Now that the SYSENTER stack has a guard page, there's no need for a canary
to detect overflow after the fact.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.572577316@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The IST stacks are needed when an IST exception occurs and are accessed
before any kernel code at all runs. Move them into struct cpu_entry_area.
The IST stacks are unlike the rest of cpu_entry_area: they're used even for
entries from kernel mode. This means that they should be set up before we
load the final IDT. Move cpu_entry_area setup to trap_init() for the boot
CPU and set it up for all possible CPUs at once in native_smp_prepare_cpus().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.480598743@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Handling SYSCALL is tricky: the SYSCALL handler is entered with every
single register (except FLAGS), including RSP, live. It somehow needs
to set RSP to point to a valid stack, which means it needs to save the
user RSP somewhere and find its own stack pointer. The canonical way
to do this is with SWAPGS, which lets us access percpu data using the
%gs prefix.
With PAGE_TABLE_ISOLATION-like pagetable switching, this is
problematic. Without a scratch register, switching CR3 is impossible, so
%gs-based percpu memory would need to be mapped in the user pagetables.
Doing that without information leaks is difficult or impossible.
Instead, use a different sneaky trick. Map a copy of the first part
of the SYSCALL asm at a different address for each CPU. Now RIP
varies depending on the CPU, so we can use RIP-relative memory access
to access percpu memory. By putting the relevant information (one
scratch slot and the stack address) at a constant offset relative to
RIP, we can make SYSCALL work without relying on %gs.
A nice thing about this approach is that we can easily switch it on
and off if we want pagetable switching to be configurable.
The compat variant of SYSCALL doesn't have this problem in the first
place -- there are plenty of scratch registers, since we don't care
about preserving r8-r15. This patch therefore doesn't touch SYSCALL32
at all.
This patch actually seems to be a small speedup. With this patch,
SYSCALL touches an extra cache line and an extra virtual page, but
the pipeline no longer stalls waiting for SWAPGS. It seems that, at
least in a tight loop, the latter outweights the former.
Thanks to David Laight for an optimization tip.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.403607157@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically, IDT entries from usermode have always gone directly
to the running task's kernel stack. Rearrange it so that we enter on
a per-CPU trampoline stack and then manually switch to the task's stack.
This touches a couple of extra cachelines, but it gives us a chance
to run some code before we touch the kernel stack.
The asm isn't exactly beautiful, but I think that fully refactoring
it can wait.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.225330557@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On 64-bit kernels, we used to assume that TSS.sp0 was the current
top of stack. With the addition of an entry trampoline, this will
no longer be the case. Store the current top of stack in TSS.sp1,
which is otherwise unused but shares the same cacheline.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.050864668@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This has a secondary purpose: it puts the entry stack into a region
with a well-controlled layout. A subsequent patch will take
advantage of this to streamline the SYSCALL entry code to be able to
find it more easily.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.962042855@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
SYSENTER_stack should have reliable overflow detection, which
means that it needs to be at the bottom of a page, not the top.
Move it to the beginning of struct tss_struct and page-align it.
Also add an assertion to make sure that the fixed hardware TSS
doesn't cross a page boundary.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.881827433@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A future patch will move SYSENTER_stack to the beginning of cpu_tss
to help detect overflow. Before this can happen, fix several code
paths that hardcode assumptions about the old layout.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.722425540@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the GDT is an ad-hoc array of pages, one per CPU, in the
fixmap. Generalize it to be an array of a new 'struct cpu_entry_area'
so that we can cleanly add new things to it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.563271721@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently have CPU 0's GDT at the top of the GDT range and
higher-numbered CPUs at lower addresses. This happens because the
fixmap is upside down (index 0 is the top of the fixmap).
Flip it so that GDTs are in ascending order by virtual address.
This will simplify a future patch that will generalize the GDT
remap to contain multiple pages.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.471561421@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
get_stack_info() doesn't currently know about the SYSENTER stack, so
unwinding will fail if we entered the kernel on the SYSENTER stack
and haven't fully switched off. Teach get_stack_info() about the
SYSENTER stack.
With future patches applied that run part of the entry code on the
SYSENTER stack and introduce an intentional BUG(), I would get:
PANIC: double fault, error_code: 0x0
...
RIP: 0010:do_error_trap+0x33/0x1c0
...
Call Trace:
Code: ...
With this patch, I get:
PANIC: double fault, error_code: 0x0
...
Call Trace:
<SYSENTER>
? async_page_fault+0x36/0x60
? invalid_op+0x22/0x40
? async_page_fault+0x36/0x60
? sync_regs+0x3c/0x40
? sync_regs+0x2e/0x40
? error_entry+0x6c/0xd0
? async_page_fault+0x36/0x60
</SYSENTER>
Code: ...
which is a lot more informative.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.392711508@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This will simplify future changes that want scratch variables early in
the SYSENTER handler -- they'll be able to spill registers to the
stack. It also lets us get rid of a SWAPGS_UNSAFE_STACK user.
This does not depend on CONFIG_IA32_EMULATION=y because we'll want the
stack space even without IA32 emulation.
As far as I can tell, the reason that this wasn't done from day 1 is
that we use IST for #DB and #BP, which is IMO rather nasty and causes
a lot more problems than it solves. But, since #DB uses IST, we don't
actually need a real stack for SYSENTER (because SYSENTER with TF set
will invoke #DB on the IST stack rather than the SYSENTER stack).
I want to remove IST usage from these vectors some day, and this patch
is a prerequisite for that as well.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.312726423@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are at least two unwinder bugs hindering the debugging of
stack-overflow crashes:
- It doesn't deal gracefully with the case where the stack overflows and
the stack pointer itself isn't on a valid stack but the
to-be-dereferenced data *is*.
- The ORC oops dump code doesn't know how to print partial pt_regs, for the
case where if we get an interrupt/exception in *early* entry code
before the full pt_regs have been saved.
Fix both issues.
http://lkml.kernel.org/r/20171126024031.uxi4numpbjm5rlbr@treble
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.071425003@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 1d3e53e862 ("x86/entry/64: Refactor IRQ stacks and make them
NMI-safe") added DEBUG_ENTRY_ASSERT_IRQS_OFF macro that acceses eflags
using 'pushfq' instruction when testing for IF bit. On PV Xen guests
looking at IF flag directly will always see it set, resulting in 'ud2'.
Introduce SAVE_FLAGS() macro that will use appropriate save_fl pv op when
running paravirt.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20171204150604.899457242@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ Note, this is a Git cherry-pick of the following commit:
506458efaf ("locking/barriers: Convert users of lockless_dereference() to READ_ONCE()")
... for easier x86 PTI code testing and back-porting. ]
READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it
can be used instead of lockless_dereference() without any change in
semantics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ Note, this is a Git cherry-pick of the following commit:
2b67799bdf25 ("x86: Make X86_BUG_FXSAVE_LEAK detectable in CPUID on AMD")
... for easier x86 PTI code testing and back-porting. ]
The latest AMD AMD64 Architecture Programmer's Manual
adds a CPUID feature XSaveErPtr (CPUID_Fn80000008_EBX[2]).
If this feature is set, the FXSAVE, XSAVE, FXSAVEOPT, XSAVEC, XSAVES
/ FXRSTOR, XRSTOR, XRSTORS always save/restore error pointers,
thus making the X86_BUG_FXSAVE_LEAK workaround obsolete on such CPUs.
Signed-Off-By: Rudolf Marek <r.marek@assembler.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/bdcebe90-62c5-1f05-083c-eba7f08b2540@assembler.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ Note, this is a Git cherry-pick of the following commit: (limited to the cpufeatures.h file)
3522c2a6a4 ("x86/cpufeature: Add User-Mode Instruction Prevention definitions")
... for easier x86 PTI code testing and back-porting. ]
User-Mode Instruction Prevention is a security feature present in new
Intel processors that, when set, prevents the execution of a subset of
instructions if such instructions are executed in user mode (CPL > 0).
Attempting to execute such instructions causes a general protection
exception.
The subset of instructions comprises:
* SGDT - Store Global Descriptor Table
* SIDT - Store Interrupt Descriptor Table
* SLDT - Store Local Descriptor Table
* SMSW - Store Machine Status Word
* STR - Store Task Register
This feature is also added to the list of disabled-features to allow
a cleaner handling of build-time configuration.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: ricardo.neri@intel.com
Link: http://lkml.kernel.org/r/1509935277-22138-7-git-send-email-ricardo.neri-calderon@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On machines with 5-level paging we don't want to allocate mapping above
47-bit unless user explicitly asked for it. See b569bab78d ("x86/mm:
Prepare to expose larger address space to userspace") for details.
c715b72c1b ("mm: revert x86_64 and arm64 ELF_ET_DYN_BASE base
changes") broke the behaviour. After the commit elf binary and heap got
mapped above 47-bits.
Use DEFAULT_MAP_WINDOW instead of TASK_SIZE to determine ELF_ET_DYN_BASE so
it's forced to be below 47-bits unconditionally.
Fixes: c715b72c1b ("mm: revert x86_64 and arm64 ELF_ET_DYN_BASE base changes")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: linux-mm@kvack.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20171107103804.47341-1-kirill.shutemov@linux.intel.com
Replace ghes_io{re,un}map_pfn_{nmi,irq}()s use of ioremap_page_range()
with __set_fixmap() as ioremap_page_range() may sleep to allocate a new
level of page-table, even if its passed an existing final-address to
use in the mapping.
The GHES driver can only be enabled for architectures that select
HAVE_ACPI_APEI: Add fixmap entries to both x86 and arm64.
clear_fixmap() does the TLB invalidation in __set_fixmap() for arm64
and __set_pte_vaddr() for x86. In each case its the same as the
respective arch_apei_flush_tlb_one().
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Tested-by: Toshi Kani <toshi.kani@hpe.com>
[ For the arm64 bits: ]
Acked-by: Will Deacon <will.deacon@arm.com>
[ For the x86 bits: ]
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: All applicable <stable@vger.kernel.org>
Kept this commit separate from the re-tabulation changes, to make
the changes easier to review:
- add better explanation for entries with no explanation
- fix/enhance the text of some of the entries
- fix the vertical alignment of some of the feature number definitions
- fix inconsistent capitalization
- ... and lots of other small details
i.e. make it all more of a coherent unit, instead of a patchwork of years of additions.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171031121723.28524-4-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Over the years asm/cpufeatures.h has become somewhat of a mess: the original
tabulation style was too narrow, while x86 feature names also kept growing
in length, creating frequent field width overflows.
Re-tabulate it to make it wider and easier to read/modify. Also harmonize
the tabulation of the other defines in this file to match it.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171031121723.28524-3-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... so that the difference is obvious.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171103102028.20284-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Two fixes:
- A PCID related revert that fixes power management and performance
regressions.
- The module loader robustization and sanity check commit is rather
fresh, but it looked like a good idea to apply because of the
hidden data corruption problem such invalid modules could cause"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/module: Detect and skip invalid relocations
Revert "x86/mm: Stop calling leave_mm() in idle code"
This reverts commit 43858b4f25.
The reason I removed the leave_mm() calls in question is because the
heuristic wasn't needed after that patch. With the original version
of my PCID series, we never flushed a "lazy cpu" (i.e. a CPU running
kernel thread) due a flush on the loaded mm.
Unfortunately, that caused architectural issues, so now I've
reinstated these flushes on non-PCID systems in:
commit b956575bed ("x86/mm: Flush more aggressively in lazy TLB mode").
That, in turn, gives us a power management and occasionally
performance regression as compared to old kernels: a process that
goes into a deep idle state on a given CPU and gets its mm flushed
due to activity on a different CPU will wake the idle CPU.
Reinstate the old ugly heuristic: if a CPU goes into ACPI C3 or an
intel_idle state that is likely to cause a TLB flush gets its mm
switched to init_mm before going idle.
FWIW, this heuristic is lousy. Whether we should change CR3 before
idle isn't a good hint except insofar as the performance hit is a bit
lower if the TLB is getting flushed by the idle code anyway. What we
really want to know is whether we anticipate being idle long enough
that the mm is likely to be flushed before we wake up. This is more a
matter of the expected latency than the idle state that gets chosen.
This heuristic also completely fails on systems that don't know
whether the TLB will be flushed (e.g. AMD systems?). OTOH it may be a
bit obsolete anyway -- PCID systems don't presently benefit from this
heuristic at all.
We also shouldn't do this callback from innermost bit of the idle code
due to the RCU nastiness it causes. All the information need is
available before rcu_idle_enter() needs to happen.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 43858b4f25 "x86/mm: Stop calling leave_mm() in idle code"
Link: http://lkml.kernel.org/r/c513bbd4e653747213e05bc7062de000bf0202a5.1509793738.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA
6dVh26uchcEQLN/XqUDt
=x306
-----END PGP SIGNATURE-----
Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many user space API headers have licensing information, which is either
incomplete, badly formatted or just a shorthand for referring to the
license under which the file is supposed to be. This makes it hard for
compliance tools to determine the correct license.
Update these files with an SPDX license identifier. The identifier was
chosen based on the license information in the file.
GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license
identifier with the added 'WITH Linux-syscall-note' exception, which is
the officially assigned exception identifier for the kernel syscall
exception:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
This exception makes it possible to include GPL headers into non GPL
code, without confusing license compliance tools.
Headers which have either explicit dual licensing or are just licensed
under a non GPL license are updated with the corresponding SPDX
identifier and the GPLv2 with syscall exception identifier. The format
is:
((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE)
SPDX license identifiers are a legally binding shorthand, which can be
used instead of the full boiler plate text. The update does not remove
existing license information as this has to be done on a case by case
basis and the copyright holders might have to be consulted. This will
happen in a separate step.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Many user space API headers are missing licensing information, which
makes it hard for compliance tools to determine the correct license.
By default are files without license information under the default
license of the kernel, which is GPLV2. Marking them GPLV2 would exclude
them from being included in non GPLV2 code, which is obviously not
intended. The user space API headers fall under the syscall exception
which is in the kernels COPYING file:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
otherwise syscall usage would not be possible.
Update the files which contain no license information with an SPDX
license identifier. The chosen identifier is 'GPL-2.0 WITH
Linux-syscall-note' which is the officially assigned identifier for the
Linux syscall exception. SPDX license identifiers are a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Let's keep the stack-related logic together rather than open-coding
a comparison in an assertion in the traps code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/856b15bee1f55017b8f79d3758b0d51c48a08cf8.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On x86_64, we can easily calculate sp0 when needed instead of
storing it in thread_struct.
On x86_32, a similar cleanup would be possible, but it would require
cleaning up the vm86 code first, and that can wait for a later
cleanup series.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/719cd9c66c548c4350d98a90f050aee8b17f8919.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The only remaining readers in context switch code or vm86(), and
they all just want to update TSS.sp0 to match the current task.
Replace them all with a new helper update_sp0().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2d231687f4ff288c9d9e98d7861b7df374246ac3.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This will let us get rid of a few places that hardcode accesses to
thread.sp0.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b49b3f95a8ff858c40c9b0f5b32be0355324327d.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
load_sp0() had an odd signature:
void load_sp0(struct tss_struct *tss, struct thread_struct *thread);
Simplify it to:
void load_sp0(unsigned long sp0);
Also simplify a few get_cpu()/put_cpu() sequences to
preempt_disable()/preempt_enable().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2655d8b42ed940aa384fe18ee1129bbbcf730a08.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This causes the MSR_IA32_SYSENTER_CS write to move out of the
paravirt callback. This shouldn't affect Xen PV: Xen already ignores
MSR_IA32_SYSENTER_ESP writes. In any event, Xen doesn't support
vm86() in a useful way.
Note to any potential backporters: This patch won't break lguest, as
lguest didn't have any SYSENTER support at all.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/75cf09fe03ae778532d0ca6c65aa58e66bc2f90c.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of trying to execute any NMI via the bare metal's NMI trap
handler use a Xen specific one for PV domains, like we do for e.g.
debug traps. As in a PV domain the NMI is handled via the normal
kernel stack this is the correct thing to do.
This will enable us to get rid of the very fragile and questionable
dependencies between the bare metal NMI handler and Xen assumptions
believed to be broken anyway.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5baf5c0528d58402441550c5770b98e7961e7680.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are about to commit complex rework of various x86 entry code details - create
a unified base tree (with FPU commits included) before doing that.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pick up some of the MPX commits that modify the syscall entry code,
to have a common base and to reduce conflicts.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In its current form, user_64bit_mode() can only be used when CONFIG_X86_64
is selected. This implies that code built with CONFIG_X86_64=n cannot use
it. If a piece of code needs to be built for both CONFIG_X86_64=y and
CONFIG_X86_64=n and wants to use this function, it needs to wrap it in
an #ifdef/#endif; potentially, in multiple places.
This can be easily avoided with a single #ifdef/#endif pair within
user_64bit_mode() itself.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: ricardo.neri@intel.com
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Adam Buchbinder <adam.buchbinder@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Garnier <thgarnie@google.com>
Link: https://lkml.kernel.org/r/1509135945-13762-4-git-send-email-ricardo.neri-calderon@linux.intel.com
Both head_32.S and head_64.S utilize the same value to initialize the
control register CR0. Also, other parts of the kernel might want to access
this initial definition (e.g., emulation code for User-Mode Instruction
Prevention uses this state to provide a sane dummy value for CR0 when
emulating the smsw instruction). Thus, relocate this definition to a
header file from which it can be conveniently accessed.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: ricardo.neri@intel.com
Cc: linux-mm@kvack.org
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: linux-arch@vger.kernel.org
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/1509135945-13762-3-git-send-email-ricardo.neri-calderon@linux.intel.com
Up to this point, only fault.c used the definitions of the page fault error
codes. Thus, it made sense to keep them within such file. Other portions of
code might be interested in those definitions too. For instance, the User-
Mode Instruction Prevention emulation code will use such definitions to
emulate a page fault when it is unable to successfully copy the results
of the emulated instructions to user space.
While relocating the error code enumeration, the prefix X86_ is used to
make it consistent with the rest of the definitions in traps.h. Of course,
code using the enumeration had to be updated as well. No functional changes
were performed.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: ricardo.neri@intel.com
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/1509135945-13762-2-git-send-email-ricardo.neri-calderon@linux.intel.com
Add a few new SSE/AVX/AVX512 instruction groups/features for enumeration
in /proc/cpuinfo: AVX512_VBMI2, GFNI, VAES, VPCLMULQDQ, AVX512_VNNI,
AVX512_BITALG.
CPUID.(EAX=7,ECX=0):ECX[bit 6] AVX512_VBMI2
CPUID.(EAX=7,ECX=0):ECX[bit 8] GFNI
CPUID.(EAX=7,ECX=0):ECX[bit 9] VAES
CPUID.(EAX=7,ECX=0):ECX[bit 10] VPCLMULQDQ
CPUID.(EAX=7,ECX=0):ECX[bit 11] AVX512_VNNI
CPUID.(EAX=7,ECX=0):ECX[bit 12] AVX512_BITALG
Detailed information of CPUID bits for these features can be found
in the Intel Architecture Instruction Set Extensions and Future Features
Programming Interface document (refer to Table 1-1. and Table 1-2.).
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=197239
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Yang Zhong <yang.zhong@intel.com>
Cc: bp@alien8.de
Link: http://lkml.kernel.org/r/1509412829-23380-1-git-send-email-gayatri.kammela@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit ce56a86e2a.
There's unanticipated interaction with some boot parameters like 'mem=',
which now cause the new checks via valid_mmap_phys_addr_range() to be too
restrictive, crashing a Qemu bootup in fact, as reported by Fengguang Wu.
So while the motivation of the change is still entirely valid, we
need a few more rounds of testing to get it right - it's way too late
after -rc6, so revert it for now.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Craig Bergstrom <craigb@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: dsafonov@virtuozzo.com
Cc: kirill.shutemov@linux.intel.com
Cc: mhocko@suse.com
Cc: oleg@redhat.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>