First of all, %*ph specifier allows to dump data in hex format using the
pointer to a buffer. This is suitable to use here.
Besides that Thomas suggested to move it to critical level and replace __FILE__
by explicit mention of "jumplabel".
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170110164354.47372-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
GCC correctly points out that on 32-bit kernels, e820_search_gap()
not finding a start now leads to pci_mem_start ('gapstart') being set to an
uninitialized value:
arch/x86/kernel/e820.c: In function 'e820_setup_gap':
arch/x86/kernel/e820.c:641:16: error: 'gapstart' may be used uninitialized in this function [-Werror=maybe-uninitialized]
This restores the behavior from before this cleanup:
b4ed1d15b4 ("x86/e820: Make e820_search_gap() static and remove unused variables")
... defaulting to address 0x10000000 if nothing was found.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Fixes: b4ed1d15b4 ("x86/e820: Make e820_search_gap() static and remove unused variables")
Link: http://lkml.kernel.org/r/20170111144926.695369-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are a handful of callers to save_stack_trace_tsk() and
show_stack() which try to unwind the stack of a task other than current.
In such cases, it's remotely possible that the task is running on one
CPU while the unwinder is reading its stack from another CPU, causing
the unwinder to see stack corruption.
These cases seem to be mostly harmless. The unwinder has checks which
prevent it from following bad pointers beyond the bounds of the stack.
So it's not really a bug as long as the caller understands that
unwinding another task will not always succeed.
In such cases, it's possible that the unwinder may read a KASAN-poisoned
region of the stack. Account for that by using READ_ONCE_NOCHECK() when
reading the stack of another task.
Use READ_ONCE() when reading the stack of the current task, since KASAN
warnings can still be useful for finding bugs in that case.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/4c575eb288ba9f73d498dfe0acde2f58674598f1.1483978430.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are a handful of callers to save_stack_trace_tsk() and
show_stack() which try to unwind the stack of a task other than current.
In such cases, it's remotely possible that the task is running on one
CPU while the unwinder is reading its stack from another CPU, causing
the unwinder to see stack corruption.
These cases seem to be mostly harmless. The unwinder has checks which
prevent it from following bad pointers beyond the bounds of the stack.
So it's not really a bug as long as the caller understands that
unwinding another task will not always succeed.
Since stack "corruption" on another task's stack isn't necessarily a
bug, silence the warnings when unwinding tasks other than current.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/00d8c50eea3446c1524a2a755397a3966629354c.1483978430.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In generic_load_microcode(), curr_mc_size is the size of the last
allocated buffer and since we have this performance "optimization"
there to vmalloc a new buffer only when the current one is bigger,
curr_mc_size ends up becoming the size of the biggest buffer we've seen
so far.
However, we end up saving the microcode patch which matches our CPU
and its size is not curr_mc_size but the respective mc_size during the
iteration while we're staring at it.
So save that mc_size into a separate variable and use it to store the
previously found microcode buffer.
Without this fix, we could get oops like this:
BUG: unable to handle kernel paging request at ffffc9000e30f000
IP: __memcpy+0x12/0x20
...
Call Trace:
? kmemdup+0x43/0x60
__alloc_microcode_buf+0x44/0x70
save_microcode_patch+0xd4/0x150
generic_load_microcode+0x1b8/0x260
request_microcode_user+0x15/0x20
microcode_write+0x91/0x100
__vfs_write+0x34/0x120
vfs_write+0xc1/0x130
SyS_write+0x56/0xc0
do_syscall_64+0x6c/0x160
entry_SYSCALL64_slow_path+0x25/0x25
Fixes: 06b8534cb7 ("x86/microcode: Rework microcode loading")
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/4f33cbfd-44f2-9bed-3b66-7446cd14256f@ce.jp.nec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We allocate struct ucode_patch here. @size is the size of microcode data
and used for kmemdup() later in this function.
Fixes: 06b8534cb7 ("x86/microcode: Rework microcode loading")
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/7a730dc9-ac17-35c4-fe76-dfc94e5ecd95@ce.jp.nec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since on Intel we're required to do CPUID(1) first, before reading
the microcode revision MSR, let's add a special helper which does the
required steps so that we don't forget to do them next time, when we
want to read the microcode revision.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170109114147.5082-4-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel supplies the microcode revision value in MSR 0x8b
(IA32_BIOS_SIGN_ID) after CPUID(1) has been executed. Execute it each
time before reading that MSR.
It used to do sync_core() which did do CPUID but
c198b121b1 ("x86/asm: Rewrite sync_core() to use IRET-to-self")
changed the sync_core() implementation so we better make the microcode
loading case explicit, as the SDM documents it.
Reported-and-tested-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170109114147.5082-3-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When clock_event_device::set_state_oneshot_stopped() is not implemented,
hrtimer_cancel() can't stop the clock when there is no more timer in
the queue. So the ghost of the freshly cancelled hrtimer haunts us back
later with an extra interrupt:
<idle>-0 [002] d..2 2248.557659: hrtimer_cancel: hrtimer=ffff88021fa92d80
<idle>-0 [002] d.h1 2249.303659: local_timer_entry: vector=239
So let's implement this missing callback for the lapic clock. This
consist in calling its set_state_shutdown() callback. There don't seem
to be a lighter way to stop the clock. Simply writing 0 to APIC_TMICT
won't be enough to stop the clock and avoid the extra interrupt, as
opposed to what is specified in the specs. We must also mask the
timer interrupt in the device.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/1483029949-6925-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull swiotlb fixes from Konrad Rzeszutek Wilk:
"This has one fix to make i915 work when using Xen SWIOTLB, and a
feature from Geert to aid in debugging of devices that can't do DMA
outside the 32-bit address space.
The feature from Geert is on top of v4.10 merge window commit
(specifically you pulling my previous branch), as his changes were
dependent on the Documentation/ movement patches.
I figured it would just easier than me trying than to cherry-pick the
Documentation patches to satisfy git.
The patches have been soaking since 12/20, albeit I updated the last
patch due to linux-next catching an compiler error and adding an
Tested-and-Reported-by tag"
* 'stable/for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb:
swiotlb: Export swiotlb_max_segment to users
swiotlb: Add swiotlb=noforce debug option
swiotlb: Convert swiotlb_force from int to enum
x86, swiotlb: Simplify pci_swiotlb_detect_override()
The new Xen PVH entry point requires page tables to be setup by the
kernel since it is entered with paging disabled.
Pull the common code out of head_32.S so that mk_early_pgtbl_32() can be
invoked from both the new Xen entry point and the existing startup_32()
code.
Convert resulting common code to C.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: matt@codeblueprint.co.uk
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1481215471-9639-1-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
8196dab4fc ("x86/cpu: Get rid of compute_unit_id")
... broke the initial strategy for Bulldozer-based cores' topology,
where we consider each thread of a compute unit a standalone core
and not a HT or SMT thread.
Revert to the firmware-supplied core_id numbering and do not make
them thread siblings as we don't consider them for such even if they
technically are, more or less.
Reported-and-tested-by: Brice Goglin <Brice.Goglin@inria.fr>
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # v4.6+
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 8196dab4fc ("x86/cpu: Get rid of compute_unit_id")
Link: http://lkml.kernel.org/r/20170105092638.5247-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A negative number can be specified in the cmdline which will be used as
setup_clear_cpu_cap() argument. With that we can clear/set some bit in
memory predceeding boot_cpu_data/cpu_caps_cleared which may cause kernel
to misbehave. This patch adds lower bound check to setup_disablecpuid().
Boris Petkov reproduced a crash:
[ 1.234575] BUG: unable to handle kernel paging request at ffffffff858bd540
[ 1.236535] IP: memcpy_erms+0x6/0x10
Signed-off-by: Lukasz Odzioba <lukasz.odzioba@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andi.kleen@intel.com
Cc: bp@alien8.de
Cc: dave.hansen@linux.intel.com
Cc: luto@kernel.org
Cc: slaoub@gmail.com
Fixes: ac72e7888a ("x86: add generic clearcpuid=... option")
Link: http://lkml.kernel.org/r/1482933340-11857-1-git-send-email-lukasz.odzioba@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
e820_search_gap() is just used locally now and the 'start_addr' and 'end_addr'
parameters are fixed values. Also, 'gapstart' is not checked in this function
anymore.
So make the function static and remove those unused variables.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akataria@vmware.com
Link: http://lkml.kernel.org/r/1482676551-11411-1-git-send-email-richard.weiyang@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If mce_device_init() fails then the mce device pointer is NULL and the
AMD mce code happily dereferences it.
Add a sanity check.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Reported-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull timer type cleanups from Thomas Gleixner:
"This series does a tree wide cleanup of types related to
timers/timekeeping.
- Get rid of cycles_t and use a plain u64. The type is not really
helpful and caused more confusion than clarity
- Get rid of the ktime union. The union has become useless as we use
the scalar nanoseconds storage unconditionally now. The 32bit
timespec alike storage got removed due to the Y2038 limitations
some time ago.
That leaves the odd union access around for no reason. Clean it up.
Both changes have been done with coccinelle and a small amount of
manual mopping up"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ktime: Get rid of ktime_equal()
ktime: Cleanup ktime_set() usage
ktime: Get rid of the union
clocksource: Use a plain u64 instead of cycle_t
Pull SMP hotplug notifier removal from Thomas Gleixner:
"This is the final cleanup of the hotplug notifier infrastructure. The
series has been reintgrated in the last two days because there came a
new driver using the old infrastructure via the SCSI tree.
Summary:
- convert the last leftover drivers utilizing notifiers
- fixup for a completely broken hotplug user
- prevent setup of already used states
- removal of the notifiers
- treewide cleanup of hotplug state names
- consolidation of state space
There is a sphinx based documentation pending, but that needs review
from the documentation folks"
* 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/armada-xp: Consolidate hotplug state space
irqchip/gic: Consolidate hotplug state space
coresight/etm3/4x: Consolidate hotplug state space
cpu/hotplug: Cleanup state names
cpu/hotplug: Remove obsolete cpu hotplug register/unregister functions
staging/lustre/libcfs: Convert to hotplug state machine
scsi/bnx2i: Convert to hotplug state machine
scsi/bnx2fc: Convert to hotplug state machine
cpu/hotplug: Prevent overwriting of callbacks
x86/msr: Remove bogus cleanup from the error path
bus: arm-ccn: Prevent hotplug callback leak
perf/x86/intel/cstate: Prevent hotplug callback leak
ARM/imx/mmcd: Fix broken cpu hotplug handling
scsi: qedi: Convert to hotplug state machine
There is no point in having an extra type for extra confusion. u64 is
unambiguous.
Conversion was done with the following coccinelle script:
@rem@
@@
-typedef u64 cycle_t;
@fix@
typedef cycle_t;
@@
-cycle_t
+u64
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
When the state names got added a script was used to add the extra argument
to the calls. The script basically converted the state constant to a
string, but the cleanup to convert these strings into meaningful ones did
not happen.
Replace all the useless strings with 'subsys/xxx/yyy:state' strings which
are used in all the other places already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20161221192112.085444152@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The error cleanup which is invoked when the hotplug state setup failed
tries to remove the failed state, which is broken.
Fixes: 8fba38c937 ("x86/msr: Convert to hotplug state machine")
Reported-by: kernel test robot <fengguang.wu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Ingo Molnar:
"There's a number of fixes:
- a round of fixes for CPUID-less legacy CPUs
- a number of microcode loader fixes
- i8042 detection robustization fixes
- stack dump/unwinder fixes
- x86 SoC platform driver fixes
- a GCC 7 warning fix
- virtualization related fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
Revert "x86/unwind: Detect bad stack return address"
x86/paravirt: Mark unused patch_default label
x86/microcode/AMD: Reload proper initrd start address
x86/platform/intel/quark: Add printf attribute to imr_self_test_result()
x86/platform/intel-mid: Switch MPU3050 driver to IIO
x86/alternatives: Do not use sync_core() to serialize I$
x86/topology: Document cpu_llc_id
x86/hyperv: Handle unknown NMIs on one CPU when unknown_nmi_panic
x86/asm: Rewrite sync_core() to use IRET-to-self
x86/microcode/intel: Replace sync_core() with native_cpuid()
Revert "x86/boot: Fail the boot if !M486 and CPUID is missing"
x86/asm/32: Make sync_core() handle missing CPUID on all 32-bit kernels
x86/cpu: Probe CPUID leaf 6 even when cpuid_level == 6
x86/tools: Fix gcc-7 warning in relocs.c
x86/unwind: Dump stack data on warnings
x86/unwind: Adjust last frame check for aligned function stacks
x86/init: Fix a couple of comment typos
x86/init: Remove i8042_detect() from platform ops
Input: i8042 - Trust firmware a bit more when probing on X86
x86/init: Add i8042 state to the platform data
...
Revert the following commit:
b6959a3621 ("x86/unwind: Detect bad stack return address")
... because Andrey Konovalov reported an unwinder warning:
WARNING: unrecognized kernel stack return address ffffffffa0000001 at ffff88006377fa18 in a.out:4467
The unwind was initiated from an interrupt which occurred while running in the
generated code for a kprobe. The unwinder printed the warning because it
expected regs->ip to point to a valid text address, but instead it pointed to
the generated code.
Eventually we may want come up with a way to identify generated kprobe
code so the unwinder can know that it's a valid return address. Until
then, just remove the warning.
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/02f296848fbf49fb72dfeea706413ecbd9d4caf6.1482418739.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 cache allocation interface from Thomas Gleixner:
"This provides support for Intel's Cache Allocation Technology, a cache
partitioning mechanism.
The interface is odd, but the hardware interface of that CAT stuff is
odd as well.
We tried hard to come up with an abstraction, but that only allows
rather simple partitioning, but no way of sharing and dealing with the
per package nature of this mechanism.
In the end we decided to expose the allocation bitmaps directly so all
combinations of the hardware can be utilized.
There are two ways of associating a cache partition:
- Task
A task can be added to a resource group. It uses the cache
partition associated to the group.
- CPU
All tasks which are not member of a resource group use the group to
which the CPU they are running on is associated with.
That allows for simple CPU based partitioning schemes.
The main expected user sare:
- Virtualization so a VM can only trash only the associated part of
the cash w/o disturbing others
- Real-Time systems to seperate RT and general workloads.
- Latency sensitive enterprise workloads
- In theory this also can be used to protect against cache side
channel attacks"
[ Intel RDT is "Resource Director Technology". The interface really is
rather odd and very specific, which delayed this pull request while I
was thinking about it. The pull request itself came in early during
the merge window, I just delayed it until things had calmed down and I
had more time.
But people tell me they'll use this, and the good news is that it is
_so_ specific that it's rather independent of anything else, and no
user is going to depend on the interface since it's pretty rare. So if
push comes to shove, we can just remove the interface and nothing will
break ]
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
x86/intel_rdt: Implement show_options() for resctrlfs
x86/intel_rdt: Call intel_rdt_sched_in() with preemption disabled
x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount
x86/intel_rdt: Fix setting of closid when adding CPUs to a group
x86/intel_rdt: Update percpu closid immeditately on CPUs affected by changee
x86/intel_rdt: Reset per cpu closids on unmount
x86/intel_rdt: Select KERNFS when enabling INTEL_RDT_A
x86/intel_rdt: Prevent deadlock against hotplug lock
x86/intel_rdt: Protect info directory from removal
x86/intel_rdt: Add info files to Documentation
x86/intel_rdt: Export the minimum number of set mask bits in sysfs
x86/intel_rdt: Propagate error in rdt_mount() properly
x86/intel_rdt: Add a missing #include
MAINTAINERS: Add maintainer for Intel RDT resource allocation
x86/intel_rdt: Add scheduler hook
x86/intel_rdt: Add schemata file
x86/intel_rdt: Add tasks files
x86/intel_rdt: Add cpus file
x86/intel_rdt: Add mkdir to resctrl file system
x86/intel_rdt: Add "info" files to resctrl file system
...
A bugfix commit:
45dbea5f55 ("x86/paravirt: Fix native_patch()")
... introduced a harmless warning:
arch/x86/kernel/paravirt_patch_32.c: In function 'native_patch':
arch/x86/kernel/paravirt_patch_32.c:71:1: error: label 'patch_default' defined but not used [-Werror=unused-label]
Fix it by annotating the label as __maybe_unused.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Reported-by: Piotr Gregor <piotrgregor@rsyncme.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 45dbea5f55 ("x86/paravirt: Fix native_patch()")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we switch to virtual addresses and, especially after
reserve_initrd()->relocate_initrd() have run, we have the updated initrd
address in initrd_start. Use initrd_start then instead of the address
which has been passed to us through boot params. (That still gets used
when we're running the very early routines on the BSP).
Reported-and-tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20161220144012.lc4cwrg6dphqbyqu@pd.tnic
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We use sync_core() in the alternatives code to stop speculative
execution of prefetched instructions because we are potentially changing
them and don't want to execute stale bytes.
What it does on most machines is call CPUID which is a serializing
instruction. And that's expensive.
However, the instruction cache is serialized when we're on the local CPU
and are changing the data through the same virtual address. So then, we
don't need the serializing CPUID but a simple control flow change. Last
being accomplished with a CALL/RET which the noinline causes.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Cc: Matthew Whitehead <tedheadster@gmail.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161203150258.vwr5zzco7ctgc4pe@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a feature in Hyper-V ('Debug-VM --InjectNonMaskableInterrupt')
which injects NMI to the guest. We may want to crash the guest and do kdump
on this NMI by enabling unknown_nmi_panic. To make kdump succeed we need to
allow the kdump kernel to re-establish VMBus connection so it will see
VMBus devices (storage, network,..).
To properly unload VMBus making it possible to start over during kdump we
need to do the following:
- Send an 'unload' message to the hypervisor. This can be done on any CPU
so we do this the crashing CPU.
- Receive the 'unload finished' reply message. WS2012R2 delivers this
message to the CPU which was used to establish VMBus connection during
module load and this CPU may differ from the CPU sending 'unload'.
Receiving a VMBus message means the following:
- There is a per-CPU slot in memory for one message. This slot can in
theory be accessed by any CPU.
- We get an interrupt on the CPU when a message was placed into the slot.
- When we read the message we need to clear the slot and signal the fact
to the hypervisor. In case there are more messages to this CPU pending
the hypervisor will deliver the next message. The signaling is done by
writing to an MSR so this can only be done on the appropriate CPU.
To avoid doing cross-CPU work on crash we have vmbus_wait_for_unload()
function which checks message slots for all CPUs in a loop waiting for the
'unload finished' messages. However, there is an issue which arises when
these conditions are met:
- We're crashing on a CPU which is different from the one which was used
to initially contact the hypervisor.
- The CPU which was used for the initial contact is blocked with interrupts
disabled and there is a message pending in the message slot.
In this case we won't be able to read the 'unload finished' message on the
crashing CPU. This is reproducible when we receive unknown NMIs on all CPUs
simultaneously: the first CPU entering panic() will proceed to crash and
all other CPUs will stop themselves with interrupts disabled.
The suggested solution is to handle unknown NMIs for Hyper-V guests on the
first CPU which gets them only. This will allow us to rely on VMBus
interrupt handler being able to receive the 'unload finish' message in
case it is delivered to a different CPU.
The issue is not reproducible on WS2016 as Debug-VM delivers NMI to the
boot CPU only, WS2012R2 and earlier Hyper-V versions are affected.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Link: http://lkml.kernel.org/r/20161202100720.28121-1-vkuznets@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Convert the flag swiotlb_force from an int to an enum, to prepare for
the advent of more possible values.
Suggested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
At the end of the function, the local variable use_swiotlb has always
the same value as the global variable swiotlb. Hence drop the local
variable completely.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The Intel microcode driver is using sync_core() to mean "do CPUID
with EAX=1". I want to rework sync_core(), but first the Intel
microcode driver needs to stop depending on its current behavior.
Reported-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Matthew Whitehead <tedheadster@gmail.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: xen-devel <Xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/535a025bb91fed1a019c5412b036337ad239e5bb.1481307769.git.luto@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A typo (or mis-merge?) resulted in leaf 6 only being probed if
cpuid_level >= 7.
Fixes: 2ccd71f1b2 ("x86/cpufeature: Move some of the scattered feature bits to x86_capability")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Link: http://lkml.kernel.org/r/6ea30c0e9daec21e488b54761881a6dfcf3e04d0.1481825597.git.luto@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The unwinder warnings are good at finding unexpected unwinder issues,
but they often don't give enough data to be able to fully diagnose them.
Print a one-time stack dump when a warning is detected.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/15607370e3ddb1732b6a73d5c65937864df16ac8.1481904011.git.jpoimboe@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Somehow, CONFIG_PARAVIRT=n convinces gcc to change the
x86_64_start_kernel() prologue from:
0000000000000129 <x86_64_start_kernel>:
129: 55 push %rbp
12a: 48 89 e5 mov %rsp,%rbp
to:
0000000000000124 <x86_64_start_kernel>:
124: 4c 8d 54 24 08 lea 0x8(%rsp),%r10
129: 48 83 e4 f0 and $0xfffffffffffffff0,%rsp
12d: 41 ff 72 f8 pushq -0x8(%r10)
131: 55 push %rbp
132: 48 89 e5 mov %rsp,%rbp
This is an unusual pattern which aligns rsp (though in this case it's
already aligned) and saves the start_cpu() return address again on the
stack before storing the frame pointer.
The unwinder assumes the last stack frame header is at a certain offset,
but the above code breaks that assumption, resulting in the following
warning:
WARNING: kernel stack frame pointer at ffffffff82e03f40 in swapper:0 has bad value (null)
Fix it by checking for the last task stack frame at the aligned offset
in addition to the normal unaligned offset.
Fixes: acb4608ad1 ("x86/unwind: Create stack frames for saved syscall registers")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/9d7b4eb8cf55a7d6002cb738f25c23e7429c99a0.1481904011.git.jpoimboe@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add i8042 state to the platform data to help i8042 driver make decision
whether to probe for i8042 or not. We recognize 3 states: platform/subarch
ca not possible have i8042 (as is the case with Inrel MID platform),
firmware (such as ACPI) reports that i8042 is absent from the device,
or i8042 may be present and the driver should probe for it.
The intent is to allow i8042 driver abort initialization on x86 if PNP data
(absence of both keyboard and mouse PNP devices) agrees with firmware data.
It will also allow us to remove i8042_detect later.
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Tested-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Marcos Paulo de Souza <marcos.souza.org@gmail.com>
Cc: linux-input@vger.kernel.org
Link: http://lkml.kernel.org/r/1481317061-31486-2-git-send-email-dmitry.torokhov@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When CONFIG_PARAVIRT is selected, cpuid() becomes a call. Since
for 32-bit kernels load_ucode_amd_bsp() is executed before paging
is enabled the call cannot be completed (as kernel virtual addresses
are not reachable yet).
Use native_cpuid() instead which is an asm wrapper for the CPUID
instruction.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jürgen Gross <jgross@suse.com>
Link: http://lkml.kernel.org/r/1481906392-3847-1-git-send-email-boris.ostrovsky@oracle.com
Link: http://lkml.kernel.org/r/20161218164414.9649-5-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Doing so is completely void of sense for multiple reasons so prevent
it. Set dis_ucode_ldr to true and thus disable the microcode loader by
default to address xen pv guests which execute the AP path but not the
BSP path.
By having it turned off by default, the APs won't run into the loader
either.
Also, check CPUID(1).ECX[31] which hypervisors set. Well almost, not the
xen pv one. That one gets the aforementioned "fix".
Also, improve the detection method by caching the final decision whether
to continue loading in dis_ucode_ldr and do it once on the BSP. The APs
then simply test that value.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Juergen Gross <jgross@suse.com>
Link: http://lkml.kernel.org/r/20161218164414.9649-4-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make it simply return bool to denote whether it found a container or not
and return the pointer to the container and its size in the handed-in
container pointer instead, as returning a struct was just silly.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jürgen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/20161218164414.9649-3-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fixup signature and retvals, return the container struct through the
passed in pointer, not as a function return value.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jürgen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/20161218164414.9649-2-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer updates from Thomas Gleixner:
"This is the last functional update from the tip tree for 4.10. It got
delayed due to a newly reported and anlyzed variant of BIOS bug and
the resulting wreckage:
- Seperation of TSC being marked realiable and the fact that the
platform provides the TSC frequency via CPUID/MSRs and making use
for it for GOLDMONT.
- TSC adjust MSR validation and sanitizing:
The TSC adjust MSR contains the offset to the hardware counter. The
sum of the adjust MSR and the counter is the TSC value which is
read via RDTSC.
On at least two machines from different vendors the BIOS sets the
TSC adjust MSR to negative values. This happens on cold and warm
boot. While on cold boot the offset is a few milliseconds, on warm
boot it basically compensates the power on time of the system. The
BIOSes are not even using the adjust MSR to set all CPUs in the
package to the same offset. The offsets are different which renders
the TSC unusable,
What's worse is that the TSC deadline timer has a HW feature^Wbug.
It malfunctions when the TSC adjust value is negative or greater
equal 0x80000000 resulting in silent boot failures, hard lockups or
non firing timers. This looks like some hardware internal 32/64bit
issue with a sign extension problem. Intel has been silent so far
on the issue.
The update contains sanity checks and keeps the adjust register
within working limits and in sync on the package.
As it looks like this disease is spreading via BIOS crapware, we
need to address this urgently as the boot failures are hard to
debug for users"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsc: Limit the adjust value further
x86/tsc: Annotate printouts as firmware bug
x86/tsc: Force TSC_ADJUST register to value >= zero
x86/tsc: Validate TSC_ADJUST after resume
x86/tsc: Validate cpumask pointer before accessing it
x86/tsc: Fix broken CONFIG_X86_TSC=n build
x86/tsc: Try to adjust TSC if sync test fails
x86/tsc: Prepare warp test for TSC adjustment
x86/tsc: Move sync cleanup to a safe place
x86/tsc: Sync test only for the first cpu in a package
x86/tsc: Verify TSC_ADJUST from idle
x86/tsc: Store and check TSC ADJUST MSR
x86/tsc: Detect random warps
x86/tsc: Use X86_FEATURE_TSC_ADJUST in detect_art()
x86/tsc: Finalize the split of the TSC_RELIABLE flag
x86/tsc: Set TSC_KNOWN_FREQ and TSC_RELIABLE flags on Intel Atom SoCs
x86/tsc: Mark Intel ATOM_GOLDMONT TSC reliable
x86/tsc: Mark TSC frequency determined by CPUID as known
x86/tsc: Add X86_FEATURE_TSC_KNOWN_FREQ flag
Pull x86 fixes and cleanups from Thomas Gleixner:
"This set of updates contains:
- Robustification for the logical package managment. Cures the AMD
and virtualization issues.
- Put the correct start_cpu() return address on the stack of the idle
task.
- Fixups for the fallout of the nodeid <-> cpuid persistent mapping
modifciations
- Move the x86/MPX specific mm_struct member to the arch specific
mm_context where it belongs
- Cleanups for C89 struct initializers and useless function
arguments"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/floppy: Use designated initializers
x86/mpx: Move bd_addr to mm_context_t
x86/mm: Drop unused argument 'removed' from sync_global_pgds()
ACPI/NUMA: Do not map pxm to node when NUMA is turned off
x86/acpi: Use proper macro for invalid node
x86/smpboot: Prevent false positive out of bounds cpumask access warning
x86/boot/64: Push correct start_cpu() return address
x86/boot/64: Use 'push' instead of 'call' in start_cpu()
x86/smpboot: Make logical package management more robust
Adjust value 0x80000000 and other values larger than that render the TSC
deadline timer disfunctional.
We have not yet any information about this from Intel, but experimentation
clearly proves that this is a 32/64 bit and sign extension issue.
If adjust values larger than that are actually required, which might be the
case for physical CPU hotplug, then we need to disable the deadline timer
on the affected package/CPUs and use the local APIC timer instead.
That requires some surgery in the APIC setup code, so we just limit the
ADJUST register value into the known to work range for now and revisit this
when Intel comes forth with proper information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Roland Scheidegger <rscheidegger_lists@hispeed.ch>
Cc: Bruce Schlobohm <bruce.schlobohm@intel.com>
Cc: Kevin Stanton <kevin.b.stanton@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Make it more obvious that the BIOS is screwed up.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Roland Scheidegger <rscheidegger_lists@hispeed.ch>
Cc: Bruce Schlobohm <bruce.schlobohm@intel.com>
Cc: Kevin Stanton <kevin.b.stanton@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Highlights include:
- Support for the kexec_file_load() syscall, which is a prereq for secure and
trusted boot.
- Prevent kernel execution of userspace on P9 Radix (similar to SMEP/PXN).
- Sort the exception tables at build time, to save time at boot, and store
them as relative offsets to save space in the kernel image & memory.
- Allow building the kernel with thin archives, which should allow us to build
an allyesconfig once some other fixes land.
- Build fixes to allow us to correctly rebuild when changing the kernel endian
from big to little or vice versa.
- Plumbing so that we can avoid doing a full mm TLB flush on P9 Radix.
- Initial stack protector support (-fstack-protector).
- Support for dumping the radix (aka. Linux) and hash page tables via debugfs.
- Fix an oops in cxl coredump generation when cxl_get_fd() is used.
- Freescale updates from Scott: "Highlights include 8xx hugepage support,
qbman fixes/cleanup, device tree updates, and some misc cleanup."
- Many and varied fixes and minor enhancements as always.
Thanks to:
Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anshuman Khandual,
Anton Blanchard, Balbir Singh, Bartlomiej Zolnierkiewicz, Christophe Jaillet,
Christophe Leroy, Denis Kirjanov, Elimar Riesebieter, Frederic Barrat,
Gautham R. Shenoy, Geliang Tang, Geoff Levand, Jack Miller, Johan Hovold,
Lars-Peter Clausen, Libin, Madhavan Srinivasan, Michael Neuling, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Pan Xinhui, Peter Senna Tschudin,
Rashmica Gupta, Rui Teng, Russell Currey, Scott Wood, Simon Guo, Suraj
Jitindar Singh, Thiago Jung Bauermann, Tobias Klauser, Vaibhav Jain.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYU4YSAAoJEFHr6jzI4aWAC4gQALtIAqqPon0Cd5b/FVVcMbW7
mMqB2b/0FGEl5GoRTzGUDaQqElilm6AEVfHO86C7DFji/a6olneFfw87iz+mtWuZ
JvrNq68ZiSnoeszdUy4MgtXFLb5sTzNMev4skaHfjI9E5CepWBoR0zH4G+kNVnd5
WSgudv8Cq4Px+MEuTOigt3QYjHzZ3cw/XNOOm9c+oGj+PDW4O9UItVI+S1WLoey4
rAB2nRcLMDPuwfRQC9XsF3zEbkv4h1dEXo/EBRuRpcF+0lLTzFw1lv1WE8OxlUmS
kAXbty3dIytBfSbtJT0c0Ps6sfQ4HFhu6ZV2fjnxNTz2KDkBIN7LBYHmBYiqY9oZ
9zvbUWtfiTu5ocfRtTq7rC/Hcj4Kbr9S9F/FvXR0WyDsKgu4xxAovqC3gcn6YjYK
Rr1tcCI4nUzyhVJVmd+OEhUvc5JbFy9aGage+YeOyejfvvSbXIunaxWlPjoDkvim
Vjl+UKU8gw51XFssqY5ZBi/HNlMFKYedLpMFp/fItnLglhj50V0eFWkpDgdSCYom
vo9ifPLZx8n8m8De3H7TV4E0F4gCHcTeqZdu7tW9AAUVM6iLJcDLm3asGmtNh21t
snOHNOJ5QSIno6ezUUg29T6VBjbPh46fdJJSlIZrEe8OzLZ1haGyttf0tD00PQvY
Z2W/m3gxafnOeGgBqvyv
=xOzf
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Support for the kexec_file_load() syscall, which is a prereq for
secure and trusted boot.
- Prevent kernel execution of userspace on P9 Radix (similar to
SMEP/PXN).
- Sort the exception tables at build time, to save time at boot, and
store them as relative offsets to save space in the kernel image &
memory.
- Allow building the kernel with thin archives, which should allow us
to build an allyesconfig once some other fixes land.
- Build fixes to allow us to correctly rebuild when changing the
kernel endian from big to little or vice versa.
- Plumbing so that we can avoid doing a full mm TLB flush on P9
Radix.
- Initial stack protector support (-fstack-protector).
- Support for dumping the radix (aka. Linux) and hash page tables via
debugfs.
- Fix an oops in cxl coredump generation when cxl_get_fd() is used.
- Freescale updates from Scott: "Highlights include 8xx hugepage
support, qbman fixes/cleanup, device tree updates, and some misc
cleanup."
- Many and varied fixes and minor enhancements as always.
Thanks to:
Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anshuman
Khandual, Anton Blanchard, Balbir Singh, Bartlomiej Zolnierkiewicz,
Christophe Jaillet, Christophe Leroy, Denis Kirjanov, Elimar
Riesebieter, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff
Levand, Jack Miller, Johan Hovold, Lars-Peter Clausen, Libin,
Madhavan Srinivasan, Michael Neuling, Nathan Fontenot, Naveen N.
Rao, Nicholas Piggin, Pan Xinhui, Peter Senna Tschudin, Rashmica
Gupta, Rui Teng, Russell Currey, Scott Wood, Simon Guo, Suraj
Jitindar Singh, Thiago Jung Bauermann, Tobias Klauser, Vaibhav Jain"
[ And thanks to Michael, who took time off from a new baby to get this
pull request done. - Linus ]
* tag 'powerpc-4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (174 commits)
powerpc/fsl/dts: add FMan node for t1042d4rdb
powerpc/fsl/dts: add sg_2500_aqr105_phy4 alias on t1024rdb
powerpc/fsl/dts: add QMan and BMan nodes on t1024
powerpc/fsl/dts: add QMan and BMan nodes on t1023
soc/fsl/qman: test: use DEFINE_SPINLOCK()
powerpc/fsl-lbc: use DEFINE_SPINLOCK()
powerpc/8xx: Implement support of hugepages
powerpc: get hugetlbpage handling more generic
powerpc: port 64 bits pgtable_cache to 32 bits
powerpc/boot: Request no dynamic linker for boot wrapper
soc/fsl/bman: Use resource_size instead of computation
soc/fsl/qe: use builtin_platform_driver
powerpc/fsl_pmc: use builtin_platform_driver
powerpc/83xx/suspend: use builtin_platform_driver
powerpc/ftrace: Fix the comments for ftrace_modify_code
powerpc/perf: macros for power9 format encoding
powerpc/perf: power9 raw event format encoding
powerpc/perf: update attribute_group data structure
powerpc/perf: factor out the event format field
powerpc/mm/iommu, vfio/spapr: Put pages on VFIO container shutdown
...
o STM can hook into the function tracer
o Function filtering now supports more advance glob matching
o Ftrace selftests updates and added tests
o Softirq tag in traces now show only softirqs
o ARM nop added to non traced locations at compile time
o New trace_marker_raw file that allows for binary input
o Optimizations to the ring buffer
o Removal of kmap in trace_marker
o Wakeup and irqsoff tracers now adhere to the set_graph_notrace file
o Other various fixes and clean ups
Note, there are two patches marked for stable. These were discovered
near the end of the 4.9 rc release cycle. By the time I had them tested
it was just a matter of days before 4.9 would be released, and I
figured I would just submit them in the merge window. They are old
bugs and not critical. Nothing non-root could abuse.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJYUrFHFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
2+AIAIr20kSQV/nA5htGAeCTobVk3WUxY6bvjd9mIJDKPP19akNLyREW0G3KnfCr
yhx4aFRZG98fRu/6F8qieRosyN36lADDVYHelMFHMpcTOpE2aZGjaaOuNGxOEA9v
FmMPTX+K3+dzKyFP4l68R3+5JuQ1/AqLTioTWeLW8IDQ2OOVsjD8+0BuXrNKMJDY
o6U4Hk5U/vn+zHc6BmgBzloAXemBd7iJ1t5V3FRRGvm8yv3HU85Twc5ofGeYTWvB
J8PboEywRlIzxg0Kd8mxnMI5PgaKZSEc2ub8E7cY/CZ5PYpDE2xDA2hJmJgfYp00
1VW+DHRpRZfElsCcya6S6P4bs5Y=
=MGZ/
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This release has a few updates:
- STM can hook into the function tracer
- Function filtering now supports more advance glob matching
- Ftrace selftests updates and added tests
- Softirq tag in traces now show only softirqs
- ARM nop added to non traced locations at compile time
- New trace_marker_raw file that allows for binary input
- Optimizations to the ring buffer
- Removal of kmap in trace_marker
- Wakeup and irqsoff tracers now adhere to the set_graph_notrace file
- Other various fixes and clean ups"
* tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (42 commits)
selftests: ftrace: Shift down default message verbosity
kprobes/trace: Fix kprobe selftest for newer gcc
tracing/kprobes: Add a helper method to return number of probe hits
tracing/rb: Init the CPU mask on allocation
tracing: Use SOFTIRQ_OFFSET for softirq dectection for more accurate results
tracing/fgraph: Have wakeup and irqsoff tracers ignore graph functions too
fgraph: Handle a case where a tracer ignores set_graph_notrace
tracing: Replace kmap with copy_from_user() in trace_marker writing
ftrace/x86_32: Set ftrace_stub to weak to prevent gcc from using short jumps to it
tracing: Allow benchmark to be enabled at early_initcall()
tracing: Have system enable return error if one of the events fail
tracing: Do not start benchmark on boot up
tracing: Have the reg function allow to fail
ring-buffer: Force rb_end_commit() and rb_set_commit_to_write() inline
ring-buffer: Froce rb_update_write_stamp() to be inlined
ring-buffer: Force inline of hotpath helper functions
tracing: Make __buffer_unlock_commit() always_inline
tracing: Make tracepoint_printk a static_key
ring-buffer: Always inline rb_event_data()
ring-buffer: Make rb_reserve_next_event() always inlined
...
Roland reported that his DELL T5810 sports a value add BIOS which
completely wreckages the TSC. The squirmware [(TM) Ingo Molnar] boots with
random negative TSC_ADJUST values, different on all CPUs. That renders the
TSC useless because the sycnchronization check fails.
Roland tested the new TSC_ADJUST mechanism. While it manages to readjust
the TSCs he needs to disable the TSC deadline timer, otherwise the machine
just stops booting.
Deeper investigation unearthed that the TSC deadline timer is sensitive to
the TSC_ADJUST value. Writing TSC_ADJUST to a negative value results in an
interrupt storm caused by the TSC deadline timer.
This does not make any sense and it's hard to imagine what kind of hardware
wreckage is behind that misfeature, but it's reliably reproducible on other
systems which have TSC_ADJUST and TSC deadline timer.
While it would be understandable that a big enough negative value which
moves the resulting TSC readout into the negative space could have the
described effect, this happens even with a adjust value of -1, which keeps
the TSC readout definitely in the positive space. The compare register for
the TSC deadline timer is set to a positive value larger than the TSC, but
despite not having reached the deadline the interrupt is raised
immediately. If this happens on the boot CPU, then the machine dies
silently because this setup happens before the NMI watchdog is armed.
Further experiments showed that any other adjustment of TSC_ADJUST works as
expected as long as it stays in the positive range. The direction of the
adjustment has no influence either. See the lkml link for further analysis.
Yet another proof for the theory that timers are designed by janitors and
the underlying (obviously undocumented) mechanisms which allow BIOSes to
wreckage them are considered a feature. Well done Intel - NOT!
To address this wreckage add the following sanity measures:
- If the TSC_ADJUST value on the boot cpu is not 0, set it to 0
- If the TSC_ADJUST value on any cpu is negative, set it to 0
- Prevent the cross package synchronization mechanism from setting negative
TSC_ADJUST values.
Reported-and-tested-by: Roland Scheidegger <rscheidegger_lists@hispeed.ch>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bruce Schlobohm <bruce.schlobohm@intel.com>
Cc: Kevin Stanton <kevin.b.stanton@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Allen Hung <allen_hung@dell.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161213131211.397588033@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some 'feature' BIOSes fiddle with the TSC_ADJUST register during
suspend/resume which renders the TSC unusable.
Add sanity checks into the resume path and restore the
original value if it was adjusted.
Reported-and-tested-by: Roland Scheidegger <rscheidegger_lists@hispeed.ch>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bruce Schlobohm <bruce.schlobohm@intel.com>
Cc: Kevin Stanton <kevin.b.stanton@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Allen Hung <allen_hung@dell.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161213131211.317654500@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
prefill_possible_map() reinitializes the cpu_possible_map by setting the
possible cpu bits and clearing all other bits up to NR_CPUS.
This is technically always correct because cpu_possible_map is statically
allocated and sized NR_CPUS. With CPUMASK_OFFSTACK and DEBUG_PER_CPU_MAPS
enabled the bounds check of cpu masks happens on nr_cpu_ids. nr_cpu_ids is
initialized to NR_CPUS and only limited after the set/clear bit loops have
been executed.
But if the system was booted with "nr_cpus=N" on the command line, where N
is < NR_CPUS then nr_cpu_ids is limited in the parameter parsing function
before prefill_possible_map() is invoked. As a consequence the cpumask
bounds check triggers when clearing the bits past nr_cpu_ids.
Add a helper which allows to reset cpu_possible_map w/o the bounds check
and then set only the possible bits which are well inside bounds.
Reported-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: 0x7f454c46@gmail.com
Cc: Jan Beulich <JBeulich@novell.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1612131836050.3415@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently in x86_64, the symbol address of phys_base is exported to
vmcoreinfo. Dave Anderson complained this is really useless for his
Crash implementation. Because in user-space utility Crash and
Makedumpfile which exported vmcore information is mainly used for, value
of phys_base is needed to covert virtual address of exported kernel
symbol to physical address. Especially init_level4_pgt, if we want to
access and go over the page table to look up a PA corresponding to VA,
firstly we need calculate
page_dir = SYMBOL(init_level4_pgt) - __START_KERNEL_map + phys_base;
Now in Crash and Makedumpfile, we have to analyze the vmcore elf program
header to get value of phys_base. As Dave said, it would be preferable
if it were readily availabl in vmcoreinfo rather than depending upon the
PT_LOAD semantics.
Hence in this patch change to export the value of phys_base instead of
its virtual address.
And people also complained that KERNEL_IMAGE_SIZE exporting is x86_64
only, should be moved into arch dependent function
arch_crash_save_vmcoreinfo. Do the moving in this patch.
Link: http://lkml.kernel.org/r/1478568596-30060-2-git-send-email-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Xunlei Pang <xlpang@redhat.com>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Eugene Surovegin <surovegin@google.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Atsushi Kumagai <ats-kumagai@wm.jp.nec.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Pratyush Anand <panand@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 0549a3c02e ("kdump, vmcoreinfo: report memory
sections virtual addresses").
Commit 0549a3c02e tells the userspace utility makedumpfile the
randomized base address of these memmory sections when mm kaslr is
enabled. However the following patch "kexec: export the value of
phys_base instead of symbol address" makes makedumpfile not need these
addresses any more.
Besides we should use VMCOREINFO_NUMBER to export the value of the
variable so that we can use the existing number_table mechanism of
Makedumpfile to fetch it. So revert it now. If needed we can add it
later.
http://lists.infradead.org/pipermail/kexec/2016-October/017540.html
Link: http://lkml.kernel.org/r/1478568596-30060-1-git-send-email-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Xunlei Pang <xlpang@redhat.com>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Eugene Surovegin <surovegin@google.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Atsushi Kumagai <ats-kumagai@wm.jp.nec.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Pratyush Anand <panand@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
start_cpu() pushes a text address on the stack so that stack traces from
idle tasks will show start_cpu() at the end. But it currently shows the
wrong function offset. It's more correct to show the address
immediately after the 'lretq' instruction.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2cadd9f16c77da7ee7957bfc5e1c67928c23ca48.1481685203.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
start_cpu() pushes a text address on the stack so that stack traces from
idle tasks will show start_cpu() at the end. But it uses a call
instruction to do that, which is rather obtuse. Use a straightforward
push instead.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/4d8a1952759721d42d1e62ba9e4a7e3ac5df8574.1481685203.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull workqueue updates from Tejun Heo:
"Mostly patches to initialize workqueue subsystem earlier and get rid
of keventd_up().
The patches were headed for the last merge cycle but got delayed due
to a bug found late minute, which is fixed now.
Also, to help debugging, destroy_workqueue() is more chatty now on a
sanity check failure."
* 'for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: move wq_numa_init() to workqueue_init()
workqueue: remove keventd_up()
debugobj, workqueue: remove keventd_up() usage
slab, workqueue: remove keventd_up() usage
power, workqueue: remove keventd_up() usage
tty, workqueue: remove keventd_up() usage
mce, workqueue: remove keventd_up() usage
workqueue: make workqueue available early during boot
workqueue: dump workqueue state on sanity check failures in destroy_workqueue()
Here's the new driver core patches for 4.10-rc1.
Big thing here is the nice addition of "functional dependencies" to the
driver core. The idea has been talked about for a very long time, great
job to Rafael for stepping up and implementing it. It's been tested for
longer than the 4.9-rc1 date, we held off on merging it earlier in order
to feel more comfortable about it.
Other than that, it's just a handful of small other patches, some good
cleanups to the mess that is the firmware class code, and we have a test
driver for the deferred probe logic.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWFAvPQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ym3NgCgmhFeWEkp9SDt17YGGavmnzQUlBQAoJlUipJp
PHeQkq15ZWw3wWC9FEvM
=91M1
-----END PGP SIGNATURE-----
Merge tag 'driver-core-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here's the new driver core patches for 4.10-rc1.
Big thing here is the nice addition of "functional dependencies" to
the driver core. The idea has been talked about for a very long time,
great job to Rafael for stepping up and implementing it. It's been
tested for longer than the 4.9-rc1 date, we held off on merging it
earlier in order to feel more comfortable about it.
Other than that, it's just a handful of small other patches, some good
cleanups to the mess that is the firmware class code, and we have a
test driver for the deferred probe logic.
All of these have been in linux-next for a while with no reported
issues"
* tag 'driver-core-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (30 commits)
firmware: Correct handling of fw_state_wait() return value
driver core: Silence device links sphinx warning
firmware: remove warning at documentation generation time
drivers: base: dma-mapping: Fix typo in dmam_alloc_non_coherent comments
driver core: test_async: fix up typo found by 0-day
firmware: move fw_state_is_done() into UHM section
firmware: do not use fw_lock for fw_state protection
firmware: drop bit ops in favor of simple state machine
firmware: refactor loading status
firmware: fix usermode helper fallback loading
driver core: firmware_class: convert to use class_groups
driver core: devcoredump: convert to use class_groups
driver core: class: add class_groups support
kernfs: Declare two local data structures static
driver-core: fix platform_no_drv_owner.cocci warnings
drivers/base/memory.c: Remove unused 'first_page' variable
driver core: add CLASS_ATTR_WO()
drivers: base: cacheinfo: support DT overrides for cache properties
drivers: base: cacheinfo: add pr_fmt logging
drivers: base: cacheinfo: fix boot error message when acpi is enabled
...
- ACPICA update including upstream revision 20160930 and several
commits beyond it (Bob Moore, Lv Zheng).
- Initial support for ACPI APEI on ARM64 (Tomasz Nowicki).
- New document describing the handling of _OSI and _REV in Linux
(Len Brown).
- New document describing the usage rules for _DSD properties
(Rafael Wysocki).
- Update of the ACPI properties-parsing code to reflect recent
changes in the (external) documentation it is based on (Rafael
Wysocki).
- Updates of the ACPI LPSS and ACPI APD SoC drivers for additional
hardware support (Andy Shevchenko, Nehal Shah).
- New blacklist entries for _REV and video handling (Alex Hung,
Hans de Goede, Michael Pobega).
- ACPI battery driver fix to fall back to _BIF if _BIX fails (Dave
Lambley).
- NMI notifications handling fix for APEI (Prarit Bhargava).
- Error code path fix for the ACPI CPPC library (Dan Carpenter).
- Assorted cleanups (Andy Shevchenko, Longpeng Mike).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJYTx6WAAoJEILEb/54YlRxFksP/0oZUm4dxHJFT6ED1ogBLid6
o+T7PA46i7VpyyT64tq3YcBqccFAYq9jHvK0FasK6WA3GKF+fj8cc5FsFM0lfdlw
pMFfkdVTVajzFAM1QcxxeNr+TNuAGhx1ENf3us4xOP1Nt++kESBMwA112emoqEJL
kzb2M3sCWyHNUxLtbis5CpYXLNFifFf8PP+LgmfRk0u2EYYW2nOShd6A7w5USmDh
cYsfKcrBHs+nmNh6uZrQbGg+6zTcQT7XORyqcIsgT2JoWooVfwOrBjgLymFvuLUc
ShZ1dHqR+RwIu1ZTIWImpDcBz/dALGIDuGAxad1YRhx7N7Eg4jmmht3hASYKWabG
lqU4PWMBERonIW0MCFJ7Pg8+Ny7+kAF/rZjDyw09P2DGGQjsG4aJGAdoG5Dtjidc
1W+OAJC6SY494U+r/kHnsR0/JWTX24H7sVP5IBCFxHkByhe5daSngtknrYzIV4kE
dV4h8JJATrSyvdgwAEHmVSpTCR0tmFvsc5J87Mg/g/b6NM3tPVxb70eE9tRr4xw1
oW0X9YI9M8NFnRP6RbCVg6uO06xDD2SMfb0e8fiiAp+/eGGyjp1PVR9SreuUdqaJ
XJwntAWxKOXBPXMRuCeOuXBUNe5mT+WkMF6AuQyfBoM7rIhkqJb328buVAsyAKBx
74gsPkkeA6/Z1n7HWUFn
=Nzrb
-----END PGP SIGNATURE-----
Merge tag 'acpi-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"The ACPICA code in the kernel gets updated as usual (included is
upstream revision 20160930 and a few commits from the next one, with
the rest waiting for an issue discovered in linux-next to be
addressed) which brings in a couple of fixes and cleanups
On top of that initial support for APEI on ARM64 is added, two new
pieces of documentation are introduced, the properties-parsing code is
updated to follow changes in the (external) documentation it is based
on and there are a few updates of SoC drivers, some new blacklist
entries, plus some assorted fixes and cleanups
Specifics:
- ACPICA update including upstream revision 20160930 and several
commits beyond it (Bob Moore, Lv Zheng)
- Initial support for ACPI APEI on ARM64 (Tomasz Nowicki)
- New document describing the handling of _OSI and _REV in Linux (Len
Brown)
- New document describing the usage rules for _DSD properties (Rafael
Wysocki)
- Update of the ACPI properties-parsing code to reflect recent
changes in the (external) documentation it is based on (Rafael
Wysocki)
- Updates of the ACPI LPSS and ACPI APD SoC drivers for additional
hardware support (Andy Shevchenko, Nehal Shah)
- New blacklist entries for _REV and video handling (Alex Hung, Hans
de Goede, Michael Pobega)
- ACPI battery driver fix to fall back to _BIF if _BIX fails (Dave
Lambley)
- NMI notifications handling fix for APEI (Prarit Bhargava)
- Error code path fix for the ACPI CPPC library (Dan Carpenter)
- Assorted cleanups (Andy Shevchenko, Longpeng Mike)"
* tag 'acpi-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (31 commits)
ACPICA: Utilities: Add new decode function for parser values
ACPI / osl: Refactor acpi_os_get_root_pointer() to drop 'else':s
ACPI / osl: Propagate actual error code for kstrtoul()
ACPI / property: Document usage rules for _DSD properties
ACPI: Document _OSI and _REV for Linux BIOS writers
ACPI / APEI / ARM64: APEI initial support for ARM64
ACPI / APEI: Fix NMI notification handling
ACPICA: Tables: Add an error message complaining driver bugs
ACPICA: Tables: Add acpi_tb_unload_table()
ACPICA: Tables: Cleanup acpi_tb_install_and_load_table()
ACPICA: Events: Fix acpi_ev_initialize_region() return value
ACPICA: Back port of "ACPICA: Dispatcher: Tune interpreter lock around AcpiEvInitializeRegion()"
ACPICA: Namespace: Add acpi_ns_handle_to_name()
ACPI / CPPC: set an error code on probe error path
ACPI / video: Add force_native quirk for HP Pavilion dv6
ACPI / video: Add force_native quirk for Dell XPS 17 L702X
ACPI / property: Hierarchical properties support update
ACPI / LPSS: enable hard LLP for DMA
ACPI / battery: If _BIX fails, retry with _BIF
ACPI / video: Move ACPI_VIDEO_NOTIFY_* defines to acpi/video.h
..
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
for it (Markus Mayer).
- Support for ARM Integrator/AP and Integrator/CP in the generic
DT cpufreq driver and elimination of the old Integrator cpufreq
driver (Linus Walleij).
- Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik).
- cpufreq core fix to eliminate races that may lead to using
inactive policy objects and related cleanups (Rafael Wysocki).
- cpufreq schedutil governor update to make it use SCHED_FIFO
kernel threads (instead of regular workqueues) for doing delayed
work (to reduce the response latency in some cases) and related
cleanups (Viresh Kumar).
- New cpufreq sysfs attribute for resetting statistics (Markus
Mayer).
- cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
Viresh Kumar).
- Support for using generic cpufreq governors in the intel_pstate
driver (Rafael Wysocki).
- Support for per-logical-CPU P-state limits and the EPP/EPB
(Energy Performance Preference/Energy Performance Bias) knobs
in the intel_pstate driver (Srinivas Pandruvada).
- New CPU ID for Knights Mill in intel_pstate (Piotr Luc).
- intel_pstate driver modification to use the P-state selection
algorithm based on CPU load on platforms with the system profile
in the ACPI tables set to "mobile" (Srinivas Pandruvada).
- intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
Srinivas Pandruvada).
- cpufreq powernv driver updates including fast switching support
(for the schedutil governor), fixes and cleanus (Akshay Adiga,
Andrew Donnellan, Denis Kirjanov).
- acpi-cpufreq driver rework to switch it over to the new CPU
offline/online state machine (Sebastian Andrzej Siewior).
- Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
Prakash).
- Idle injection rework (to make it use the regular idle path
instead of a home-grown custom one) and related powerclamp
thermal driver updates (Peter Zijlstra, Jacob Pan, Petr Mladek,
Sebastian Andrzej Siewior).
- New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
Shevchenko, Piotr Luc).
- intel_idle driver cleanups and switch over to using the new CPU
offline/online state machine (Anna-Maria Gleixner, Sebastian
Andrzej Siewior).
- cpuidle DT driver update to support suspend-to-idle properly
(Sudeep Holla).
- cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
Rafael Wysocki).
- Preliminary support for power domains including CPUs in the
generic power domains (genpd) framework and related DT bindings
(Lina Iyer).
- Assorted fixes and cleanups in the generic power domains (genpd)
framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven).
- Preliminary support for devices with multiple voltage regulators
and related fixes and cleanups in the Operating Performance Points
(OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd).
- System sleep state selection interface rework to make it easier
to support suspend-to-idle as the default system suspend method
(Rafael Wysocki).
- PM core fixes and cleanups, mostly related to the interactions
between the system suspend and runtime PM frameworks (Ulf Hansson,
Sahitya Tummala, Tony Lindgren).
- Latency tolerance PM QoS framework imorovements (Andrew
Lutomirski).
- New Knights Mill CPU ID for the Intel RAPL power capping driver
(Piotr Luc).
- Intel RAPL power capping driver fixes, cleanups and switch over
to using the new CPU offline/online state machine (Jacob Pan,
Thomas Gleixner, Sebastian Andrzej Siewior).
- Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh
Kumar).
- Fix for false-positive KASAN warnings during resume from ACPI S3
(suspend-to-RAM) on x86 (Josh Poimboeuf).
- Memory map verification during resume from hibernation on x86 to
ensure a consistent address space layout (Chen Yu).
- Wakeup sources debugging enhancement (Xing Wei).
- rockchip-io AVS driver cleanup (Shawn Lin).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJYTx4+AAoJEILEb/54YlRx9f8P/2SlNHUENW5qh6FtCw00oC2u
UqJerQJ2L38UgbgxbE/0VYblma9rFABDWC1eO2xN2XdcdW5UPBKPVvNcOgNe1Clh
gjy3RxZXVpmjfzt2kGfsTLEuGnHqwvx51hTUkeA2LwvkOal45xb8ZESmy8opCtiv
iG4LwmPHoxdX5Za5nA9ItFKzxyO1EoyNSnBYAVwALDHxmNOfxEcRevfurASt/0M9
brCCZJA0/sZxeL0lBdy8fNQPIBTUfCoTJG/MtmzGrObJ9wMFvEDfXrVEyZiWs/zA
AAZ4kQL77enrIKgrLN8e0G6LzTLHoVcvn38Xjf24dKUqhd7ACBhYcnW+jK3+7EAd
gjZ8efObQsiuyK/EDLUNw35tt96CHOqfrQCj2tIwRVvk9EekLqAGXdIndTCr2kYW
RpefmP5kMljnm/nQFOVLwMEUQMuVkvUE7EgxADy7DoDmepBFC4ICRDWPye70R2kC
0O1Tn2PAQq4Fd1tyI9TYYz0YQQkRoaRb5rfYUSzbRbeCdsphUopp4Vhsiyn6IcnF
XnLbg6pRAat82MoS9n4pfO/VCo8vkErKA8tut9G7TDakkrJoEE7l31PdKW0hP3f6
sBo6xXy6WTeivU/o/i8TbM6K4mA37pBaj78ooIkWLgg5fzRaS2+0xSPVy2H9x1m5
LymHcobCK9rSZ1l208Fe
=vhxI
-----END PGP SIGNATURE-----
Merge tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"Again, cpufreq gets more changes than the other parts this time (one
new driver, one old driver less, a bunch of enhancements of the
existing code, new CPU IDs, fixes, cleanups)
There also are some changes in cpuidle (idle injection rework, a
couple of new CPU IDs, online/offline rework in intel_idle, fixes and
cleanups), in the generic power domains framework (mostly related to
supporting power domains containing CPUs), and in the Operating
Performance Points (OPP) library (mostly related to supporting devices
with multiple voltage regulators)
In addition to that, the system sleep state selection interface is
modified to make it easier for distributions with unchanged user space
to support suspend-to-idle as the default system suspend method, some
issues are fixed in the PM core, the latency tolerance PM QoS
framework is improved a bit, the Intel RAPL power capping driver is
cleaned up and there are some fixes and cleanups in the devfreq
subsystem
Specifics:
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
for it (Markus Mayer)
- Support for ARM Integrator/AP and Integrator/CP in the generic DT
cpufreq driver and elimination of the old Integrator cpufreq driver
(Linus Walleij)
- Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik)
- cpufreq core fix to eliminate races that may lead to using inactive
policy objects and related cleanups (Rafael Wysocki)
- cpufreq schedutil governor update to make it use SCHED_FIFO kernel
threads (instead of regular workqueues) for doing delayed work (to
reduce the response latency in some cases) and related cleanups
(Viresh Kumar)
- New cpufreq sysfs attribute for resetting statistics (Markus Mayer)
- cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
Viresh Kumar)
- Support for using generic cpufreq governors in the intel_pstate
driver (Rafael Wysocki)
- Support for per-logical-CPU P-state limits and the EPP/EPB (Energy
Performance Preference/Energy Performance Bias) knobs in the
intel_pstate driver (Srinivas Pandruvada)
- New CPU ID for Knights Mill in intel_pstate (Piotr Luc)
- intel_pstate driver modification to use the P-state selection
algorithm based on CPU load on platforms with the system profile in
the ACPI tables set to "mobile" (Srinivas Pandruvada)
- intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
Srinivas Pandruvada)
- cpufreq powernv driver updates including fast switching support
(for the schedutil governor), fixes and cleanus (Akshay Adiga,
Andrew Donnellan, Denis Kirjanov)
- acpi-cpufreq driver rework to switch it over to the new CPU
offline/online state machine (Sebastian Andrzej Siewior)
- Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
Prakash)
- Idle injection rework (to make it use the regular idle path instead
of a home-grown custom one) and related powerclamp thermal driver
updates (Peter Zijlstra, Jacob Pan, Petr Mladek, Sebastian Andrzej
Siewior)
- New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
Shevchenko, Piotr Luc)
- intel_idle driver cleanups and switch over to using the new CPU
offline/online state machine (Anna-Maria Gleixner, Sebastian
Andrzej Siewior)
- cpuidle DT driver update to support suspend-to-idle properly
(Sudeep Holla)
- cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
Rafael Wysocki)
- Preliminary support for power domains including CPUs in the generic
power domains (genpd) framework and related DT bindings (Lina Iyer)
- Assorted fixes and cleanups in the generic power domains (genpd)
framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven)
- Preliminary support for devices with multiple voltage regulators
and related fixes and cleanups in the Operating Performance Points
(OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd)
- System sleep state selection interface rework to make it easier to
support suspend-to-idle as the default system suspend method
(Rafael Wysocki)
- PM core fixes and cleanups, mostly related to the interactions
between the system suspend and runtime PM frameworks (Ulf Hansson,
Sahitya Tummala, Tony Lindgren)
- Latency tolerance PM QoS framework imorovements (Andrew Lutomirski)
- New Knights Mill CPU ID for the Intel RAPL power capping driver
(Piotr Luc)
- Intel RAPL power capping driver fixes, cleanups and switch over to
using the new CPU offline/online state machine (Jacob Pan, Thomas
Gleixner, Sebastian Andrzej Siewior)
- Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh Kumar)
- Fix for false-positive KASAN warnings during resume from ACPI S3
(suspend-to-RAM) on x86 (Josh Poimboeuf)
- Memory map verification during resume from hibernation on x86 to
ensure a consistent address space layout (Chen Yu)
- Wakeup sources debugging enhancement (Xing Wei)
- rockchip-io AVS driver cleanup (Shawn Lin)"
* tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (127 commits)
devfreq: rk3399_dmc: Don't use OPP structures outside of RCU locks
devfreq: rk3399_dmc: Remove dangling rcu_read_unlock()
devfreq: exynos: Don't use OPP structures outside of RCU locks
Documentation: intel_pstate: Document HWP energy/performance hints
cpufreq: intel_pstate: Support for energy performance hints with HWP
cpufreq: intel_pstate: Add locking around HWP requests
PM / sleep: Print active wakeup sources when blocking on wakeup_count reads
PM / core: Fix bug in the error handling of async suspend
PM / wakeirq: Fix dedicated wakeirq for drivers not using autosuspend
PM / Domains: Fix compatible for domain idle state
PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
PM / OPP: Allow platform specific custom set_opp() callbacks
PM / OPP: Separate out _generic_set_opp()
PM / OPP: Add infrastructure to manage multiple regulators
PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
PM / OPP: Manage supply's voltage/current in a separate structure
PM / OPP: Don't use OPP structure outside of rcu protected section
PM / OPP: Reword binding supporting multiple regulators per device
PM / OPP: Fix incorrect cpu-supply property in binding
cpuidle: Add a kerneldoc comment to cpuidle_use_deepest_state()
..
The logical package management has several issues:
- The APIC ids provided by ACPI are not required to be the same as the
initial APIC id which can be retrieved by CPUID. The APIC ids provided
by ACPI are those which are written by the BIOS into the APIC. The
initial id is set by hardware and can not be changed. The hardware
provided ids contain the real hardware package information.
Especially AMD sets the effective APIC id different from the hardware id
as they need to reserve space for the IOAPIC ids starting at id 0.
As a consequence those machines trigger the currently active firmware
bug printouts in dmesg, These are obviously wrong.
- Virtual machines have their own interesting of enumerating APICs and
packages which are not reliably covered by the current implementation.
The sizing of the mapping array has been tweaked to be generously large to
handle systems which provide a wrong core count when HT is disabled so the
whole magic which checks for space in the physical hotplug case is not
needed anymore.
Simplify the whole machinery and do the mapping when the CPU starts and the
CPUID derived physical package information is available. This solves the
observed problems on AMD machines and works for the virtualization issues
as well.
Remove the extra call from XEN cpu bringup code as it is not longer
required.
Fixes: d49597fd3b ("x86/cpu: Deal with broken firmware (VMWare/XEN)")
Reported-and-tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: M. Vefa Bicakci <m.v.b@runbox.com>
Cc: xen-devel <xen-devel@lists.xen.org>
Cc: Charles (Chas) Williams <ciwillia@brocade.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Alok Kataria <akataria@vmware.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1612121102260.3429@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Merge updates from Andrew Morton:
- various misc bits
- most of MM (quite a lot of MM material is awaiting the merge of
linux-next dependencies)
- kasan
- printk updates
- procfs updates
- MAINTAINERS
- /lib updates
- checkpatch updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
init: reduce rootwait polling interval time to 5ms
binfmt_elf: use vmalloc() for allocation of vma_filesz
checkpatch: don't emit unified-diff error for rename-only patches
checkpatch: don't check c99 types like uint8_t under tools
checkpatch: avoid multiple line dereferences
checkpatch: don't check .pl files, improve absolute path commit log test
scripts/checkpatch.pl: fix spelling
checkpatch: don't try to get maintained status when --no-tree is given
lib/ida: document locking requirements a bit better
lib/rbtree.c: fix typo in comment of ____rb_erase_color
lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
MAINTAINERS: add drm and drm/i915 irc channels
MAINTAINERS: add "C:" for URI for chat where developers hang out
MAINTAINERS: add drm and drm/i915 bug filing info
MAINTAINERS: add "B:" for URI where to file bugs
get_maintainer: look for arbitrary letter prefixes in sections
printk: add Kconfig option to set default console loglevel
printk/sound: handle more message headers
printk/btrfs: handle more message headers
printk/kdb: handle more message headers
...
Pull timer updates from Thomas Gleixner:
"The time/timekeeping/timer folks deliver with this update:
- Fix a reintroduced signed/unsigned issue and cleanup the whole
signed/unsigned mess in the timekeeping core so this wont happen
accidentaly again.
- Add a new trace clock based on boot time
- Prevent injection of random sleep times when PM tracing abuses the
RTC for storage
- Make posix timers configurable for real tiny systems
- Add tracepoints for the alarm timer subsystem so timer based
suspend wakeups can be instrumented
- The usual pile of fixes and updates to core and drivers"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
timekeeping: Use mul_u64_u32_shr() instead of open coding it
timekeeping: Get rid of pointless typecasts
timekeeping: Make the conversion call chain consistently unsigned
timekeeping_Force_unsigned_clocksource_to_nanoseconds_conversion
alarmtimer: Add tracepoints for alarm timers
trace: Update documentation for mono, mono_raw and boot clock
trace: Add an option for boot clock as trace clock
timekeeping: Add a fast and NMI safe boot clock
timekeeping/clocksource_cyc2ns: Document intended range limitation
timekeeping: Ignore the bogus sleep time if pm_trace is enabled
selftests/timers: Fix spelling mistake "Asyncrhonous" -> "Asynchronous"
clocksource/drivers/bcm2835_timer: Unmap region obtained by of_iomap
clocksource/drivers/arm_arch_timer: Map frame with of_io_request_and_map()
arm64: dts: rockchip: Arch counter doesn't tick in system suspend
clocksource/drivers/arm_arch_timer: Don't assume clock runs in suspend
posix-timers: Make them configurable
posix_cpu_timers: Move the add_device_randomness() call to a proper place
timer: Move sys_alarm from timer.c to itimer.c
ptp_clock: Allow for it to be optional
Kconfig: Regenerate *.c_shipped files after previous changes
...
Pull smp hotplug updates from Thomas Gleixner:
"This is the final round of converting the notifier mess to the state
machine. The removal of the notifiers and the related infrastructure
will happen around rc1, as there are conversions outstanding in other
trees.
The whole exercise removed about 2000 lines of code in total and in
course of the conversion several dozen bugs got fixed. The new
mechanism allows to test almost every hotplug step standalone, so
usage sites can exercise all transitions extensively.
There is more room for improvement, like integrating all the
pointlessly different architecture mechanisms of synchronizing,
setting cpus online etc into the core code"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
tracing/rb: Init the CPU mask on allocation
soc/fsl/qbman: Convert to hotplug state machine
soc/fsl/qbman: Convert to hotplug state machine
zram: Convert to hotplug state machine
KVM/PPC/Book3S HV: Convert to hotplug state machine
arm64/cpuinfo: Convert to hotplug state machine
arm64/cpuinfo: Make hotplug notifier symmetric
mm/compaction: Convert to hotplug state machine
iommu/vt-d: Convert to hotplug state machine
mm/zswap: Convert pool to hotplug state machine
mm/zswap: Convert dst-mem to hotplug state machine
mm/zsmalloc: Convert to hotplug state machine
mm/vmstat: Convert to hotplug state machine
mm/vmstat: Avoid on each online CPU loops
mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
tracing/rb: Convert to hotplug state machine
oprofile/nmi timer: Convert to hotplug state machine
net/iucv: Use explicit clean up labels in iucv_init()
x86/pci/amd-bus: Convert to hotplug state machine
x86/oprofile/nmi: Convert to hotplug state machine
...
vfree() is going to use sleeping lock. free_ldt_struct() may be called
with disabled preemption, therefore we must use vfree_atomic() here.
E.g. call trace:
vfree()
free_ldt_struct()
destroy_context_ldt()
__mmdrop()
finish_task_switch()
schedule_tail()
ret_from_fork()
Link: http://lkml.kernel.org/r/1479474236-4139-7-git-send-email-hch@lst.de
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Jisheng Zhang <jszhang@marvell.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit c5320926e3 ("mem-hotplug: introduce movable_node boot
option"), the memblock allocation direction is changed to bottom-up and
then back to top-down like this:
1. memblock_set_bottom_up(true), called by cmdline_parse_movable_node().
2. memblock_set_bottom_up(false), called by x86's numa_init().
Even though (1) occurs in generic mm code, it is wrapped by #ifdef
CONFIG_MOVABLE_NODE, which depends on X86_64.
This means that when we extend CONFIG_MOVABLE_NODE to non-x86 arches,
things will be unbalanced. (1) will happen for them, but (2) will not.
This toggle was added in the first place because x86 has a delay between
adding memblocks and marking them as hotpluggable. Since other arches
do this marking either immediately or not at all, they do not require
the bottom-up toggle.
So, resolve things by moving (1) from cmdline_parse_movable_node() to
x86's setup_arch(), immediately after the movable_node parameter has
been parsed.
Link: http://lkml.kernel.org/r/1479160961-25840-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 platform updates from Ingo Molnar:
"Two changes:
- implement various VMWare guest OS improvements/fixes (Alexey
Makhalov)
- unexport a spurious export from the intel-mid platform driver
(Lukas Wunner)"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vmware: Add paravirt sched clock
x86/vmware: Add basic paravirt ops support
x86/vmware: Use tsc_khz value for calibrate_cpu()
x86/platform/intel-mid: Unexport intel_mid_pci_set_power_state()
x86/vmware: Read tsc_khz only once at boot time
Pull x86 microcode update from Ingo Molnar:
"The biggest change (by Borislav Petkov) is a thorough rewrite of the
Intel microcode loader and its interactions with the core code.
The biggest conceptual change is the decoupling of the microcode
loading on boot and application processors (which load the microcode
in different scenarios), so that both parse the input patches with as
few assumptions as possible - this also fixes various kernel address
space randomization bugs. (The AP side then goes on and caches the
result to improve boot performance.)
Since the AMD side already did this, this change also opened up the
path towards more unification/simplification of the core microcode
loading infrastructure:
10 files changed, 647 insertions(+), 940 deletions(-)
which speaks for itself"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Bump driver version, update copyrights
x86/microcode: Rework microcode loading
x86/microcode/intel: Remove intel_lib.c
x86/microcode/amd: Move private inlines to .c and mark local functions static
x86/microcode: Collect CPU info on resume
x86/microcode: Issue the debug printk on resume only on success
x86/microcode/amd: Hand down the CPU family
x86/microcode: Export the microcode cache linked list
x86/microcode: Remove one #ifdef clause
x86/microcode/intel: Simplify generic_load_microcode()
x86/microcode: Move driver authors to CREDITS
x86/microcode: Run the AP-loading routine only on the application processors
Pull x86 idle updates from Ingo Molnar:
"There were two bigger changes in this development cycle:
- remove idle notifiers:
32 files changed, 74 insertions(+), 803 deletions(-)
These notifiers were of questionable value and the main usecase,
the i7300 driver, was essentially unmaintained and can be removed,
plus modern power management concepts don't need the callback - so
use this golden opportunity and get rid of this opaque and fragile
callback from a latency sensitive code path.
(Len Brown, Thomas Gleixner)
- improve the AMD Erratum 400 workaround that used high overhead MSR
polling in the idle loop (Borisla Petkov, Thomas Gleixner)"
* 'x86-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Remove empty idle.h header
x86/amd: Simplify AMD E400 aware idle routine
x86/amd: Check for the C1E bug post ACPI subsystem init
x86/bugs: Separate AMD E400 erratum and C1E bug
x86/cpufeature: Provide helper to set bugs bits
x86/idle: Remove enter_idle(), exit_idle()
x86: Remove x86_test_and_clear_bit_percpu()
x86/idle: Remove is_idle flag
x86/idle: Remove idle_notifier
i7300_idle: Remove this driver
Pull x86 header fixlet from Ingo Molnar:
"Remove unnecessary module.h inclusion from core code (Paul Gortmaker)"
* 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/percpu: Remove unnecessary include of module.h, add asm/desc.h
Pull x86 FPU updates from Ingo Molnar:
"The main changes in this cycle were:
- do a large round of simplifications after all CPUs do 'eager' FPU
context switching in v4.9: remove CR0 twiddling, remove leftover
eager/lazy bts, etc (Andy Lutomirski)
- more FPU code simplifications: remove struct fpu::counter, clarify
nomenclature, remove unnecessary arguments/functions and better
structure the code (Rik van Riel)"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Remove clts()
x86/fpu: Remove stts()
x86/fpu: Handle #NM without FPU emulation as an error
x86/fpu, lguest: Remove CR0.TS support
x86/fpu, kvm: Remove host CR0.TS manipulation
x86/fpu: Remove irq_ts_save() and irq_ts_restore()
x86/fpu: Stop saving and restoring CR0.TS in fpu__init_check_bugs()
x86/fpu: Get rid of two redundant clts() calls
x86/fpu: Finish excising 'eagerfpu'
x86/fpu: Split old_fpu & new_fpu handling into separate functions
x86/fpu: Remove 'cpu' argument from __cpu_invalidate_fpregs_state()
x86/fpu: Split old & new FPU code paths
x86/fpu: Remove __fpregs_(de)activate()
x86/fpu: Rename lazy restore functions to "register state valid"
x86/fpu, kvm: Remove KVM vcpu->fpu_counter
x86/fpu: Remove struct fpu::counter
x86/fpu: Remove use_eager_fpu()
x86/fpu: Remove the XFEATURE_MASK_EAGER/LAZY distinction
x86/fpu: Hard-disable lazy FPU mode
x86/crypto, x86/fpu: Remove X86_FEATURE_EAGER_FPU #ifdef from the crc32c code
Pull x86 CPU updates from Ingo Molnar:
"The changes in this development cycle were:
- AMD CPU topology enhancements that are cleanups on current CPUs but
which enable future Fam17 hardware. (Yazen Ghannam)
- unify bugs.c and bugs_64.c (Borislav Petkov)
- remove the show_msr= boot option (Borislav Petkov)
- simplify a boot message (Borislav Petkov)"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/AMD: Clean up cpu_llc_id assignment per topology feature
x86/cpu: Get rid of the show_msr= boot option
x86/cpu: Merge bugs.c and bugs_64.c
x86/cpu: Remove the printk format specifier in "CPU0: "
Pull x86 cleanups from Ingo Molnar:
"Two cleanups in the LDT handling code, by Dan Carpenter and Thomas
Gleixner"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ldt: Make all size computations unsigned
x86/ldt: Make a size argument unsigned
Pull x86 boot updates from Ingo Molnar:
"Misc cleanups/simplifications by Borislav Petkov, Paul Bolle and Wei
Yang"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/64: Optimize fixmap page fixup
x86/boot: Simplify the GDTR calculation assembly code a bit
x86/boot/build: Remove always empty $(USERINCLUDE)
Pull x86 asm updates from Ingo Molnar:
"The main changes in this development cycle were:
- a large number of call stack dumping/printing improvements: higher
robustness, better cross-context dumping, improved output, etc.
(Josh Poimboeuf)
- vDSO getcpu() performance improvement for future Intel CPUs with
the RDPID instruction (Andy Lutomirski)
- add two new Intel AVX512 features and the CPUID support
infrastructure for it: AVX512IFMA and AVX512VBMI. (Gayatri Kammela,
He Chen)
- more copy-user unification (Borislav Petkov)
- entry code assembly macro simplifications (Alexander Kuleshov)
- vDSO C/R support improvements (Dmitry Safonov)
- misc fixes and cleanups (Borislav Petkov, Paul Bolle)"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
scripts/decode_stacktrace.sh: Fix address line detection on x86
x86/boot/64: Use defines for page size
x86/dumpstack: Make stack name tags more comprehensible
selftests/x86: Add test_vdso to test getcpu()
x86/vdso: Use RDPID in preference to LSL when available
x86/dumpstack: Handle NULL stack pointer in show_trace_log_lvl()
x86/cpufeatures: Enable new AVX512 cpu features
x86/cpuid: Provide get_scattered_cpuid_leaf()
x86/cpuid: Cleanup cpuid_regs definitions
x86/copy_user: Unify the code by removing the 64-bit asm _copy_*_user() variants
x86/unwind: Ensure stack grows down
x86/vdso: Set vDSO pointer only after success
x86/prctl/uapi: Remove #ifdef for CHECKPOINT_RESTORE
x86/unwind: Detect bad stack return address
x86/dumpstack: Warn on stack recursion
x86/unwind: Warn on bad frame pointer
x86/decoder: Use stderr if insn sanity test fails
x86/decoder: Use stdout if insn decoder test is successful
mm/page_alloc: Remove kernel address exposure in free_reserved_area()
x86/dumpstack: Remove raw stack dump
...
Pull x86 apic updates from Ingo Molnar:
"Misc changes:
- optimize (reduce) IRQ handler tracing overhead (Wanpeng Li)
- clean up MSR helpers (Borislav Petkov)
- fix build warning on some configs (Sebastian Andrzej Siewior)"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/msr: Cleanup/streamline MSR helpers
x86/apic: Prevent tracing on apic_msr_write_eoi()
x86/msr: Add wrmsr_notrace()
x86/apic: Get rid of "warning: 'acpi_ioapic_lock' defined but not used"
Pull x86 RAS updates from Ingo Molnar:
"The main changes in this development cycle were:
- more AMD northbridge support work, mostly in preparation for Fam17h
CPUs (Yazen Ghannam, Borislav Petkov)
- cleanups/refactorings and fixes (Borislav Petkov, Tony Luck,
Yinghai Lu)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Include the PPIN in MCE records when available
x86/mce/AMD: Add system physical address translation for AMD Fam17h
x86/amd_nb: Add SMN and Indirect Data Fabric access for AMD Fam17h
x86/amd_nb: Add Fam17h Data Fabric as "Northbridge"
x86/amd_nb: Make all exports EXPORT_SYMBOL_GPL
x86/amd_nb: Make amd_northbridges internal to amd_nb.c
x86/mce/AMD: Reset Threshold Limit after logging error
x86/mce/AMD: Fix HWID_MCATYPE calculation by grouping arguments
x86/MCE: Correct TSC timestamping of error records
x86/RAS: Hide SMCA bank names
x86/RAS: Rename smca_bank_names to smca_names
x86/RAS: Simplify SMCA HWID descriptor struct
x86/RAS: Simplify SMCA bank descriptor struct
x86/MCE: Dump MCE to dmesg if no consumers
x86/RAS: Add TSC timestamp to the injected MCE
x86/MCE: Do not look at panic_on_oops in the severity grading
Pull scheduler updates from Ingo Molnar:
"The main scheduler changes in this cycle were:
- support Intel Turbo Boost Max Technology 3.0 (TBM3) by introducig a
notion of 'better cores', which the scheduler will prefer to
schedule single threaded workloads on. (Tim Chen, Srinivas
Pandruvada)
- enhance the handling of asymmetric capacity CPUs further (Morten
Rasmussen)
- improve/fix load handling when moving tasks between task groups
(Vincent Guittot)
- simplify and clean up the cputime code (Stanislaw Gruszka)
- improve mass fork()ed task spread a.k.a. hackbench speedup (Vincent
Guittot)
- make struct kthread kmalloc()ed and related fixes (Oleg Nesterov)
- add uaccess atomicity debugging (when using access_ok() in the
wrong context), under CONFIG_DEBUG_ATOMIC_SLEEP=y (Peter Zijlstra)
- implement various fixes, cleanups and other enhancements (Daniel
Bristot de Oliveira, Martin Schwidefsky, Rafael J. Wysocki)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
sched/core: Use load_avg for selecting idlest group
sched/core: Fix find_idlest_group() for fork
kthread: Don't abuse kthread_create_on_cpu() in __kthread_create_worker()
kthread: Don't use to_live_kthread() in kthread_[un]park()
kthread: Don't use to_live_kthread() in kthread_stop()
Revert "kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function"
kthread: Make struct kthread kmalloc'ed
x86/uaccess, sched/preempt: Verify access_ok() context
sched/x86: Make CONFIG_SCHED_MC_PRIO=y easier to enable
sched/x86: Change CONFIG_SCHED_ITMT to CONFIG_SCHED_MC_PRIO
x86/sched: Use #include <linux/mutex.h> instead of #include <asm/mutex.h>
cpufreq/intel_pstate: Use CPPC to get max performance
acpi/bus: Set _OSC for diverse core support
acpi/bus: Enable HWP CPPC objects
x86/sched: Add SD_ASYM_PACKING flags to x86 ITMT CPU
x86/sysctl: Add sysctl for ITMT scheduling feature
x86: Enable Intel Turbo Boost Max Technology 3.0
x86/topology: Define x86's arch_update_cpu_topology
sched: Extend scheduler's asym packing
sched/fair: Clean up the tunable parameter definitions
...
Pull locking updates from Ingo Molnar:
"The tree got pretty big in this development cycle, but the net effect
is pretty good:
115 files changed, 673 insertions(+), 1522 deletions(-)
The main changes were:
- Rework and generalize the mutex code to remove per arch mutex
primitives. (Peter Zijlstra)
- Add vCPU preemption support: add an interface to query the
preemption status of vCPUs and use it in locking primitives - this
optimizes paravirt performance. (Pan Xinhui, Juergen Gross,
Christian Borntraeger)
- Introduce cpu_relax_yield() and remov cpu_relax_lowlatency() to
clean up and improve the s390 lock yielding machinery and its core
kernel impact. (Christian Borntraeger)
- Micro-optimize mutexes some more. (Waiman Long)
- Reluctantly add the to-be-deprecated mutex_trylock_recursive()
interface on a temporary basis, to give the DRM code more time to
get rid of its locking hacks. Any other users will be NAK-ed on
sight. (We turned off the deprecation warning for the time being to
not pollute the build log.) (Peter Zijlstra)
- Improve the rtmutex code a bit, in light of recent long lived
bugs/races. (Thomas Gleixner)
- Misc fixes, cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/paravirt: Fix bool return type for PVOP_CALL()
x86/paravirt: Fix native_patch()
locking/ww_mutex: Use relaxed atomics
locking/rtmutex: Explain locking rules for rt_mutex_proxy_unlock()/init_proxy_locked()
locking/rtmutex: Get rid of RT_MUTEX_OWNER_MASKALL
x86/paravirt: Optimize native pv_lock_ops.vcpu_is_preempted()
locking/mutex: Break out of expensive busy-loop on {mutex,rwsem}_spin_on_owner() when owner vCPU is preempted
locking/osq: Break out of spin-wait busy waiting loop for a preempted vCPU in osq_lock()
Documentation/virtual/kvm: Support the vCPU preemption check
x86/xen: Support the vCPU preemption check
x86/kvm: Support the vCPU preemption check
x86/kvm: Support the vCPU preemption check
kvm: Introduce kvm_write_guest_offset_cached()
locking/core, x86/paravirt: Implement vcpu_is_preempted(cpu) for KVM and Xen guests
locking/spinlocks, s390: Implement vcpu_is_preempted(cpu)
locking/core, powerpc: Implement vcpu_is_preempted(cpu)
sched/core: Introduce the vcpu_is_preempted(cpu) interface
sched/wake_q: Rename WAKE_Q to DEFINE_WAKE_Q
locking/core: Provide common cpu_relax_yield() definition
locking/mutex: Don't mark mutex_trylock_recursive() as deprecated, temporarily
...
Pull SMP bootup updates from Ingo Molnar:
"Three changes to unify/standardize some of the bootup message printing
in kernel/smp.c between architectures"
* 'core-smp-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kernel/smp: Tell the user we're bringing up secondary CPUs
kernel/smp: Make the SMP boot message common on all arches
kernel/smp: Define pr_fmt() for smp.c
While chasing a regression I noticed we potentially patch the wrong
code in native_patch().
If we do not select the native code sequence, we must use the default
patcher, not fall-through the switch case.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel test robot <xiaolong.ye@intel.com>
Fixes: 3cded41794 ("x86/paravirt: Optimize native pv_lock_ops.vcpu_is_preempted()")
Link: http://lkml.kernel.org/r/20161208154349.270616999@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ldt->size can never be negative. The helper functions take 'unsigned int'
arguments which are assigned from ldt->size. The related user space
user_desc struct member entry_number is unsigned as well.
But ldt->size itself and a few local variables which are related to
ldt->size are type 'int' which makes no sense whatsoever and results in
typecasts which make the eyes bleed.
Clean it up and convert everything which is related to ldt->size to
unsigned it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
My static checker complains that we put an upper bound on the "size"
argument but not a lower bound. The checker is not smart enough to know
the possible ranges of "old_mm->context.ldt->size" from
init_new_context_ldt() so it thinks maybe it could be negative.
Let's make it unsigned to silence the warning and future proof the code
a bit.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: kernel-janitors@vger.kernel.org
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20161208105602.GA11382@elgon.mountain
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
One include less is always a good thing(tm). Good riddance.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-6-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reorganize the E400 detection now that we have everything in place:
switch the CPUs to broadcast mode after the LAPIC has been initialized
and remove the facilities that were used previously on the idle path.
Unfortunately static_cpu_has_bug() cannpt be used in the E400 idle routine
because alternatives have been applied when the actual detection happens,
so the static switching does not take effect and the test will stay
false. Use boot_cpu_has_bug() instead which is definitely an improvement
over the RDMSR and the cpumask handling.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-5-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
AMD CPUs affected by the E400 erratum suffer from the issue that the
local APIC timer stops when the CPU goes into C1E. Unfortunately there
is no way to detect the affected CPUs on early boot. It's only possible
to determine the range of possibly affected CPUs from the family/model
range.
The actual decision whether to enter C1E and thus cause the bug is done
by the firmware and we need to detect that case late, after ACPI has
been initialized.
The current solution is to check in the idle routine whether the CPU is
affected by reading the MSR_K8_INT_PENDING_MSG MSR and checking for the
K8_INTP_C1E_ACTIVE_MASK bits. If one of the bits is set then the CPU is
affected and the system is switched into forced broadcast mode.
This is ineffective and on non-affected CPUs every entry to idle does
the extra RDMSR.
After doing some research it turns out that the bits are visible on the
boot CPU right after the ACPI subsystem is initialized in the early
boot process. So instead of polling for the bits in the idle loop, add
a detection function after acpi_subsystem_init() and check for the MSR
bits. If set, then the X86_BUG_AMD_APIC_C1E is set on the boot CPU and
the TSC is marked unstable when X86_FEATURE_NONSTOP_TSC is not set as it
will stop in C1E state as well.
The switch to broadcast mode cannot be done at this point because the
boot CPU still uses HPET as a clockevent device and the local APIC timer
is not yet calibrated and installed. The switch to broadcast mode on the
affected CPUs needs to be done when the local APIC timer is actually set
up.
This allows to cleanup the amd_e400_idle() function in the next step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-4-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The workaround for the AMD Erratum E400 (Local APIC timer stops in C1E
state) is a two step process:
- Selection of the E400 aware idle routine
- Detection whether the platform is affected
The idle routine selection happens for possibly affected CPUs depending on
family/model/stepping information. These range of CPUs is not necessarily
affected as the decision whether to enable the C1E feature is made by the
firmware. Unfortunately there is no way to query this at early boot.
The current implementation polls a MSR in the E400 aware idle routine to
detect whether the CPU is affected. This is inefficient on non affected
CPUs because every idle entry has to do the MSR read.
There is a better way to detect this before going idle for the first time
which requires to seperate the bug flags:
X86_BUG_AMD_E400 - Selects the E400 aware idle routine and
enables the detection
X86_BUG_AMD_APIC_C1E - Set when the platform is affected by E400
Replace the current X86_BUG_AMD_APIC_C1E usage by the new X86_BUG_AMD_E400
bug bit to select the idle routine which currently does an unconditional
detection poll. X86_BUG_AMD_APIC_C1E is going to be used in later patches
to remove the MSR polling and simplify the handling of this misfeature.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-3-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some tracepoints have a registration function that gets enabled when the
tracepoint is enabled. There may be cases that the registraction function
must fail (for example, can't allocate enough memory). In this case, the
tracepoint should also fail to register, otherwise the user would not know
why the tracepoint is not working.
Cc: David Howells <dhowells@redhat.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
intel_rdt_sched_in() must be called with preemption disabled because the
function accesses percpu variables (pqr_state and closid).
If a task moves itself via move_myself() preemption is enabled, which
violates the calling convention and can result in incorrect closid
selection when the task gets preempted or migrated.
Add the required protection and a comment about the calling convention.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Marcelo Tosatti" <mtosatti@redhat.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1480625714-54246-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch provides APEI arch-specific bits for ARM64
Meanwhile,
(1) Move HEST type (ACPI_HEST_TYPE_IA32_CORRECTED_CHECK) checking to
a generic place.
(2) Select HAVE_ACPI_APEI when EFI and ACPI is set on ARM64, because
arch_apei_get_mem_attribute is using efi_mem_attributes() on
ARM64.
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Tested-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Signed-off-by: Fu Wei <fu.wei@linaro.org>
[ Fu Wei: improve && upstream ]
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
0-day testing encountered a NULL pointer dereference in a cpumask access
from tsc_store_and_check_tsc_adjust().
This happens when the function is called on the boot CPU and the topology
masks are not yet available due to CPUMASK_OFFSTACK=y.
Add a NULL pointer check for the mask pointer. If NULL it's safe to assume
that the CPU is the boot CPU and the first one in the package.
Fixes: 8b223bc7ab ("x86/tsc: Store and check TSC ADJUST MSR")
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is done to simplify the kexec_add_buffer argument list.
Adapt all callers to set up a kexec_buf to pass to kexec_add_buffer.
In addition, change the type of kexec_buf.buffer from char * to void *.
There is no particular reason for it to be a char *, and the change
allows us to get rid of 3 existing casts to char * in the code.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add the missing return statement to the inline stub
tsc_store_and_check_tsc_adjust() and add the other stubs to make a
SMP=y,TSC=n build happy.
While at it, remove the unused variable from the UP variant of
tsc_store_and_check_tsc_adjust().
Fixes: commit ba75fb646931 ("x86/tsc: Sync test only for the first cpu in a package")
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Rename CONFIG_SCHED_ITMT for Intel Turbo Boost Max Technology 3.0
to CONFIG_SCHED_MC_PRIO. This makes the configuration extensible
in future to other architectures that wish to similarly establish
CPU core priorities support in the scheduler.
The description in Kconfig is updated to reflect this change with
added details for better clarity. The configuration is explicitly
default-y, to enable the feature on CPUs that have this feature.
It has no effect on non-TBM3 CPUs.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: jolsa@redhat.com
Cc: linux-acpi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/2b2ee29d93e3f162922d72d0165a1405864fbb23.1480444902.git.tim.c.chen@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the first CPU of a package comes online, it is necessary to test whether
the TSC is in sync with a CPU on some other package. When a deviation is
observed (time going backwards between the two CPUs) the TSC is marked
unstable, which is a problem on large machines as they have to fall back to
the HPET clocksource, which is insanely slow.
It has been attempted to compensate the TSC by adding the offset to the TSC
and writing it back some time ago, but this never was merged because it did
not turn out to be stable, especially not on older systems.
Modern systems have become more stable in that regard and the TSC_ADJUST
MSR allows us to compensate for the time deviation in a sane way. If it's
available allow up to three synchronization runs and if a time warp is
detected the starting CPU can compensate the time warp via the TSC_ADJUST
MSR and retry. If the third run still shows a deviation or when random time
warps are detected the test terminally fails.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134018.048237517@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To allow TSC compensation cross nodes its necessary to know in which
direction the TSC warp was observed. Return the maximum observed value on
the calling CPU so the caller can determine the direction later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.970859287@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cleaning up the stop marker on the control CPU is wrong when we want to add
retry support. Move the cleanup to the starting CPU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.892095627@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the TSC_ADJUST MSR is available all CPUs in a package are forced to the
same value. So TSCs cannot be out of sync when the first CPU in the package
was in sync.
That allows to skip the sync test for all CPUs except the first starting
CPU in a package.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.809901363@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When entering idle, it's a good oportunity to verify that the TSC_ADJUST
MSR has not been tampered with (BIOS hiding SMM cycles). If tampering is
detected, emit a warning and restore it to the previous value.
This is especially important for machines, which mark the TSC reliable
because there is no watchdog clocksource available (SoCs).
This is not sufficient for HPC (NOHZ_FULL) situations where a CPU never
goes idle, but adding a timer to do the check periodically is not an option
either. On a machine, which has this issue, the check triggeres right
during boot, so there is a decent chance that the sysadmin will notice.
Rate limit the check to once per second and warn only once per cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.732180441@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The TSC_ADJUST MSR shows whether the TSC has been modified. This is helpful
in a two aspects:
1) It allows to detect BIOS wreckage, where SMM code tries to 'hide' the
cycles spent by storing the TSC value at SMM entry and restoring it at
SMM exit. On affected machines the TSCs run slowly out of sync up to the
point where the clocksource watchdog (if available) detects it.
The TSC_ADJUST MSR allows to detect the TSC modification before that and
eventually restore it. This is also important for SoCs which have no
watchdog clocksource and therefore TSC wreckage cannot be detected and
acted upon.
2) All threads in a package are required to have the same TSC_ADJUST
value. Broken BIOSes break that and as a result the TSC synchronization
check fails.
The TSC_ADJUST MSR allows to detect the deviation when a CPU comes
online. If detected set it to the value of an already online CPU in the
same package. This also allows to reduce the number of sync tests
because with that in place the test is only required for the first CPU
in a package.
In principle all CPUs in a system should have the same TSC_ADJUST value
even across packages, but with physical CPU hotplug this assumption is
not true because the TSC starts with power on, so physical hotplug has
to do some trickery to bring the TSC into sync with already running
packages, which requires to use an TSC_ADJUST value different from CPUs
which got powered earlier.
A final enhancement is the opportunity to compensate for unsynced TSCs
accross nodes at boot time and make the TSC usable that way. It won't
help for TSCs which run apart due to frequency skew between packages,
but this gets detected by the clocksource watchdog later.
The first step toward this is to store the TSC_ADJUST value of a starting
CPU and compare it with the value of an already online CPU in the same
package. If they differ, emit a warning and adjust it to the reference
value. The !SMP version just stores the boot value for later verification.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.655323776@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If time warps can be observed then they should only ever be observed on one
CPU. If they are observed on both CPUs then the system is completely hosed.
Add a check for this condition and notify if it happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.574838461@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The art detection uses rdmsrl_safe() to detect the availablity of the
TSC_ADJUST MSR.
That's pointless because we have a feature bit for this. Use it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.483561692@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Power management suspend/resume tracing (ab)uses the RTC to store
suspend/resume information persistently. As a consequence the RTC value is
clobbered when timekeeping is resumed and tries to inject the sleep time.
Commit a4f8f6667f ("timekeeping: Cap array access in timekeeping_debug")
plugged a out of bounds array access in the timekeeping debug code which
was caused by the clobbered RTC value, but we still use the clobbered RTC
value for sleep time injection into kernel timekeeping, which will result
in random adjustments depending on the stored "hash" value.
To prevent this keep track of the RTC clobbering and ignore the invalid RTC
timestamp at resume. If the system resumed successfully clear the flag,
which marks the RTC as unusable, warn the user about the RTC clobber and
recommend to adjust the RTC with 'ntpdate' or 'rdate'.
[jstultz: Fixed up pr_warn formating, and implemented suggestions from Ingo]
[ tglx: Rewrote changelog ]
Originally-from: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Xunlei Pang <xlpang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/1480372524-15181-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When removing a sub directory/rdtgroup by rmdir or umount, closid in a
task in the sub directory is set to default rdtgroup's closid which is 0.
If the task is running on a CPU, the PQR_ASSOC MSR is only updated
when the task runs through a context switch. Up to the context switch,
the task runs with the wrong closid.
Make the change immediately effective by invoking a smp function call on
all CPUs which are running moved task. If one of the affected tasks was
moved or scheduled out before the function call is executed on the CPU the
only damage is the extra interruption of the CPU.
[ tglx: Reworked it to avoid blindly interrupting all CPUs and extra loops ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1479511084-59727-2-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There was a cut & paste error when adding code to update the per-cpu
closid when changing the bitmask of CPUs to an rdt group.
The update erronously assigns the closid of the default group to the CPUs
which are moved to a group instead of assigning the closid of their new
group. Use the proper closid.
Fixes: f410770293 ("x86/intel_rdt: Update percpu closid immeditately on CPUs affected by change")
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1479511084-59727-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
asm/mutex.h is gone from the locking tree, which makes sched/core break the build.
Use linux/mutex.h instead, which is the canonical method.
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: bp@suse.de
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
My attempt at fixing some KASAN false positive warnings was rather brain
dead, and it broke the guess unwinder. With frame pointers disabled,
/proc/<pid>/stack is broken:
# cat /proc/1/stack
[<ffffffffffffffff>] 0xffffffffffffffff
Restore the code flow to more closely resemble its previous state, while
still using READ_ONCE_NOCHECK() macros to silence KASAN false positives.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: c2d75e03d6 ("x86/unwind: Prevent KASAN false positive warnings in guess unwinder")
Link: http://lkml.kernel.org/r/b824f92c2c22eca5ec95ac56bd2a7c84cf0b9df9.1480309971.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Single-stepping through head_64.S made me look at the fixmap page PTEs
fixup loop:
So we're going through the whole level2_fixmap_pgt 4K page, looking at
whether PAGE_PRESENT is set in those PTEs and add the delta between
where we're compiled to run and where we actually end up running.
However, if that delta is 0 (most cases) we go through all those 512
PTEs for no reason at all. Oh well, we add 0 but that's no reason to me.
Skipping that useless fixup gives us a boot speedup of 0.004 seconds in
my guest. Not a lot but considering how cheap it is, I'll take it. Here
is the printk time difference:
before:
...
[ 0.000000] tsc: Marking TSC unstable due to TSCs unsynchronized
[ 0.013590] Calibrating delay loop (skipped), value calculated using timer frequency..
8027.17 BogoMIPS (lpj=16054348)
[ 0.017094] pid_max: default: 32768 minimum: 301
...
after:
...
[ 0.000000] tsc: Marking TSC unstable due to TSCs unsynchronized
[ 0.009587] Calibrating delay loop (skipped), value calculated using timer frequency..
8026.86 BogoMIPS (lpj=16053724)
[ 0.013090] pid_max: default: 32768 minimum: 301
...
For the other two changes converting naked numbers to defines:
# arch/x86/kernel/head_64.o:
text data bss dec hex filename
1124 290864 4096 296084 48494 head_64.o.before
1124 290864 4096 296084 48494 head_64.o.after
md5:
87086e202588939296f66e892414ffe2 head_64.o.before.asm
87086e202588939296f66e892414ffe2 head_64.o.after.asm
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161125111448.23623-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... instead of naked numbers like the rest of the asm does in this file.
No code changed:
# arch/x86/kernel/head_64.o:
text data bss dec hex filename
1124 290864 4096 296084 48494 head_64.o.before
1124 290864 4096 296084 48494 head_64.o.after
md5:
87086e202588939296f66e892414ffe2 head_64.o.before.asm
87086e202588939296f66e892414ffe2 head_64.o.after.asm
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161124210550.15025-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel Turbo Boost Max Technology 3.0 (ITMT) feature
allows some cores to be boosted to higher turbo
frequency than others.
Add /proc/sys/kernel/sched_itmt_enabled so operator
can enable/disable scheduling of tasks that favor cores
with higher turbo boost frequency potential.
By default, system that is ITMT capable and single
socket has this feature turned on. It is more likely
to be lightly loaded and operates in Turbo range.
When there is a change in the ITMT scheduling operation
desired, a rebuild of the sched domain is initiated
so the scheduler can set up sched domains with appropriate
flag to enable/disable ITMT scheduling operations.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/07cc62426a28bad57b01ab16bb903a9c84fa5421.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On platforms supporting Intel Turbo Boost Max Technology 3.0, the maximum
turbo frequencies of some cores in a CPU package may be higher than for
the other cores in the same package. In that case, better performance
(and possibly lower energy consumption as well) can be achieved by
making the scheduler prefer to run tasks on the CPUs with higher max
turbo frequencies.
To that end, set up a core priority metric to abstract the core
preferences based on the maximum turbo frequency. In that metric,
the cores with higher maximum turbo frequencies are higher-priority
than the other cores in the same package and that causes the scheduler
to favor them when making load-balancing decisions using the asymmertic
packing approach. At the same time, the priority of SMT threads with a
higher CPU number is reduced so as to avoid scheduling tasks on all of
the threads that belong to a favored core before all of the other cores
have been given a task to run.
The priority metric will be initialized by the P-state driver with the
help of the sched_set_itmt_core_prio() function. The P-state driver
will also determine whether or not ITMT is supported by the platform
and will call sched_set_itmt_support() to indicate that.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/cd401ccdff88f88c8349314febdc25d51f7c48f7.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
'm_io' is stored in 6 bits so it's a number in the 0-63 range. Static
analysis tools complain that 1 << 63 will wrap so I have changed it to
1ULL << m_io.
This code is over three years old so presumably the bug doesn't happen
very frequently in real life or someone would have complained by now.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Fixes: b15cc4a12b ("x86, uv, uv3: Update x2apic Support for SGI UV3")
Link: http://lkml.kernel.org/r/20161123221908.GA23997@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel Xeons from Ivy Bridge onwards support a processor identification
number set in the factory. To the user this is a handy unique number to
identify a particular CPU. Intel can decode this to the fab/production
run to track errors. On systems that have it, include it in the machine
check record. I'm told that this would be helpful for users that run
large data centers with multi-socket servers to keep track of which CPUs
are seeing errors.
Boris:
* Add some clarifying comments and spacing.
* Mask out [63:2] in the disabled-but-not-locked case
* Call the MSR variable "val" for more readability.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20161123114855.njguoaygp3qnbkia@pd.tnic
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Move the callbacks to online/offline as there is no point in having the
files around before the cpu is online and until its completely gone.
[ tglx: Move the callbacks to online/offline ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: rt@linuxtronix.de
Link: http://lkml.kernel.org/r/20161117183541.8588-4-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point to have this file around before the cpu is online and no point to
have it around until the cpu is dead. Get rid of the explicit state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
No point to have the sysfs files around before the cpu is online and no
point to have them around until the cpu is dead. Get rid of the explicit
state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
The Unified Memory Controllers (UMCs) on Fam17h log a normalized address
in their MCA_ADDR registers. We need to convert that normalized address
to a system physical address in order to support a few facilities:
1) To offline poisoned pages in DRAM proactively in the deferred error
handler.
2) To print sysaddr and page info for DRAM ECC errors in EDAC.
[ Boris: fixes/cleanups ontop:
* hi_addr_offset = 0 - no need for that branch. Stick it all under the
HiAddrOffsetEn case. It confines hi_addr_offset's declaration too.
* Move variables to the innermost scope they're used at so that we save
on stack and not blow it up immediately on function entry.
* Do not modify *sys_addr prematurely - we want to not exit early and
have modified *sys_addr some, which callers get to see. We either
convert to a sys_addr or we don't do anything. And we signal that with
the retval of the function.
* Rename label out -> out_err - because it is the error path.
* No need to pr_err of the conversion failed case: imagine a
sparsely-populated machine with UMCs which don't have DIMMs. Callers
should look at the retval instead and issue a printk only when really
necessary. No need for useless info in dmesg.
* s/temp_reg/tmp/ and other variable names shortening => shorter code.
* Use BIT() everywhere.
* Make error messages more informative.
* Small build fix for the !CONFIG_X86_MCE_AMD case.
* ... and more minor cleanups.
]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20161122111133.mjzpvzhf7o7yl2oa@pd.tnic
[ Typo fixes. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NMI stack dumps are bracketed by the following tags:
<NMI>
...
<EOE>
The ending tag is kind of confusing if you don't already know what "EOE"
means (end of exception). The same ending tag is also used to mark the
end of all other exceptions' stacks. For example:
<#DF>
...
<EOE>
And similarly, "EOI" is used as the ending tag for interrupts:
<IRQ>
...
<EOI>
Change the tags to be more comprehensible by making them symmetrical and
more XML-esque:
<NMI>
...
</NMI>
<#DF>
...
</#DF>
<IRQ>
...
</IRQ>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/180196e3754572540b595bc56b947d43658979a7.1479491159.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So adding thresholding_en et al was a good thing for removing the
per-CPU thresholding callback, i.e., threshold_cpu_callback.
But, in order for it to work and especially that test in
mce_threshold_create_device() so that all thresholding banks get
properly created and not the whole thing to fail with a NULL ptr
dereference at mce_cpu_pre_down() when we offline the CPUs, we need to
set the thresholding_en flag *before* we start creating the devices.
Yap, it failed because thresholding_en wasn't set at the time
we were creating the banks so we didn't create any and then at
mce_cpu_pre_down() -> mce_threshold_remove_device() time, we would blow
up.
And the fix is actually easy: we have thresholding on the system when we
have managed to set the thresholding vector to amd_threshold_interrupt()
earlier in mce_amd_feature_init() while we were picking apart the
thresholding banks and what is set and what not.
So let's do that.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Fixes: 4d7b02d58c ("x86/mcheck: Split threshold_cpu_callback into two callbacks")
Link: http://lkml.kernel.org/r/20161119103402.5227-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Robert O'Callahan reported that after an execve PTRACE_GETREGSET
NT_X86_XSTATE continues to return the pre-exec register values
until the exec'ed task modifies FPU state.
The test code is at:
https://bugzilla.redhat.com/attachment.cgi?id=1164286.
What is happening is fpu__clear() does not properly clear fpstate.
Fix it by doing just that.
Reported-by: Robert O'Callahan <robert@ocallahan.org>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1479402695-6553-1-git-send-email-yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All places which used the TSC_RELIABLE to skip the delayed calibration
have been converted to use the TSC_KNOWN_FREQ flag.
Make the immeditate clocksource registration, which skips the long term
calibration, solely depend on TSC_KNOWN_FREQ.
The TSC_RELIABLE now merily removes the requirement for a watchdog
clocksource.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
reliable and the frequency is known (provided by HW).
On these platforms PIT/HPET is generally not available so calibration won't
work at all and there is no other clocksource to act as a watchdog for the
TSC, so we have no other choice than to trust it.
Set both X86_FEATURE_TSC_KNOWN_FREQ and X86_FEATURE_TSC_RELIABLE flags to
make sure the calibration is skipped and no watchdog is required.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-5-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On Intel GOLDMONT Atom SoC TSC is the only available clocksource, so there
is no way to do software calibration or have a watchdog clocksource for it.
Software calibration is already disabled via the TSC_KNOWN_FREQ flag, but
the watchdog requirement still persists, so such systems cannot switch to
high resolution/nohz mode.
Mark it reliable, so it becomes usable. Hardware teams confirmed that this
is safe on that SoC.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-4-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CPUs/SoCs with CPUID leaf 0x15 come with a known frequency and will report
the frequency to software via CPUID instruction. This hardware provided
frequency is the "real" frequency of TSC.
Set the X86_FEATURE_TSC_KNOWN_FREQ flag for such systems to skip the
software calibration process.
A 24 hours test on one of the CPUID 0x15 capable platforms was
conducted. PIT calibrated frequency resulted in more than 3 seconds drift
whereas the CPUID determined frequency showed less than 0.5 second
drift.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-3-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The X86_FEATURE_TSC_RELIABLE flag in Linux kernel implies both reliable
(at runtime) and trustable (at calibration). But reliable running and
trustable calibration independent of each other.
Add a new flag X86_FEATURE_TSC_KNOWN_FREQ, which denotes that the frequency
is known (via MSR/CPUID). This flag is only meant to skip the long term
calibration on systems which have a known frequency.
Add X86_FEATURE_TSC_KNOWN_FREQ to the skip the delayed calibration and
leave X86_FEATURE_TSC_RELIABLE in place.
After converting the existing users of X86_FEATURE_TSC_RELIABLE to use
either both flags or just X86_FEATURE_TSC_KNOWN_FREQ we can seperate the
functionality.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-2-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When show_trace_log_lvl() is called from show_regs(), it completely
fails to dump the stack. This bug was introduced when
show_stack_log_lvl() was removed with the following commit:
0ee1dd9f5e ("x86/dumpstack: Remove raw stack dump")
Previous callers of that function now call show_trace_log_lvl()
directly. That resulted in a subtle change, in that the 'stack'
argument can now be NULL in certain cases.
A NULL 'stack' pointer means that the stack dump should start from the
topmost stack frame unless 'regs' is valid, in which case it should
start from 'regs->sp'.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0ee1dd9f5e ("x86/dumpstack: Remove raw stack dump")
Link: http://lkml.kernel.org/r/c551842302a9c222d96a14e42e4003f059509f69.1479362652.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The latest binutils are warning about a .fill directive with an explicit
value in a .bss section:
arch/x86/kernel/head_32.S: Assembler messages:
arch/x86/kernel/head_32.S:677: Warning: ignoring fill value in section `.bss..page_aligned'
arch/x86/kernel/head_32.S:679: Warning: ignoring fill value in section `.bss..page_aligned'
This comes from the 'ENTRY()' macro padding the space between the symbols
with 'nop' via:
.align 4,0x90
Open-coding the .globl directive without the padding avoids that warning,
as all the symbols are already page aligned.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161116141726.2013389-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a few new AVX512 instruction groups/features for enumeration in
/proc/cpuinfo: AVX512IFMA and AVX512VBMI.
Clear the flags in fpu_xstate_clear_all_cpu_caps().
CPUID.(EAX=7,ECX=0):EBX[bit 21] AVX512IFMA
CPUID.(EAX=7,ECX=0):ECX[bit 1] AVX512VBMI
Detailed information of cpuid bits for the features can be found at
https://bugzilla.kernel.org/show_bug.cgi?id=187891
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: mingo@elte.hu
Link: http://lkml.kernel.org/r/1479327060-18668-1-git-send-email-gayatri.kammela@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some devices on Fam17h can only be accessed through the System Management
Network (SMN). The SMN is accessed by a pair of index/data registers in PCI
config space. Add a pair of functions to read from and write to the SMN.
The Data Fabric on Fam17h allows multiple devices to use the same register
space. The registers of a specific device are accessed indirectly using the
device's DF InstanceId. Currently, we only need to read from these devices,
so only define a read function for now.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-5-git-send-email-Yazen.Ghannam@amd.com
[ Boris: make __amd_smn_rw() even more compact. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
AMD Fam17h uses a Data Fabric component instead of a traditional
Northbridge. However, the DF is similar to a NB in that there is one per
die and it uses PCI config D18Fx registers. So let's reuse the existing
AMD_NB infrastructure for Data Fabrics.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-4-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make all EXPORT_SYMBOL's into EXPORT_SYMBOL_GPL. While we're at it let's
fix some checkpatch warnings.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-3-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Hide amd_northbridges in amd_nb.c so that external callers will have to
use the exported accessor functions.
Also, fix some checkpatch.pl warnings.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Sparse populated CPUID leafs are collected in a software provided leaf to
avoid bloat of the x86_capability array, but there is no way to rebuild the
real leafs (e.g. for KVM CPUID enumeration) other than rereading the CPUID
leaf from the CPU. While this is possible it is problematic as it does not
take software disabled features into account. If a feature is disabled on
the host it should not be exposed to a guest either.
Add get_scattered_cpuid_leaf() which rebuilds the leaf from the scattered
cpuid table information and the active CPU features.
[ tglx: Rewrote changelog ]
Signed-off-by: He Chen <he.chen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Piotr Luc <Piotr.Luc@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/1478856336-9388-3-git-send-email-he.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
cpuid_regs is defined multiple times as structure and enum. Rename the enum
and move all of it to processor.h so we don't end up with more instances.
Rename the misnomed register enumeration from CR_* to the obvious CPUID_*.
[ tglx: Rewrote changelog ]
Signed-off-by: He Chen <he.chen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Piotr Luc <Piotr.Luc@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/1478856336-9388-2-git-send-email-he.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The error count field in MCA_MISC does not get reset by hardware when the
threshold has been reached. Software is expected to reset it. Currently,
the threshold limit only gets reset during init or when a user writes to
sysfs.
If the user is not monitoring threshold interrupts and resetting
the limit then the user will only see 1 interrupt when the limit is first
hit. So if, for example, the limit is set to 10 then only 1 interrupt will
be recorded after 10 errors even if 100 errors have occurred. The user may
then assume that only 10 errors have occurred.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1479244433-69267-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The screen_info.lfb_size field is shifted by 16 bits *only* in case of
VBE. This has historical reasons since VBE advertised it similarly.
However, in case of EFI framebuffers, the size is no longer shifted. Fix
the x86 simple-framebuffer setup code to use the correct size in the
non-VBE case.
While at it, avoid variable abbreviations and rename 'len' to 'length',
and use the correct types matching the screen_info definition.
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tom Gundersen <teg@jklm.no>
Link: http://lkml.kernel.org/r/20161115120158.15388-3-dh.herrmann@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The screen_info object was extended to support 64-bit lfb_base addresses
in:
ae2ee627dc ("efifb: Add support for 64-bit frame buffer addresses")
However, the x86 simple-framebuffer setup code never made use of it. Fix
it to properly assemble and verify the lfb_base before advertising
simple-framebuffer devices.
In particular, this means if VIDEO_CAPABILITY_64BIT_BASE is set, the
screen_info->ext_lfb_base field will contain the upper 32bit of the
actual lfb_base. Make sure the address is not 0 (i.e., unset), as well as
does not overflow the physical address type.
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tom Gundersen <teg@jklm.no>
Link: http://lkml.kernel.org/r/20161115120158.15388-2-dh.herrmann@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CPU_ONLINE and CPU_DOWN_PREPARE look fully symmetrical and could be move
to the hotplug state machine.
On a failure during registration we have the tear down callback invoked
(mce_cpu_pre_down()) so there should be no timer around and so no need to need
keep notifier installed (this was the reason according to the comment why the
notifier was registered despite of errors).
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-7-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Initially I wanted to remove mcheck_cpu_init() from identify_cpu() and let it
become an independent early hotplug callback. The main problem here was that
the init on the boot CPU may happen too late
(device_initcall_sync(mcheck_init_device)) and nobody wanted to risk receiving
and MCE event at boot time leading to a shutdown (if the MCE feature is not yet
enabled).
Here is attempt two: the timming stays as-is but the ordering of the functions
is changed:
- mcheck_cpu_init() (which is run from identify_cpu()) will setup the timer
struct but won't fire the timer. This is moved to CPU_ONLINE since its
cleanup part is in CPU_DOWN_PREPARE. So if it is okay to stop the timer early
in the shutdown phase, it should be okay to start it late in the bring up phase.
- CPU_DOWN_PREPARE disables the MCE feature flags for !INTEL CPUs in
mce_disable_cpu(). If a failure occures it would be re-enabled on all vendor
CPUs (including Intel where it was not disabled during shutdown). To keep this
working I am moving it to CPU_ONLINE. smp_call_function_single() is dropped
beause the notifier runs nowdays on the target CPU.
- CPU_ONLINE is invoking mce_device_create() + mce_threshold_create_device()
but its cleanup part is in CPU_DEAD (mce_threshold_remove_device() and
mce_device_remove()). In order to keep this symmetrical I am moving the clean
up from CPU_DEAD to CPU_DOWN_PREPARE.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-6-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The threshold_cpu_callback callbacks looks like one of the notifier and
its arguments are almost the same. Split this out and have one ONLINE
and one DEAD callback. This will come handy later once the main code
gets changed to use the callback mechanism.
Also, handle threshold_cpu_callback_online() return value so we don't
continue if the function fails.
Boris Petkov removed the callback pointer and replaced it with proper
functions.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-5-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If we try a CPU down and fail in the middle then we roll back to the
online state. This means we would perform CPU_ONLINE / mce_device_create()
without invoking CPU_DEAD / mce_device_remove() for the cleanup of what was
allocated in CPU_ONLINE.
Be prepared for this and don't allocate the struct if we have it
already.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-4-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the ONLINE callback fails, the driver does not any clean up right
away instead it waits to get to the DEAD stage to do it. Yes, it waits.
Since we don't pass the error code back to the caller, no one knows.
Do the clean up right away so it does not look like a leak.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-3-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If CPUs are moved to or removed from a rdtgroup, the percpu closid storage
is updated. If tasks running on an affected CPU use the percpu closid then
the PQR_ASSOC MSR is only updated when the task runs through a context
switch. Up to the context switch the CPUs operate on the wrong closid. This
state is potentially unbound.
Make the change immediately effective by invoking a smp function call on
the affected CPUs which stores the new closid in the perpu storage and
calls the rdt_sched_in() function which updates the MSR, if the current
task uses the percpu closid.
[ tglx: Made it work and massaged changelog once more ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1478912558-55514-3-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
All CPUs in a rdtgroup are given back to the default rdtgroup before the
rdtgroup is removed during umount. After umount, the default rdtgroup
contains all online CPUs, but the per cpu closids are not cleared. As a
result the stale closid value will be used immediately after the next
mount.
Move all cpus to the default group and update the percpu closid storage.
[ tglx: Massaged changelong ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1478912558-55514-2-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The cpu online/offline callbacks of intel_rdt lock rdtgroup_mutex nested
inside of cpu hotplug lock. rdtgroup_cpus_write() does it in reverse order.
Remove the get/put_online_cpus() calls from rdtgroup_cpus_write(). This is
safe against cpu hotplug as the resource group cpumasks are protected by
rdtgroup_mutex.
Found by review, but should have been found if authors would have bothered
to test cpu hotplug with lockdep enabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Shaohua Li <shli@fb.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
The info directory and the per-resource subdirectories of the info
directory have no reference to a struct rdtgroup in kn->priv. An attempt to
remove one of those directories results in a NULL pointer dereference.
Protect the directories from removal and return -EPERM instead of -ENOENT.
[ tglx: Massaged changelog ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1478912558-55514-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now since fetch_task_cputime() has no other users than task_cputime(),
its code could be used directly in task_cputime().
Moreover since only 2 task_cputime() calls of 17 use a NULL argument,
we can add dummy variables to those calls and remove NULL checks from
task_cputimes().
Also remove NULL checks from task_cputimes_scaled().
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1479175612-14718-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This was originally a part of commit 186f43608a:
("x86/kernel: Audit and remove any unnecessary uses of module.h")
...but without the asm/desc.h addition. As such, Ingo reported a
build failure on i386 allnoconfig with SMP=y during his pre-merge
testing. For expediency the chunk was just dropped at that time.
The failure was as follows:
arch/x86/kernel/setup_percpu.c: In function ‘setup_percpu_segment’:
arch/x86/kernel/setup_percpu.c:159:2: error: implicit declaration of function ‘pack_descriptor’ [-Werror=implicit-function-declaration]
arch/x86/kernel/setup_percpu.c:162:2: error: implicit declaration of function ‘write_gdt_entry’ [-Werror=implicit-function-declaration]
arch/x86/kernel/setup_percpu.c:162:18: error: implicit declaration of function ‘get_cpu_gdt_table’ [-Werror=implicit-function-declaration]
As pack_descriptor(), write_gdt_entry() and get_cpu_gdt_table() all
live in the file arch/x86/include/asm/desc.h -- calling that header
out explicitly should fix things.
Reported-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161114190443.10873-1-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- fix an Intel/MID boot crash/hang bug
- fix a cache topology mis-parsing bug on certain AMD CPUs
- fix a virtualization firmware bug by adding a check+quirk
workaround on the kernel side"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Deal with broken firmware (VMWare/XEN)
x86/cpu/AMD: Fix cpu_llc_id for AMD Fam17h systems
x86/platform/intel-mid: Retrofit pci_platform_pm_ops ->get_state hook
apm_bios_call() can fail, and return a status in its argument structure.
If that status however is zero during a call from
apm_get_power_status(), we end up using data that may have never been
set, as reported by "gcc -Wmaybe-uninitialized":
arch/x86/kernel/apm_32.c: In function ‘apm’:
arch/x86/kernel/apm_32.c:1729:17: error: ‘bx’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
arch/x86/kernel/apm_32.c:1835:5: error: ‘cx’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
arch/x86/kernel/apm_32.c:1730:17: note: ‘cx’ was declared here
arch/x86/kernel/apm_32.c:1842:27: error: ‘dx’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
arch/x86/kernel/apm_32.c:1731:17: note: ‘dx’ was declared here
This changes the function to return "APM_NO_ERROR" here, which makes the
code more robust to broken BIOS versions, and avoids the warning.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Luis R. Rodriguez <mcgrof@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We did have logic in the MCE code which would TSC-timestamp an error
record only when it is exact - i.e., when it wasn't detected by polling.
This isn't the case anymore. So let's fix that:
We have a valid TSC timestamp in the error record only when it has been
a precise detection, i.e., either in the #MC handler or in one of the
interrupt handlers (thresholding, deferred, ...).
All other error records still have mce.time which contains the wall
time in order to be able to place the error record in time at least
approximately.
Also, this fixes another bug where machine_check_poll() would clear
mce.tsc unconditionally even if we requested precise MCP_TIMESTAMP
logging.
The proper fix would be to generate timestamp only when it has been
requested and not always. But that would require a more thorough code
audit of all mce_gather_info/mce_setup() users. Add a FIXME for now.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony <tony.luck@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: kernel test robot <xiaolong.ye@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: lkp@01.org
Link: http://lkml.kernel.org/r/20161110131053.kybsijfs5venpjnf@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_OF enabled on x86, we get the following error on boot:
"
Failed to find cpu0 device node
Unable to detect cache hierarchy from DT for CPU 0
"
and the cacheinfo fails to get populated in the corresponding sysfs
entries. This is because cache_setup_of_node looks for of_node for
setting up the shared cpu_map without checking that it's already
populated in the architecture specific callback.
In order to indicate that the shared cpu_map is already populated, this
patch introduces a boolean `cpu_map_populated` in struct cpu_cacheinfo
that can be used by the generic code to skip cache_shared_cpu_map_setup.
This patch also sets that boolean for x86.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The following RCU lockdep warning led to adding irq_enter()/irq_exit() into
smp_reschedule_interrupt():
RCU used illegally from idle CPU!
rcu_scheduler_active = 1, debug_locks = 0
RCU used illegally from extended quiescent state!
no locks held by swapper/1/0.
do_trace_write_msr
native_write_msr
native_apic_msr_eoi_write
smp_reschedule_interrupt
reschedule_interrupt
As Peterz pointed out:
| So now we're making a very frequent interrupt slower because of debug
| code.
|
| The thing is, many many smp_reschedule_interrupt() invocations don't
| actually execute anything much at all and are only sent to tickle the
| return to user path (which does the actual preemption).
|
| Having to do the whole irq_enter/irq_exit dance just for this unlikely
| debug case totally blows.
Use the wrmsr_notrace() variant in native_apic_msr_write_eoi, annotate the
kvm variant with notrace and add a native_apic_eoi callback to the apic
structure so KVM guests are covered as well.
This allows to revert the irq_enter/irq_exit dance in
smp_reschedule_interrupt().
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Mike Galbraith <efault@gmx.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/1478488420-5982-3-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Both ACPI and MP specifications require that the APIC id in the respective
tables must be the same as the APIC id in CPUID.
The kernel retrieves the physical package id from the APIC id during the
ACPI/MP table scan and builds the physical to logical package map. The
physical package id which is used after a CPU comes up is retrieved from
CPUID. So we rely on ACPI/MP tables and CPUID agreeing in that respect.
There exist VMware and XEN implementations which violate the spec. As a
result the physical to logical package map, which relies on the ACPI/MP
tables does not work on those systems, because the CPUID initialized
physical package id does not match the firmware id. This causes system
crashes and malfunction due to invalid package mappings.
The only way to cure this is to sanitize the physical package id after the
CPUID enumeration and yell when the APIC ids are different. Fix up the
initial APIC id, which is fine as it is only used printout purposes.
If the physical package IDs differ yell and use the package information
from the ACPI/MP tables so the existing logical package map just works.
Chas provided the resulting dmesg output for his affected 4 virtual
sockets, 1 core per socket VM:
[Firmware Bug]: CPU1: APIC id mismatch. Firmware: 1 CPUID: 2
[Firmware Bug]: CPU1: Using firmware package id 1 instead of 2
....
Reported-and-tested-by: "Charles (Chas) Williams" <ciwillia@brocade.com>,
Reported-by: M. Vefa Bicakci <m.v.b@runbox.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: #4.6+ <stable@vger,kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1611091613540.3501@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
These changes do not affect current hw - just a cleanup:
Currently, we assume that a system has a single Last Level Cache (LLC)
per node, and that the cpu_llc_id is thus equal to the node_id. This no
longer applies since Fam17h can have multiple last level caches within a
node.
So group the cpu_llc_id assignment by topology feature and family in
order to make the computation of cpu_llc_id on the different families
more clear.
Here is how the LLC ID is being computed on the different families:
The NODEID_MSR feature only applies to Fam10h in which case the LLC is
at the node level.
The TOPOEXT feature is used on families 15h, 16h and 17h. So far we only
see multiple last level caches if L3 caches are available. Otherwise,
the cpu_llc_id will default to be the phys_proc_id.
We have L3 caches only on families 15h and 17h:
- on Fam15h, the LLC is at the node level.
- on Fam17h, the LLC is at the core complex level and can be found by
right shifting the APIC ID. Also, keep the family checks explicit so that
new families will fall back to the default, which will be node_id for
TOPOEXT systems.
Single node systems in families 10h and 15h will have a Node ID of 0
which will be the same as the phys_proc_id, so we don't need to check
for multiple nodes before using the node_id.
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
[ Rewrote the commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20161108153054.bs3sajbyevq6a6uu@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpu_llc_id (Last Level Cache ID) derivation on AMD Fam17h has an
underflow bug when extracting the socket_id value. It starts from 0
so subtracting 1 from it will result in an invalid value. This breaks
scheduling topology later on since the cpu_llc_id will be incorrect.
For example, the the cpu_llc_id of the *other* CPU in the loops in
set_cpu_sibling_map() underflows and we're generating the funniest
thread_siblings masks and then when I run 8 threads of nbench, they get
spread around the LLC domains in a very strange pattern which doesn't
give you the normal scheduling spread one would expect for performance.
Other things like EDAC use cpu_llc_id so they will be b0rked too.
So, the APIC ID is preset in APICx020 for bits 3 and above: they contain
the core complex, node and socket IDs.
The LLC is at the core complex level so we can find a unique cpu_llc_id
by right shifting the APICID by 3 because then the least significant bit
will be the Core Complex ID.
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
[ Cleaned up and extended the commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org> # v4.4..
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: 3849e91f57 ("x86/AMD: Fix last level cache topology for AMD Fam17h systems")
Link: http://lkml.kernel.org/r/20161108083506.rvqb5h4chrcptj7d@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add accessor functions and hide the smca_names array. Also, add a
sanity-check to bank HWID assignment in get_smca_bank_info().
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20161104152317.5r276t35df53qk76@pd.tnic
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make it differ more from struct smca_bank_name for better readability.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20161103125556.15482-3-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Call it simply smca_hwid and call local variables "hwid". More readable.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20161103125556.15482-2-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Call the struct simply smca_bank, it's instance ID can be simply ->id.
Makes the code much more readable.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20161103125556.15482-1-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When there are no error record consumers registered with the kernel, the
only thing that appears in dmesg is something like:
[ 300.000326] mce: [Hardware Error]: Machine check events logged
and the error records are gone. Which is seriously counterproductive.
So let's dump them to dmesg instead, in such a case.
Requested-by: Eric Morton <Eric.Morton@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20161101120911.13163-4-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCE tolerance levels control whether we panic on a machine check or do
something else like generating a signal and logging error information. This
is controlled by the mce=<level> command line parameter.
However, if panic_on_oops is set, it will force a panic for such an MCE
even though the user didn't want to.
So don't check panic_on_oops in the severity grading anymore.
One of the use cases for that is recovery from uncorrectable errors with
mce=2.
[ Boris: rewrite commit message. ]
Signed-off-by: Yinghai Lu <yinghai.lu@oracle.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20160916202325.4972-1-yinghai@kernel.org
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
gcc complains:
"warning: ‘dentry’ may be used uninitialized in this function"
The error exit path in rdt_mount(), which deals with a failure in
rdtgroup_create_info_dir(), does not set the error code in dentry and
returns the uninitialized dentry value.
Add the missing error propagation.
[tglx: Massaged changelog ]
Fixes: 4e978d06de ("x86/intel_rdt: Add "info" files to resctrl file system")
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Link: http://lkml.kernel.org/r/a56a556f6768dc12cadbf97f49e000189056f90e.1478207143.git.shli@fb.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The kernel doesn't use clts() any more. Remove it and all of its
paravirt infrastructure.
A careful reader may notice that xen_clts() appears to have been
buggy -- it didn't update xen_cr0_value.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm list <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/3d3c8ca62f17579b9849a013d71e59a4d5d1b079.1477951965.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Don't use CR0.TS. Make it an error rather than making nonsensical
changes to the FPU state.
(The cond_local_irq_enable() appears to have been pointless, too.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm list <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/f1ee6bf73ed1025fccaab321ba43d0594245f927.1477951965.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that lazy FPU is gone, we don't use CR0.TS (except possibly in
KVM guest mode). Remove irq_ts_save(), irq_ts_restore(), and all of
their callers.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm list <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/70b9b9e7ba70659bedcb08aba63d0f9214f338f2.1477951965.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
fpu__init_check_bugs() runs long after the early FPU init, so CR0.TS
will be clear by the time it runs. The save-and-restore dance would
have been unnecessary anyway, though, as kernel_fpu_begin() would
have been good enough.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm list <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/76d1f1eacb5caead98197d1eb50ac6110ab20c6a.1477951965.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CR0.TS is cleared by a direct CR0 write in fpu__init_cpu_generic().
We don't need to call clts() two more times right after that.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm list <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/476d2d5066eda24838853426ea74c94140b50c85.1477951965.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hook the x86 scheduler code to update closid based on whether the current
task is assigned to a specific closid or running on a CPU assigned to a
specific closid.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-10-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Last of the per resource group files. Also mode 0644. This one shows
the resources available to the group. Syntax depends on whether the
"cdp" mount option was given. With code/data prioritization disabled
it is simply a list of masks for each cache domain. Initial value
allows access to all of the L3 cache on all domains. E.g. on a 2 socket
Broadwell:
L3:0=fffff;1=fffff
With CDP enabled, separate masks for data and instructions are provided:
L3DATA:0=fffff;1=fffff
L3CODE:0=fffff;1=fffff
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-9-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The root directory all subdirectories are automatically populated with a
read/write (mode 0644) file named "tasks". When read it will show all the
task IDs assigned to the resource group. Tasks can be added (one at a time)
to a group by writing the task ID to the file. E.g.
Membership in a resource group is indicated by a new field in the
task_struct "int closid" which holds the CLOSID for each task. The default
resource group uses CLOSID=0 which means that all existing tasks when the
resctrl file system is mounted belong to the default group.
If a group is removed, tasks which are members of that group are moved to
the default group.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-8-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now we populate each directory with a read/write (mode 0644) file
named "cpus". This is used to over-ride the resources available
to processes in the default resource group when running on specific
CPUs. Each "cpus" file reads as a cpumask showing which CPUs belong
to this resource group. Initially all online CPUs are assigned to
the default group. They can be added to other groups by writing a
cpumask to the "cpus" file in the directory for the resource group
(which will remove them from the previous group to which they were
assigned). CPU online/offline operations will delete CPUs that go
offline from whatever group they are in and add new CPUs to the
default group.
If there are CPUs assigned to a group when the directory is removed,
they are returned to the default group.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-7-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Resource control groups are represented as directories in the resctrl
file system. The root directory describes the default resources available
to tasks that have not been assigned specific resources. Other directories
can be created at the root level to make new resource groups. It is not
permitted to make directories within other directories.
Hardware uses a CLOSID (Class of service ID) to determine which resource
limits are currently in effect. The exact number available is enumerated
by CPUID leaf 0x10, but on current implementations it is a small number.
We implement a simple bitmask allocator for CLOSIDs.
Each resource control group uses one CLOSID, which limits the total number
of directories that can be created.
Resource groups can be removed using rmdir.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-6-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use kernfs as basis for our user interface filesystem. This patch
supports mount/umount, and one mount parameter "cdp" to enable code/data
prioritization (though all we do at this point is ensure that the system
can support CDP). The file system is not populated yet in this patch.
[ tglx: Fixed up a few nits and added cdp handling in case of error ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-4-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We use the cpu hotplug notifier to catch each cpu in turn and look at
its cache topology w.r.t each of the resource groups. As we discover
new resources, we initialize the bitmask array for each to the default
(full access) value.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-3-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The default sched_clock() implementation is native_sched_clock(). It
contains code to handle non constant frequency TSCs, which creates
overhead for systems with constant frequency TSCs.
The vmware hypervisor guarantees a constant frequency TSC, so
native_sched_clock() is not required and slower than a dedicated function
which operates with one time calculated conversion factors.
Calculate the conversion factors at boot time from the tsc frequency and
install an optimized sched_clock() function via paravirt ops.
The paravirtualized clock can be disabled on the kernel command line with
the new 'no-vmw-sched-clock' option.
Signed-off-by: Alexey Makhalov <amakhalov@vmware.com>
Acked-by: Alok N Kataria <akataria@vmware.com>
Cc: linux-doc@vger.kernel.org
Cc: pv-drivers@vmware.com
Cc: corbet@lwn.net
Cc: virtualization@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20161028075432.90579-4-amakhalov@vmware.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit aa297292d7 ("x86/tsc: Enumerate SKL cpu_khz and tsc_khz via
CPUID") separated the calibration mechanisms for cpu_khz and tsc_khz.
Since the vmware hypervisor provides a constant frequency TSC to the guest,
this change can lead to divergence between the tsc and the cpu frequency
after vmotion, which might confuse the user.
Solve this by overriding the x86 platform cpu calibration callback with the
vmware specific tsc calibration function.
Signed-off-by: Alexey Makhalov <amakhalov@vmware.com>
Acked-by: Alok N Kataria <akataria@vmware.com>
Cc: linux-doc@vger.kernel.org
Cc: pv-drivers@vmware.com
Cc: corbet@lwn.net
Cc: virtualization@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20161028075432.90579-2-amakhalov@vmware.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The recent changes, which forced the registration of the boot cpu on UP
systems, which do not have ACPI tables, have been fixed for systems w/o
local APIC, but left a wreckage for systems which have neither ACPI nor
mptables, but the CPU has an APIC, e.g. virtualbox.
The boot process crashes in prefill_possible_map() as it wants to register
the boot cpu, which needs to access the local apic, but the local APIC is
not yet mapped.
There is no reason why init_apic_mapping() can't be invoked before
prefill_possible_map(). So instead of playing another silly early mapping
game, as the ACPI/mptables code does, we just move init_apic_mapping()
before the call to prefill_possible_map().
In hindsight, I should have noticed that combination earlier.
Sorry for the churn (also in stable)!
Fixes: ff8560512b ("x86/boot/smp: Don't try to poke disabled/non-existent APIC")
Reported-and-debugged-by: Michal Necasek <michal.necasek@oracle.com>
Reported-and-tested-by: Wolfgang Bauer <wbauer@tmo.at>
Cc: prarit@redhat.com
Cc: ville.syrjala@linux.intel.com
Cc: michael.thayer@oracle.com
Cc: knut.osmundsen@oracle.com
Cc: frank.mehnert@oracle.com
Cc: Borislav Petkov <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1610282114380.5053@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Specifics:
- Fix three ACPICA issues related to the interpreter locking and
introduced by recent changes in that area (Lv Zheng).
- Fix a PCI IRQ management regression introduced during the 4.7
cycle and related to the configuration of shared IRQs on systems
with an ISA bus (Sinan Kaya).
- Fix up a return value of one function in the APEI code (Punit
Agrawal).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJYE+wwAAoJEILEb/54YlRxe0wQAKIyO3ktsxxbz2iACxFPZGmn
ML1+OTBIGQKYDSGCINhMV5PGd98IMBaVCB9RllG/B9iALb8VCGiJ6AuJKoR7q2pZ
6mr7ioXNfTNlLISykt63cD/Lp/YobZMG6WhoNWzoKslVUQrSWAISV+wGpBxoj08i
8X7t/QtvRIVWfy4H4reDgpQMIKUeDhk6REeb8FESiXYboOvNhbXZpPS+bv8XXEfD
bu/ASQIZs3Z9YB2uTij16Tx95eJETHhr9zYIxbi848YDxjelpZNs1QuVoYxq3GO2
S7vbGHZITMLSEz4jD0w98YvDcb0jywfSXX53NBMaSJqOAleVKNH1rE8KvywG6H0s
2298yBc0o0ldBb+4nszoL7NyGQKDrmxMEGBRFlk67gZ1LA4cpk+Usv9Q0GmNx38H
KQfuA144n9ICaM9Kw9CKD8xrQ+PtpoTIBXzKGsdqIwHsS+2XSwzgp4IWEuMRfZNu
5ermtO2tRz47UDnQ5UxdweB0n2pEMrZXDDzBONdqp3ds4aOvOvVqQP3OB+iMaMrT
rPvVlYLr2Q+ekIzHPCpB7uBwI//bJ3L2cLqHxp9hlbNeFQWdv/NlMlmbWgYVVpn3
tCvqqpH+jtof8lnmWZtBdc4M0GhwM+CP6TYd65n2yDqVCfPraXokE0UdNBW+je4Z
BRuhjVEi0vBsrc3M4IC9
=wjnL
-----END PGP SIGNATURE-----
Merge tag 'acpi-4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI fixes from Rafael Wysocki:
"These fix recent ACPICA regressions, an older PCI IRQ management
regression, and an incorrect return value of a function in the APEI
code.
Specifics:
- Fix three ACPICA issues related to the interpreter locking and
introduced by recent changes in that area (Lv Zheng).
- Fix a PCI IRQ management regression introduced during the 4.7 cycle
and related to the configuration of shared IRQs on systems with an
ISA bus (Sinan Kaya).
- Fix up a return value of one function in the APEI code (Punit
Agrawal)"
* tag 'acpi-4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPICA: Dispatcher: Fix interpreter locking around acpi_ev_initialize_region()
ACPICA: Dispatcher: Fix an unbalanced lock exit path in acpi_ds_auto_serialize_method()
ACPICA: Dispatcher: Fix order issue of method termination
ACPI / APEI: Fix incorrect return value of ghes_proc()
ACPI/PCI: pci_link: Include PIRQ_PENALTY_PCI_USING for ISA IRQs
ACPI/PCI: pci_link: penalize SCI correctly
ACPI/PCI/IRQ: assign ISA IRQ directly during early boot stages
We needed the physical address of the container in order to compute the
offset within the relocated ramdisk. And we did this by doing __pa() on
the virtual address.
However, __pa() does checks whether the physical address is within
PAGE_OFFSET and __START_KERNEL_map - see __phys_addr() - which fail
if we have CONFIG_RANDOMIZE_MEMORY enabled: we feed a virtual address
which *doesn't* have the randomization offset into a function which uses
PAGE_OFFSET which *does* have that offset.
This makes this check fire:
VIRTUAL_BUG_ON((x > y) || !phys_addr_valid(x));
^^^^^^
due to the randomization offset.
The fix is as simple as using __pa_nodebug() because we do that
randomization offset accounting later in that function ourselves.
Reported-by: Bob Peterson <rpeterso@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm <linux-mm@kvack.org>
Cc: stable@vger.kernel.org # 4.9
Link: http://lkml.kernel.org/r/20161027123623.j2jri5bandimboff@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a sanity check to ensure the stack only grows down, and print a
warning if the check fails.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161027131058.tpdffwlqipv7pcd6@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If __kernel_text_address() doesn't recognize a return address on the
stack, it probably means that it's some generated code which
__kernel_text_address() doesn't know about yet.
Otherwise there's probably some stack corruption.
Either way, warn about it.
Use printk_deferred_once() because the unwinder can be called with the
console lock by lockdep via save_stack_trace().
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2d897898f324e275943b590d160b55e482bba65f.1477496147.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Print a warning if stack recursion is detected.
Use printk_deferred_once() because the unwinder can be called with the
console lock by lockdep via save_stack_trace().
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/def18247aafaab480844484398e793f552b79bda.1477496147.git.jpoimboe@redhat.com
[ Unbroke the lines. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Detect situations in the unwinder where the frame pointer refers to a
bad address, and print an appropriate warning.
Use printk_deferred_once() because the unwinder can be called with the
console lock by lockdep via save_stack_trace().
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/03c888f6f7414d54fa56b393ea25482be6899b5f.1477496147.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some Haswell generation CPUs support RDT, but they don't enumerate this via
CPUID. Use rdmsr_safe() and wrmsr_safe() to probe the MSRs on cpu model 63
(INTEL_FAM6_HASWELL_X)
Move the relevant defines into a common header file which is shared between
RDT/CQM and RDT/Allocation to avoid duplication.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477142405-32078-8-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Introduce CONFIG_INTEL_RDT_A (default: no, dependent on CPU_SUP_INTEL) to
control inclusion of Resource Director Technology in the build.
Simple init() routine just checks which features are present. If they are
pr_info() one line summary for each feature for now.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477142405-32078-7-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cache id is retrieved from APIC ID and CPUID leaf 4 on x86.
For more details please see the section on "Cache ID Extraction
Parameters" in "Intel 64 Architecture Processor Topology Enumeration".
Also the documentation of the CPUID instruction in the "Intel 64 and
IA-32 Architectures Software Developer's Manual"
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477142405-32078-4-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit 784d5699ed ("x86: move exports to actual definitions") removed the
EXPORT_SYMBOL(__fentry__) and EXPORT_SYMBOL(mcount) from x8664_ksyms_64.c,
and added EXPORT_SYMBOL(function_hook) in mcount_64.S instead. The problem
is that function_hook isn't a function at all, but a macro that is defined
as either mcount or __fentry__ depending on the support from gcc.
Originally, I thought this was a macro issue, like what __stringify()
is used for. But the problem is a bit deeper. The Makefile.build has
some magic that does post processing of files to create the CRC
bindings. It does some searches for EXPORT_SYMBOL() and because it
finds a macro name and not the actual functions, this causes
function_hook not to be converted into mcount or __fentry__ and they
are missed.
Instead of adding more magic to Makefile.build, just add
EXPORT_SYMBOL() for mcount and __fentry__ where the ifdef is used.
Since this is assembly and not C, it doesn't require being set after
the function is defined.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Borislav Petkov <bp@alien8.de>
Cc: Gabriel C <nix.or.die@gmail.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Link: http://lkml.kernel.org/r/20161024150148.4f9d90e4@gandalf.local.home
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently after bringing up secondary CPUs all arches print "Brought up
%d CPUs". On x86 they also print the number of nodes that were brought
online.
It would be nice to also print the number of nodes on other arches.
Although we could override smp_announce() on the other ~10 NUMA aware
arches, it seems simpler to just always print the number of nodes. On
non-NUMA arches there is just always 1 node.
Having done that, smp_announce() is no longer weak, and seems small
enough to just pull directly into smp_init().
Also update the printing of "%d CPUs" to be smart when an SMP kernel is
booted on a single CPU system, or when only one CPU is available, eg:
smp: Brought up 2 nodes, 1 CPU
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: akpm@osdl.org
Cc: jgross@suse.com
Cc: ak@linux.intel.com
Cc: tim.c.chen@linux.intel.com
Cc: len.brown@intel.com
Cc: peterz@infradead.org
Cc: richard@nod.at
Cc: jolsa@redhat.com
Cc: boris.ostrovsky@oracle.com
Cc: mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1477460275-8266-2-git-send-email-mpe@ellerman.id.au
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For mostly historical reasons, the x86 oops dump shows the raw stack
values:
...
[registers]
Stack:
ffff880079af7350 ffff880079905400 0000000000000000 ffffc900008f3ae0
ffffffffa0196610 0000000000000001 00010000ffffffff 0000000087654321
0000000000000002 0000000000000000 0000000000000000 0000000000000000
Call Trace:
...
This seems to be an artifact from long ago, and probably isn't needed
anymore. It generally just adds noise to the dump, and it can be
actively harmful because it leaks kernel addresses.
Linus says:
"The stack dump actually goes back to forever, and it used to be
useful back in 1992 or so. But it used to be useful mainly because
stacks were simpler and we didn't have very good call traces anyway. I
definitely remember having used them - I just do not remember having
used them in the last ten+ years.
Of course, it's still true that if you can trigger an oops, you've
likely already lost the security game, but since the stack dump is so
useless, let's aim to just remove it and make games like the above
harder."
This also removes the related 'kstack=' cmdline option and the
'kstack_depth_to_print' sysctl.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e83bd50df52d8fe88e94d2566426ae40d813bf8f.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Printing kernel text addresses in stack dumps is of questionable value,
especially now that address randomization is becoming common.
It can be a security issue because it leaks kernel addresses. It also
affects the usefulness of the stack dump. Linus says:
"I actually spend time cleaning up commit messages in logs, because
useless data that isn't actually information (random hex numbers) is
actively detrimental.
It makes commit logs less legible.
It also makes it harder to parse dumps.
It's not useful. That makes it actively bad.
I probably look at more oops reports than most people. I have not
found the hex numbers useful for the last five years, because they are
just randomized crap.
The stack content thing just makes code scroll off the screen etc, for
example."
The only real downside to removing these addresses is that they can be
used to disambiguate duplicate symbol names. However such cases are
rare, and the context of the stack dump should be enough to be able to
figure it out.
There's now a 'faddr2line' script which can be used to convert a
function address to a file name and line:
$ ./scripts/faddr2line ~/k/vmlinux write_sysrq_trigger+0x51/0x60
write_sysrq_trigger+0x51/0x60:
write_sysrq_trigger at drivers/tty/sysrq.c:1098
Or gdb can be used:
$ echo "list *write_sysrq_trigger+0x51" |gdb ~/k/vmlinux |grep "is in"
(gdb) 0xffffffff815b5d83 is in driver_probe_device (/home/jpoimboe/git/linux/drivers/base/dd.c:378).
(But note that when there are duplicate symbol names, gdb will only show
the first symbol it finds. faddr2line is recommended over gdb because
it handles duplicates and it also does function size checking.)
Here's an example of what a stack dump looks like after this change:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: sysrq_handle_crash+0x45/0x80
PGD 36bfa067 [ 29.650644] PUD 7aca3067
Oops: 0002 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 1 PID: 786 Comm: bash Tainted: G E 4.9.0-rc1+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014
task: ffff880078582a40 task.stack: ffffc90000ba8000
RIP: 0010:sysrq_handle_crash+0x45/0x80
RSP: 0018:ffffc90000babdc8 EFLAGS: 00010296
RAX: ffff880078582a40 RBX: 0000000000000063 RCX: 0000000000000001
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000292
RBP: ffffc90000babdc8 R08: 0000000b31866061 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000007 R14: ffffffff81ee8680 R15: 0000000000000000
FS: 00007ffb43869700(0000) GS:ffff88007d400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000007a3e9000 CR4: 00000000001406e0
Stack:
ffffc90000babe00 ffffffff81572d08 ffffffff81572bd5 0000000000000002
0000000000000000 ffff880079606600 00007ffb4386e000 ffffc90000babe20
ffffffff81573201 ffff880036a3fd00 fffffffffffffffb ffffc90000babe40
Call Trace:
__handle_sysrq+0x138/0x220
? __handle_sysrq+0x5/0x220
write_sysrq_trigger+0x51/0x60
proc_reg_write+0x42/0x70
__vfs_write+0x37/0x140
? preempt_count_sub+0xa1/0x100
? __sb_start_write+0xf5/0x210
? vfs_write+0x183/0x1a0
vfs_write+0xb8/0x1a0
SyS_write+0x58/0xc0
entry_SYSCALL_64_fastpath+0x1f/0xc2
RIP: 0033:0x7ffb42f55940
RSP: 002b:00007ffd33bb6b18 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000046 RCX: 00007ffb42f55940
RDX: 0000000000000002 RSI: 00007ffb4386e000 RDI: 0000000000000001
RBP: 0000000000000011 R08: 00007ffb4321ea40 R09: 00007ffb43869700
R10: 00007ffb43869700 R11: 0000000000000246 R12: 0000000000778a10
R13: 00007ffd33bb5c00 R14: 0000000000000007 R15: 0000000000000010
Code: 34 e8 d0 34 bc ff 48 c7 c2 3b 2b 57 81 be 01 00 00 00 48 c7 c7 e0 dd e5 81 e8 a8 55 ba ff c7 05 0e 3f de 00 01 00 00 00 0f ae f8 <c6> 04 25 00 00 00 00 01 5d c3 e8 4c 49 bc ff 84 c0 75 c3 48 c7
RIP: sysrq_handle_crash+0x45/0x80 RSP: ffffc90000babdc8
CR2: 0000000000000000
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/69329cb29b8f324bb5fcea14d61d224807fb6488.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Yeah, I know, I know, this is a huuge patch and reviewing it is hard.
Sorry but this is the only way I could think of in which I can rewrite
the microcode patches loading procedure without breaking (knowingly) the
driver.
So maybe this patch is easier to review if one looks at the files after
the patch has been applied instead at the diff. Because then it becomes
pretty obvious:
* The BSP-loading path - load_ucode_bsp() is working independently from
the AP path now and it doesn't save any pointers or patches anymore -
it solely parses the builtin or initrd microcode and applies the patch.
That's it.
This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly.
* The AP-loading path - load_ucode_ap() then goes and scans
builtin/initrd *again* for the microcode patches but it caches them this
time so that we don't have to do that scan on each AP but only once.
This simplifies the code considerably.
Then, when we save the microcode from the initrd/builtin, we go and
add the relevant patches to our own cache. The AMD side did do that
and now the Intel side does it too. So no more pointer copying and
blabla, we save the microcode patches ourselves and are independent from
initrd/builtin.
This whole conversion gives us other benefits like unifying the
initrd parsing into a single function: find_microcode_in_initrd() is
used by both.
The diffstat speaks for itself: 456 insertions(+), 695 deletions(-)
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Its functions are used in intel.c only now, so get rid of it. Make
functions static.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-11-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make them all static as they're used in a single file now.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-10-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to reread the CPU's microcode revision after resume because
applied microcode gets "forgotten" depending on the sleep state.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-9-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move it after the patch application function which also checks whether
we were successful.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-8-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Will be needed in a following patch.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-7-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It will be used by both drivers so move it to core.c.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-6-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make it return the ucode_state directly instead of assigning to a state
variable and jumping to an out: label.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpu_init() is run also on the BSP (in addition to the APs):
x86_64_start_kernel
|-> x86_64_start_reservations
|-> start_kernel
|-> trap_init
|-> cpu_init
|-> load_ucode_ap
...
but we run the AP (Application Processors) microcode loading routine
there too even though we have a BSP-specific routine for that:
load_ucode_bsp().
Which is unnecessary. So let's limit the AP microcode loading routine to
the APs only.
Remove a useless comment while at it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is useless as it dumps the MSRs too early BUT(!) we do set MSRs later too.
Also, it dumps only BSP MSRs as it gets called only for CPU 0.
And the MSR range array would need constant updating anyway, and so on
and so on...
Oh, and we have msr.ko and msr-tools which are the much better solution
anyway. So off it goes...
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161024173844.23038-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Should be easier when following boot paths. It probably is a left over
from the x86 unification eons ago.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161024173844.23038-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We're using a literal, move it into the string.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161024173844.23038-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
gcc -Wmaybe-uninitialized detects that quirk_intel_brickland_xeon_ras_cap
uses uninitialized data when CONFIG_PCI is not set:
arch/x86/kernel/quirks.c: In function ‘quirk_intel_brickland_xeon_ras_cap’:
arch/x86/kernel/quirks.c:641:13: error: ‘capid0’ is used uninitialized in this function [-Werror=uninitialized]
However, the function is also not called in this configuration, so we
can avoid the warning by moving the existing #ifdef to cover it as well.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-pci@vger.kernel.org
Link: http://lkml.kernel.org/r/20161024153325.2752428-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vince Waver reported the following bug:
WARNING: CPU: 0 PID: 21338 at arch/x86/mm/fault.c:435 vmalloc_fault+0x58/0x1f0
CPU: 0 PID: 21338 Comm: perf_fuzzer Not tainted 4.8.0+ #37
Hardware name: Hewlett-Packard HP Compaq Pro 6305 SFF/1850, BIOS K06 v02.57 08/16/2013
Call Trace:
<NMI> ? dump_stack+0x46/0x59
? __warn+0xd5/0xee
? vmalloc_fault+0x58/0x1f0
? __do_page_fault+0x6d/0x48e
? perf_log_throttle+0xa4/0xf4
? trace_page_fault+0x22/0x30
? __unwind_start+0x28/0x42
? perf_callchain_kernel+0x75/0xac
? get_perf_callchain+0x13a/0x1f0
? perf_callchain+0x6a/0x6c
? perf_prepare_sample+0x71/0x2eb
? perf_event_output_forward+0x1a/0x54
? __default_send_IPI_shortcut+0x10/0x2d
? __perf_event_overflow+0xfb/0x167
? x86_pmu_handle_irq+0x113/0x150
? native_read_msr+0x6/0x34
? perf_event_nmi_handler+0x22/0x39
? perf_ibs_nmi_handler+0x4a/0x51
? perf_event_nmi_handler+0x22/0x39
? nmi_handle+0x4d/0xf0
? perf_ibs_handle_irq+0x3d1/0x3d1
? default_do_nmi+0x3c/0xd5
? do_nmi+0x92/0x102
? end_repeat_nmi+0x1a/0x1e
? entry_SYSCALL_64_after_swapgs+0x12/0x4a
? entry_SYSCALL_64_after_swapgs+0x12/0x4a
? entry_SYSCALL_64_after_swapgs+0x12/0x4a
<EOE> ^A4---[ end trace 632723104d47d31a ]---
BUG: stack guard page was hit at ffffc90008500000 (stack is ffffc900084fc000..ffffc900084fffff)
kernel stack overflow (page fault): 0000 [#1] SMP
...
The NMI hit in the entry code right after setting up the stack pointer
from 'cpu_current_top_of_stack', so the kernel stack was empty. The
'guess' version of __unwind_start() attempted to dereference the "top of
stack" pointer, which is not actually *on* the stack.
Add a check in the guess unwinder to deal with an empty stack. (The
frame pointer unwinder already has such a check.)
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 7c7900f897 ("x86/unwind: Add new unwind interface and implementations")
Link: http://lkml.kernel.org/r/20161024133127.e5evgeebdbohnmpb@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ondrej reported that IRQs stopped working in v4.7 on several
platforms. A typical scenario, from Ondrej's VT82C694X/694X, is:
ACPI: Using PIC for interrupt routing
ACPI: PCI Interrupt Link [LNKA] (IRQs 1 3 4 5 6 7 10 *11 12 14 15)
ACPI: No IRQ available for PCI Interrupt Link [LNKA]
8139too 0000:00:0f.0: PCI INT A: no GSI
We're using PIC routing, so acpi_irq_balance == 0, and LNKA is already
active at IRQ 11. In that case, acpi_pci_link_allocate() only tries
to use the active IRQ (IRQ 11) which also happens to be the SCI.
We should penalize the SCI by PIRQ_PENALTY_PCI_USING, but
irq_get_trigger_type(11) returns something other than
IRQ_TYPE_LEVEL_LOW, so we penalize it by PIRQ_PENALTY_ISA_ALWAYS
instead, which makes acpi_pci_link_allocate() assume the IRQ isn't
available and give up.
Add acpi_penalize_sci_irq() so platforms can tell us the SCI IRQ,
trigger, and polarity directly and we don't have to depend on
irq_get_trigger_type().
Fixes: 103544d869 (ACPI,PCI,IRQ: reduce resource requirements)
Link: http://lkml.kernel.org/r/201609251512.05657.linux@rainbow-software.org
Reported-by: Ondrej Zary <linux@rainbow-software.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Tested-by: Jonathan Liu <net147@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull x86 fixes from Ingo Molnar:
"Three fixes, a hw-enablement and a cross-arch fix/enablement change:
- SGI/UV fix for older platforms
- x32 signal handling fix
- older x86 platform bootup APIC fix
- AVX512-4VNNIW (Neural Network Instructions) and AVX512-4FMAPS
(Multiply Accumulation Single precision instructions) enablement.
- move thread_info back into x86 specific code, to make life easier
for other architectures trying to make use of
CONFIG_THREAD_INFO_IN_TASK_STRUCT=y"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/smp: Don't try to poke disabled/non-existent APIC
sched/core, x86: Make struct thread_info arch specific again
x86/signal: Remove bogus user_64bit_mode() check from sigaction_compat_abi()
x86/platform/UV: Fix support for EFI_OLD_MEMMAP after BIOS callback updates
x86/cpufeature: Add AVX512_4VNNIW and AVX512_4FMAPS features
x86/vmware: Skip timer_irq_works() check on VMware
Apparently trying to poke a disabled or non-existent APIC
leads to a box that doesn't even boot. Let's not do that.
No real clue if this is the right fix, but at least my
P3 machine boots again.
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: dyoung@redhat.com
Cc: kexec@lists.infradead.org
Cc: stable@vger.kernel.org
Fixes: 2a51fe083e ("arch/x86: Handle non enumerated CPU after physical hotplug")
Link: http://lkml.kernel.org/r/1477102684-5092-1-git-send-email-ville.syrjala@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kbuild test robot reported this against the -RT tree:
|>> arch/x86/kernel/acpi/boot.c:90:21: warning: 'acpi_ioapic_lock' defined but not used [-Wunused-variable]
| static DEFINE_MUTEX(acpi_ioapic_lock);
| ^
| include/linux/mutex_rt.h:27:15: note: in definition of macro 'DEFINE_MUTEX'
| struct mutex mutexname = __MUTEX_INITIALIZER(mutexname)
^~~~~~~~~
which is also true (as in non-used) for !RT but the compiler does not
emit a warning.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161021084449.32523-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Re-factor the vmware platform setup code to query the hypervisor for tsc
frequency only once during boot. Since the VMware hypervisor guarantees
constant TSC, calibrate_tsc now uses the saved value.
Signed-off-by: Alexey Makhalov <amakhalov@vmware.com>
Acked-by: Alok N Kataria <akataria@vmware.com>
Cc: virtualization@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20161020050211.GA25304@amakhalov-virtual-machine
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The value of regs->orig_ax contains potentially useful debugging data:
For syscalls it contains the syscall number. For interrupts it contains
the (negated) vector number. To reduce noise, print it only if it has a
useful value (i.e., something other than -1).
Here's what it looks like for a write syscall:
RIP: 0033:[<00007f53ad7b1940>] 0x7f53ad7b1940
RSP: 002b:00007fff8de66558 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000046 RCX: 00007f53ad7b1940
RDX: 0000000000000002 RSI: 00007f53ae0ca000 RDI: 0000000000000001
...
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/93f0fe0307a4af884d3fca00edabcc8cff236002.1476973742.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
show_trace_log_lvl() prints the stack id (e.g. "<IRQ>") without a
newline so that any stack address printed after it will appear on the
same line. That causes the first stack address to be vertically
misaligned with the rest, making it visually cluttered and slightly
confusing:
Call Trace:
<IRQ> [<ffffffff814431c3>] dump_stack+0x86/0xc3
[<ffffffff8100828b>] perf_callchain_kernel+0x14b/0x160
[<ffffffff811e915f>] get_perf_callchain+0x15f/0x2b0
...
<EOI> [<ffffffff8189c6c3>] ? _raw_spin_unlock_irq+0x33/0x60
[<ffffffff810e1c84>] finish_task_switch+0xb4/0x250
[<ffffffff8106f7dc>] do_async_page_fault+0x2c/0xa0
It will look worse once we start printing pt_regs registers found in the
middle of the stack:
<IRQ> RIP: 0010:[<ffffffff8189c6c3>] [<ffffffff8189c6c3>] _raw_spin_unlock_irq+0x33/0x60
RSP: 0018:ffff88007876f720 EFLAGS: 00000206
RAX: ffff8800786caa40 RBX: ffff88007d5da140 RCX: 0000000000000007
...
Improve readability by adding a newline to the stack name:
Call Trace:
<IRQ>
[<ffffffff814431c3>] dump_stack+0x86/0xc3
[<ffffffff8100828b>] perf_callchain_kernel+0x14b/0x160
[<ffffffff811e915f>] get_perf_callchain+0x15f/0x2b0
...
<EOI>
[<ffffffff8189c6c3>] ? _raw_spin_unlock_irq+0x33/0x60
[<ffffffff810e1c84>] finish_task_switch+0xb4/0x250
[<ffffffff8106f7dc>] do_async_page_fault+0x2c/0xa0
Now that "continued" lines are no longer needed, we can also remove the
hack of using the empty string (aka KERN_CONT) and replace it with
KERN_DEFAULT.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/9bdd6dee2c74555d45500939fcc155997dc7889e.1476973742.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>