the next patch.
This patch itself does not change any pingpong logic.
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most linux hosts never setup TCP MD5 keys. We can avoid a
cache line miss (accessing tp->md5ig_info) on RX and TX
using a jump label.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In case GRO is not as efficient as it should be or disabled,
we might have a user thread trapped in __release_sock() while
softirq handler flood packets up to the point we have to drop.
This patch balances work done from user thread and softirq,
to give more chances to __release_sock() to complete its work
before new packets are added the the backlog.
This also helps if we receive many ACK packets, since GRO
does not aggregate them.
This patch brings ~60% throughput increase on a receiver
without GRO, but the spectacular gain is really on
1000x release_sock() latency reduction I have measured.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Under stress, softirq rx handler often hits a socket owned by the user,
and has to queue the packet into socket backlog.
When this happens, skb dst refcount is taken before we escape rcu
protected region. This is done from __sk_add_backlog() calling
skb_dst_force().
Consumer will have to perform the opposite costly operation.
AFAIK nothing in tcp stack requests the dst after skb was stored
in the backlog. If this was the case, we would have had failures
already since skb_dst_force() can end up clearing skb dst anyway.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
FQ pacing guarantees that paced packets queued by one flow do not
add head-of-line blocking for other flows.
After TCP GSO conversion, increasing limit_output_bytes to 1 MB is safe,
since this maps to 16 skbs at most in qdisc or device queues.
(or slightly more if some drivers lower {gso_max_segs|size})
We still can queue at most 1 ms worth of traffic (this can be scaled
by wifi drivers if they need to)
Tested:
# ethtool -c eth0 | egrep "tx-usecs:|tx-frames:" # 40 Gbit mlx4 NIC
tx-usecs: 16
tx-frames: 16
# tc qdisc replace dev eth0 root fq
# for f in {1..10};do netperf -P0 -H lpaa24,6 -o THROUGHPUT;done
Before patch:
27711
26118
27107
27377
27712
27388
27340
27117
27278
27509
After patch:
37434
36949
36658
36998
37711
37291
37605
36659
36544
37349
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
if skb is NULL pointer, and the following access of skb's
skb_mstamp_ns will trigger panic, which is same as BUG_ON
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We'll need this to handle ICMP errors for tunnels without a sending socket
(i.e. FoU and GUE). There, we might have to look up different types of IP
tunnels, registered as network protocols, before we get a match, so we
want this for the error handlers of IPPROTO_IPIP and IPPROTO_IPV6 in both
inet_protos and inet6_protos. These error codes will be used in the next
patch.
For consistency, return sensible error codes in protocol error handlers
whenever handlers can't handle errors because, even if valid, they don't
match a protocol or any of its states.
This has no effect on existing error handling paths.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: David S. Miller <davem@davemloft.net>