Commit Graph

2517 Commits

Author SHA1 Message Date
Pranith Kumar
7d59deb50a powerpc: Wire up sys_seccomp(), sys_getrandom() and sys_memfd_create()
This patch wires up three new syscalls for powerpc. The three
new syscalls are seccomp, getrandom and memfd_create.

Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Reviewed-by: David Herrmann <dh.herrmann@gmail.com>
2014-09-09 19:02:47 +10:00
Anton Blanchard
85101af13b powerpc/perf: Fix ABIv2 kernel backtraces
ABIv2 kernels are failing to backtrace through the kernel. An example:

39.30%  readseek2_proce  [kernel.kallsyms]    [k] find_get_entry
            |
            --- find_get_entry
               __GI___libc_read

The problem is in valid_next_sp() where we check that the new stack
pointer is at least STACK_FRAME_OVERHEAD below the previous one.

ABIv1 has a minimum stack frame size of 112 bytes consisting of 48 bytes
and 64 bytes of parameter save area. ABIv2 changes that to 32 bytes
with no paramter save area.

STACK_FRAME_OVERHEAD is in theory the minimum stack frame size,
but we over 240 uses of it, some of which assume that it includes
space for the parameter area.

We need to work through all our stack defines and rationalise them
but let's fix perf now by creating STACK_FRAME_MIN_SIZE and using
in valid_next_sp(). This fixes the issue:

30.64%  readseek2_proce  [kernel.kallsyms]    [k] find_get_entry
            |
            --- find_get_entry
               pagecache_get_page
               generic_file_read_iter
               new_sync_read
               vfs_read
               sys_read
               syscall_exit
               __GI___libc_read

Cc: stable@vger.kernel.org # 3.16+
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
2014-09-09 19:02:45 +10:00
Aneesh Kumar K.V
85c1fafd72 powerpc/mm: Use read barrier when creating real_pte
On ppc64 we support 4K hash pte with 64K page size. That requires
us to track the hash pte slot information on a per 4k basis. We do that
by storing the slot details in the second half of pte page. The pte bit
_PAGE_COMBO is used to indicate whether the second half need to be
looked while building real_pte. We need to use read memory barrier while
doing that so that load of hidx is not reordered w.r.t _PAGE_COMBO
check. On the store side we already do a lwsync in __hash_page_4K

CC: <stable@vger.kernel.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-13 18:20:41 +10:00
Aneesh Kumar K.V
fc04795575 powerpc/thp: Handle combo pages in invalidate
If we changed base page size of the segment, either via sub_page_protect
or via remap_4k_pfn, we do a demote_segment which doesn't flush the hash
table entries. We do a lazy hash page table flush for all mapped pages
in the demoted segment. This happens when we handle hash page fault for
these pages.

We use _PAGE_COMBO bit along with _PAGE_HASHPTE to indicate whether a
pte is backed by 4K hash pte. If we find _PAGE_COMBO not set on the pte,
that implies that we could possibly have older 64K hash pte entries in
the hash page table and we need to invalidate those entries.

Use _PAGE_COMBO to determine the page size with which we should
invalidate the hash table entries on unmap.

CC: <stable@vger.kernel.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-13 18:20:39 +10:00
Aneesh Kumar K.V
fa1f8ae80f powerpc/thp: Don't recompute vsid and ssize in loop on invalidate
The segment identifier and segment size will remain the same in
the loop, So we can compute it outside. We also change the
hugepage_invalidate interface so that we can use it the later patch

CC: <stable@vger.kernel.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-13 18:20:38 +10:00
Nishanth Aravamudan
56758e3c3c powerpc: remove duplicate definition of TEXASR_FS
It appears that commits 7f06f21d40 ("powerpc/tm: Add checking to
treclaim/trechkpt") and e4e3812150 ("KVM: PPC: Book3S HV: Add
transactional memory support") both added definitions of TEXASR_FS.
Remove one of them. At the same time, fix the alignment of the remaining
definition (should be tab-separated like the rest of the #defines).

Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-13 15:13:47 +10:00
Vasant Hegde
b09c2ec408 powerpc/powernv: Interface to register/unregister opal dump region
PowerNV platform is capable of capturing host memory region when system
crashes (because of host/firmware). We have new OPAL API to register/
unregister memory region to be captured when system crashes.

This patch adds support for new API. Also during boot time we register
kernel log buffer and unregister before doing kexec.

Signed-off-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-13 15:13:45 +10:00
Michael Ellerman
3609e09fd8 powerpc: Add POWER8 features to CPU_FTRS_POSSIBLE/ALWAYS
We have been a bit slack about updating the CPU_FTRS_POSSIBLE and
CPU_FTRS_ALWAYS masks. When we added POWER8, and also POWER8E we forgot
to update the ALWAYS mask. And when we added POWER8_DD1 we forgot to
update both the POSSIBLE and ALWAYS masks.

Luckily this hasn't caused any actual bugs AFAICS. Failing to update the
ALWAYS mask just forgoes a potential optimisation opportunity. Failing
to update the POSSIBLE mask for POWER8_DD1 is also OK because it only
removes a bit rather than adding any.

Regardless they should all be in both masks so as to avoid any future
bugs when the set of ALWAYS/POSSIBLE bits changes, or the masks
themselves change.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Michael Neuling <mikey@neuling.org>
Acked-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-13 15:13:43 +10:00
Michael Ellerman
51d7d5205d powerpc: Add smp_mb() to arch_spin_is_locked()
The kernel defines the function spin_is_locked(), which can be used to
check if a spinlock is currently locked.

Using spin_is_locked() on a lock you don't hold is obviously racy. That
is, even though you may observe that the lock is unlocked, it may become
locked at any time.

There is (at least) one exception to that, which is if two locks are
used as a pair, and the holder of each checks the status of the other
before doing any update.

Assuming *A and *B are two locks, and *COUNTER is a shared non-atomic
value:

The first CPU does:

	spin_lock(*A)

	if spin_is_locked(*B)
		# nothing
	else
		smp_mb()
		LOAD r = *COUNTER
		r++
		STORE *COUNTER = r

	spin_unlock(*A)

And the second CPU does:

	spin_lock(*B)

	if spin_is_locked(*A)
		# nothing
	else
		smp_mb()
		LOAD r = *COUNTER
		r++
		STORE *COUNTER = r

	spin_unlock(*B)

Although this is a strange locking construct, it should work.

It seems to be understood, but not documented, that spin_is_locked() is
not a memory barrier, so in the examples above and below the caller
inserts its own memory barrier before acting on the result of
spin_is_locked().

For now we assume spin_is_locked() is implemented as below, and we break
it out in our examples:

	bool spin_is_locked(*LOCK) {
		LOAD l = *LOCK
		return l.locked
	}

Our intuition is that there should be no problem even if the two code
sequences run simultaneously such as:

	CPU 0			CPU 1
	==================================================
	spin_lock(*A)		spin_lock(*B)
	LOAD b = *B		LOAD a = *A
	if b.locked # true	if a.locked # true
	# nothing		# nothing
	spin_unlock(*A)		spin_unlock(*B)

If one CPU gets the lock before the other then it will do the update and
the other CPU will back off:

	CPU 0			CPU 1
	==================================================
	spin_lock(*A)
	LOAD b = *B
				spin_lock(*B)
	if b.locked # false	LOAD a = *A
	else			if a.locked # true
	smp_mb()		# nothing
	LOAD r1 = *COUNTER	spin_unlock(*B)
	r1++
	STORE *COUNTER = r1
	spin_unlock(*A)

However in reality spin_lock() itself is not indivisible. On powerpc we
implement it as a load-and-reserve and store-conditional.

Ignoring the retry logic for the lost reservation case, it boils down to:
	spin_lock(*LOCK) {
		LOAD l = *LOCK
		l.locked = true
		STORE *LOCK = l
		ACQUIRE_BARRIER
	}

The ACQUIRE_BARRIER is required to give spin_lock() ACQUIRE semantics as
defined in memory-barriers.txt:

     This acts as a one-way permeable barrier.  It guarantees that all
     memory operations after the ACQUIRE operation will appear to happen
     after the ACQUIRE operation with respect to the other components of
     the system.

On modern powerpc systems we use lwsync for ACQUIRE_BARRIER. lwsync is
also know as "lightweight sync", or "sync 1".

As described in Power ISA v2.07 section B.2.1.1, in this scenario the
lwsync is not the barrier itself. It instead causes the LOAD of *LOCK to
act as the barrier, preventing any loads or stores in the locked region
from occurring prior to the load of *LOCK.

Whether this behaviour is in accordance with the definition of ACQUIRE
semantics in memory-barriers.txt is open to discussion, we may switch to
a different barrier in future.

What this means in practice is that the following can occur:

	CPU 0			CPU 1
	==================================================
	LOAD a = *A 		LOAD b = *B
	a.locked = true		b.locked = true
	LOAD b = *B		LOAD a = *A
	STORE *A = a		STORE *B = b
	if b.locked # false	if a.locked # false
	else			else
	smp_mb()		smp_mb()
	LOAD r1 = *COUNTER	LOAD r2 = *COUNTER
	r1++			r2++
	STORE *COUNTER = r1
				STORE *COUNTER = r2	# Lost update
	spin_unlock(*A)		spin_unlock(*B)

That is, the load of *B can occur prior to the store that makes *A
visibly locked. And similarly for CPU 1. The result is both CPUs hold
their lock and believe the other lock is unlocked.

The easiest fix for this is to add a full memory barrier to the start of
spin_is_locked(), so adding to our previous definition would give us:

	bool spin_is_locked(*LOCK) {
		smp_mb()
		LOAD l = *LOCK
		return l.locked
	}

The new barrier orders the store to the lock we are locking vs the load
of the other lock:

	CPU 0			CPU 1
	==================================================
	LOAD a = *A 		LOAD b = *B
	a.locked = true		b.locked = true
	STORE *A = a		STORE *B = b
	smp_mb()		smp_mb()
	LOAD b = *B		LOAD a = *A
	if b.locked # true	if a.locked # true
	# nothing		# nothing
	spin_unlock(*A)		spin_unlock(*B)

Although the above example is theoretical, there is code similar to this
example in sem_lock() in ipc/sem.c. This commit in addition to the next
commit appears to be a fix for crashes we are seeing in that code where
we believe this race happens in practice.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-13 15:13:26 +10:00
Linus Torvalds
8065be8d03 Merge branch 'akpm' (second patchbomb from Andrew Morton)
Merge more incoming from Andrew Morton:
 "Two new syscalls:

     memfd_create in "shm: add memfd_create() syscall"
     kexec_file_load in "kexec: implementation of new syscall kexec_file_load"

  And:

   - Most (all?) of the rest of MM

   - Lots of the usual misc bits

   - fs/autofs4

   - drivers/rtc

   - fs/nilfs

   - procfs

   - fork.c, exec.c

   - more in lib/

   - rapidio

   - Janitorial work in filesystems: fs/ufs, fs/reiserfs, fs/adfs,
     fs/cramfs, fs/romfs, fs/qnx6.

   - initrd/initramfs work

   - "file sealing" and the memfd_create() syscall, in tmpfs

   - add pci_zalloc_consistent, use it in lots of places

   - MAINTAINERS maintenance

   - kexec feature work"

* emailed patches from Andrew Morton <akpm@linux-foundation.org: (193 commits)
  MAINTAINERS: update nomadik patterns
  MAINTAINERS: update usb/gadget patterns
  MAINTAINERS: update DMA BUFFER SHARING patterns
  kexec: verify the signature of signed PE bzImage
  kexec: support kexec/kdump on EFI systems
  kexec: support for kexec on panic using new system call
  kexec-bzImage64: support for loading bzImage using 64bit entry
  kexec: load and relocate purgatory at kernel load time
  purgatory: core purgatory functionality
  purgatory/sha256: provide implementation of sha256 in purgaotory context
  kexec: implementation of new syscall kexec_file_load
  kexec: new syscall kexec_file_load() declaration
  kexec: make kexec_segment user buffer pointer a union
  resource: provide new functions to walk through resources
  kexec: use common function for kimage_normal_alloc() and kimage_crash_alloc()
  kexec: move segment verification code in a separate function
  kexec: rename unusebale_pages to unusable_pages
  kernel: build bin2c based on config option CONFIG_BUILD_BIN2C
  bin2c: move bin2c in scripts/basic
  shm: wait for pins to be released when sealing
  ...
2014-08-08 15:57:47 -07:00
Andy Lutomirski
a6c19dfe39 arm64,ia64,ppc,s390,sh,tile,um,x86,mm: remove default gate area
The core mm code will provide a default gate area based on
FIXADDR_USER_START and FIXADDR_USER_END if
!defined(__HAVE_ARCH_GATE_AREA) && defined(AT_SYSINFO_EHDR).

This default is only useful for ia64.  arm64, ppc, s390, sh, tile, 64-bit
UML, and x86_32 have their own code just to disable it.  arm, 32-bit UML,
and x86_64 have gate areas, but they have their own implementations.

This gets rid of the default and moves the code into ia64.

This should save some code on architectures without a gate area: it's now
possible to inline the gate_area functions in the default case.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Nathan Lynch <nathan_lynch@mentor.com>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [in principle]
Acked-by: Richard Weinberger <richard@nod.at> [for um]
Acked-by: Will Deacon <will.deacon@arm.com> [for arm64]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Nathan Lynch <Nathan_Lynch@mentor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:27 -07:00
Laura Abbott
308c09f17d lib/scatterlist: make ARCH_HAS_SG_CHAIN an actual Kconfig
Rather than have architectures #define ARCH_HAS_SG_CHAIN in an
architecture specific scatterlist.h, make it a proper Kconfig option and
use that instead.  At same time, remove the header files are are now
mostly useless and just include asm-generic/scatterlist.h.

[sfr@canb.auug.org.au: powerpc files now need asm/dma.h]
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>			[x86]
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>	[powerpc]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <JBottomley@parallels.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:26 -07:00
Linus Torvalds
66bb0aa077 Here are the PPC and ARM changes for KVM, which I separated because
they had small conflicts (respectively within KVM documentation,
 and with 3.16-rc changes).  Since they were all within the subsystem,
 I took care of them.
 
 Stephen Rothwell reported some snags in PPC builds, but they are all
 fixed now; the latest linux-next report was clean.
 
 New features for ARM include:
 - KVM VGIC v2 emulation on GICv3 hardware
 - Big-Endian support for arm/arm64 (guest and host)
 - Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)
 
 And for PPC:
 - Book3S: Good number of LE host fixes, enable HV on LE
 - Book3S HV: Add in-guest debug support
 
 This release drops support for KVM on the PPC440.  As a result, the
 PPC merge removes more lines than it adds. :)
 
 I also included an x86 change, since Davidlohr tied it to an independent
 bug report and the reporter quickly provided a Tested-by; there was no
 reason to wait for -rc2.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABAgAGBQJT4iIJAAoJEBvWZb6bTYbyZqoP/3Wxy8NWPFJ8HGt81NHlGnDS
 a9UbL7EibcOEG+aaKqmtBglTD5YDiGBDNCxxiSJaDHt+grLN4fsWIliJob1nJFoO
 90f89EWN2XjeCrJXA5nUoeg5tpc5OoYKsiP6pTgzIwkP8vvs/H1+zpcTS/UmYsr/
 qipVMMsM+zZeHWZcSbqjW88z7YqIn1sr5282wJ85cbyv4KGizb/G4dyPuDqLb6np
 hkAD8Ah6VV2suQ2FSy7G2fg20R0vglUi60hkEHLoCBPVqJCl7SmC8MvxNbjBnP8S
 J36R0R0u1wHYKzAGooLJGVOZ/o/gSiVqKX+++L2EvJBN+kuA6u/7fxLyBT+LwDAE
 IF/Aln5rpg1fe+eywvhz86WljTVEQ8bO1zVsIQUPY+/ZOPedZHMwyvXft8ogbjSp
 2m9OJ/3e8Aggh0OeHpCDoeow+QDUXvX0YdCw+2Yh0p+7VMXqkyp0QEiBu38jrusC
 rB3VNifJbDSWLKdG9LfCAPHnxZD2XYEwv2WFBo6KQOGMGHfx0GXpCOL/jQihrhA6
 HtEG5Bs3lvnHQemdpUZ58xojiABbMaUPdcnPXQQEp23WhZzrfLMLzqVG0VYnhSsC
 9pi7MJj8c31rqx5WU2oRM28i/BvNxN0NCtkDpineO5s3f89Ws1xnwxqlm38AKP0J
 irJQTYFEqec+GM9JK1rG
 =hyQP
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull second round of KVM changes from Paolo Bonzini:
 "Here are the PPC and ARM changes for KVM, which I separated because
  they had small conflicts (respectively within KVM documentation, and
  with 3.16-rc changes).  Since they were all within the subsystem, I
  took care of them.

  Stephen Rothwell reported some snags in PPC builds, but they are all
  fixed now; the latest linux-next report was clean.

  New features for ARM include:
   - KVM VGIC v2 emulation on GICv3 hardware
   - Big-Endian support for arm/arm64 (guest and host)
   - Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)

  And for PPC:
   - Book3S: Good number of LE host fixes, enable HV on LE
   - Book3S HV: Add in-guest debug support

  This release drops support for KVM on the PPC440.  As a result, the
  PPC merge removes more lines than it adds.  :)

  I also included an x86 change, since Davidlohr tied it to an
  independent bug report and the reporter quickly provided a Tested-by;
  there was no reason to wait for -rc2"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (122 commits)
  KVM: Move more code under CONFIG_HAVE_KVM_IRQFD
  KVM: nVMX: fix "acknowledge interrupt on exit" when APICv is in use
  KVM: nVMX: Fix nested vmexit ack intr before load vmcs01
  KVM: PPC: Enable IRQFD support for the XICS interrupt controller
  KVM: Give IRQFD its own separate enabling Kconfig option
  KVM: Move irq notifier implementation into eventfd.c
  KVM: Move all accesses to kvm::irq_routing into irqchip.c
  KVM: irqchip: Provide and use accessors for irq routing table
  KVM: Don't keep reference to irq routing table in irqfd struct
  KVM: PPC: drop duplicate tracepoint
  arm64: KVM: fix 64bit CP15 VM access for 32bit guests
  KVM: arm64: GICv3: mandate page-aligned GICV region
  arm64: KVM: GICv3: move system register access to msr_s/mrs_s
  KVM: PPC: PR: Handle FSCR feature deselects
  KVM: PPC: HV: Remove generic instruction emulation
  KVM: PPC: BOOKEHV: rename e500hv_spr to bookehv_spr
  KVM: PPC: Remove DCR handling
  KVM: PPC: Expose helper functions for data/inst faults
  KVM: PPC: Separate loadstore emulation from priv emulation
  KVM: PPC: Handle magic page in kvmppc_ld/st
  ...
2014-08-07 11:35:30 -07:00
Linus Torvalds
f536b3cae8 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Ben Herrenschmidt:
 "This is the powerpc new goodies for 3.17.  The short story:

  The biggest bit is Michael removing all of pre-POWER4 processor
  support from the 64-bit kernel.  POWER3 and rs64.  This gets rid of a
  ton of old cruft that has been bitrotting in a long while.  It was
  broken for quite a few versions already and nobody noticed.  Nobody
  uses those machines anymore.  While at it, he cleaned up a bunch of
  old dusty cabinets, getting rid of a skeletton or two.

  Then, we have some base VFIO support for KVM, which allows assigning
  of PCI devices to KVM guests, support for large 64-bit BARs on
  "powernv" platforms, support for HMI (Hardware Management Interrupts)
  on those same platforms, some sparse-vmemmap improvements (for memory
  hotplug),

  There is the usual batch of Freescale embedded updates (summary in the
  merge commit) and fixes here or there, I think that's it for the
  highlights"

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (102 commits)
  powerpc/eeh: Export eeh_iommu_group_to_pe()
  powerpc/eeh: Add missing #ifdef CONFIG_IOMMU_API
  powerpc: Reduce scariness of interrupt frames in stack traces
  powerpc: start loop at section start of start in vmemmap_populated()
  powerpc: implement vmemmap_free()
  powerpc: implement vmemmap_remove_mapping() for BOOK3S
  powerpc: implement vmemmap_list_free()
  powerpc: Fail remap_4k_pfn() if PFN doesn't fit inside PTE
  powerpc/book3s: Fix endianess issue for HMI handling on napping cpus.
  powerpc/book3s: handle HMIs for cpus in nap mode.
  powerpc/powernv: Invoke opal call to handle hmi.
  powerpc/book3s: Add basic infrastructure to handle HMI in Linux.
  powerpc/iommu: Fix comments with it_page_shift
  powerpc/powernv: Handle compound PE in config accessors
  powerpc/powernv: Handle compound PE for EEH
  powerpc/powernv: Handle compound PE
  powerpc/powernv: Split ioda_eeh_get_state()
  powerpc/powernv: Allow to freeze PE
  powerpc/powernv: Enable M64 aperatus for PHB3
  powerpc/eeh: Aux PE data for error log
  ...
2014-08-07 08:50:34 -07:00
Paolo Bonzini
cc568ead3c Patch queue for ppc - 2014-08-01
Highlights in this release include:
 
   - BookE: Rework instruction fetch, not racy anymore now
   - BookE HV: Fix ONE_REG accessors for some in-hardware registers
   - Book3S: Good number of LE host fixes, enable HV on LE
   - Book3S: Some misc bug fixes
   - Book3S HV: Add in-guest debug support
   - Book3S HV: Preload cache lines on context switch
   - Remove 440 support
 
 Alexander Graf (31):
       KVM: PPC: Book3s PR: Disable AIL mode with OPAL
       KVM: PPC: Book3s HV: Fix tlbie compile error
       KVM: PPC: Book3S PR: Handle hyp doorbell exits
       KVM: PPC: Book3S PR: Fix ABIv2 on LE
       KVM: PPC: Book3S PR: Fix sparse endian checks
       PPC: Add asm helpers for BE 32bit load/store
       KVM: PPC: Book3S HV: Make HTAB code LE host aware
       KVM: PPC: Book3S HV: Access guest VPA in BE
       KVM: PPC: Book3S HV: Access host lppaca and shadow slb in BE
       KVM: PPC: Book3S HV: Access XICS in BE
       KVM: PPC: Book3S HV: Fix ABIv2 on LE
       KVM: PPC: Book3S HV: Enable for little endian hosts
       KVM: PPC: Book3S: Move vcore definition to end of kvm_arch struct
       KVM: PPC: Deflect page write faults properly in kvmppc_st
       KVM: PPC: Book3S: Stop PTE lookup on write errors
       KVM: PPC: Book3S: Add hack for split real mode
       KVM: PPC: Book3S: Make magic page properly 4k mappable
       KVM: PPC: Remove 440 support
       KVM: Rename and add argument to check_extension
       KVM: Allow KVM_CHECK_EXTENSION on the vm fd
       KVM: PPC: Book3S: Provide different CAPs based on HV or PR mode
       KVM: PPC: Implement kvmppc_xlate for all targets
       KVM: PPC: Move kvmppc_ld/st to common code
       KVM: PPC: Remove kvmppc_bad_hva()
       KVM: PPC: Use kvm_read_guest in kvmppc_ld
       KVM: PPC: Handle magic page in kvmppc_ld/st
       KVM: PPC: Separate loadstore emulation from priv emulation
       KVM: PPC: Expose helper functions for data/inst faults
       KVM: PPC: Remove DCR handling
       KVM: PPC: HV: Remove generic instruction emulation
       KVM: PPC: PR: Handle FSCR feature deselects
 
 Alexey Kardashevskiy (1):
       KVM: PPC: Book3S: Fix LPCR one_reg interface
 
 Aneesh Kumar K.V (4):
       KVM: PPC: BOOK3S: PR: Fix PURR and SPURR emulation
       KVM: PPC: BOOK3S: PR: Emulate virtual timebase register
       KVM: PPC: BOOK3S: PR: Emulate instruction counter
       KVM: PPC: BOOK3S: HV: Update compute_tlbie_rb to handle 16MB base page
 
 Anton Blanchard (2):
       KVM: PPC: Book3S HV: Fix ABIv2 indirect branch issue
       KVM: PPC: Assembly functions exported to modules need _GLOBAL_TOC()
 
 Bharat Bhushan (10):
       kvm: ppc: bookehv: Added wrapper macros for shadow registers
       kvm: ppc: booke: Use the shared struct helpers of SRR0 and SRR1
       kvm: ppc: booke: Use the shared struct helpers of SPRN_DEAR
       kvm: ppc: booke: Add shared struct helpers of SPRN_ESR
       kvm: ppc: booke: Use the shared struct helpers for SPRN_SPRG0-7
       kvm: ppc: Add SPRN_EPR get helper function
       kvm: ppc: bookehv: Save restore SPRN_SPRG9 on guest entry exit
       KVM: PPC: Booke-hv: Add one reg interface for SPRG9
       KVM: PPC: Remove comment saying SPRG1 is used for vcpu pointer
       KVM: PPC: BOOKEHV: rename e500hv_spr to bookehv_spr
 
 Michael Neuling (1):
       KVM: PPC: Book3S HV: Add H_SET_MODE hcall handling
 
 Mihai Caraman (8):
       KVM: PPC: e500mc: Enhance tlb invalidation condition on vcpu schedule
       KVM: PPC: e500: Fix default tlb for victim hint
       KVM: PPC: e500: Emulate power management control SPR
       KVM: PPC: e500mc: Revert "add load inst fixup"
       KVM: PPC: Book3e: Add TLBSEL/TSIZE defines for MAS0/1
       KVM: PPC: Book3s: Remove kvmppc_read_inst() function
       KVM: PPC: Allow kvmppc_get_last_inst() to fail
       KVM: PPC: Bookehv: Get vcpu's last instruction for emulation
 
 Paul Mackerras (4):
       KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling
       KVM: PPC: Book3S: Allow only implemented hcalls to be enabled or disabled
       KVM: PPC: Book3S PR: Take SRCU read lock around RTAS kvm_read_guest() call
       KVM: PPC: Book3S: Make kvmppc_ld return a more accurate error indication
 
 Stewart Smith (2):
       Split out struct kvmppc_vcore creation to separate function
       Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABAgAGBQJT21skAAoJECszeR4D/txgeFEP/AzJopN7s//W33CfyBqURHXp
 XALCyAw+S67gtcaTZbxomcG1xuT8Lj9WEw28iz3rCtAnJwIxsY63xrI1nXMzTaI2
 p1rC0ai5Qy+nlEbd6L78spZy/Nzh8DFYGWx78iUSO1mYD8xywJwtoiBA539pwp8j
 8N+mgn61Hwhv31bKtsZlmzXymVr/jbTp5LVuxsBLJwD2lgT49g+4uBnX2cG/iXkg
 Rzbh7LxoNNXrSPI8sYmTWu/81aeXteeX70ja6DHuV5dWLNTuAXJrh5EUfeAZqBrV
 aYcLWUYmIyB87txNmt6ZGVar2p3jr2Xhb9mKx+EN4dbehblanLc1PUqlHd0q3dKc
 Nt60ByqpZn+qDAK86dShSZLEe+GT3lovvE76CqVXD4Er+OUEkc9JoxhN1cof/Gb0
 o6uwZ2isXHRdGoZx5vb4s3UTOlwZGtoL/CyY/HD/ujYDSURkCGbxLj3kkecSY8ut
 QdDAWsC15BwsHtKLr5Zwjp2w+0eGq2QJgfvO0zqWFiz9k33SCBCUpwluFeqh27Hi
 aR5Wir3j+MIw9G8XlYlDJWYfi0h/SZ4G7hh7jSu26NBNBzQsDa8ow/cLzdMhdUwH
 OYSaeqVk5wiRb9to1uq1NQWPA0uRAx3BSjjvr9MCGRqmvn+FV5nj637YWUT+53Hi
 aSvg/U2npghLPPG2cihu
 =JuLr
 -----END PGP SIGNATURE-----

Merge tag 'signed-kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm

Patch queue for ppc - 2014-08-01

Highlights in this release include:

  - BookE: Rework instruction fetch, not racy anymore now
  - BookE HV: Fix ONE_REG accessors for some in-hardware registers
  - Book3S: Good number of LE host fixes, enable HV on LE
  - Book3S: Some misc bug fixes
  - Book3S HV: Add in-guest debug support
  - Book3S HV: Preload cache lines on context switch
  - Remove 440 support

Alexander Graf (31):
      KVM: PPC: Book3s PR: Disable AIL mode with OPAL
      KVM: PPC: Book3s HV: Fix tlbie compile error
      KVM: PPC: Book3S PR: Handle hyp doorbell exits
      KVM: PPC: Book3S PR: Fix ABIv2 on LE
      KVM: PPC: Book3S PR: Fix sparse endian checks
      PPC: Add asm helpers for BE 32bit load/store
      KVM: PPC: Book3S HV: Make HTAB code LE host aware
      KVM: PPC: Book3S HV: Access guest VPA in BE
      KVM: PPC: Book3S HV: Access host lppaca and shadow slb in BE
      KVM: PPC: Book3S HV: Access XICS in BE
      KVM: PPC: Book3S HV: Fix ABIv2 on LE
      KVM: PPC: Book3S HV: Enable for little endian hosts
      KVM: PPC: Book3S: Move vcore definition to end of kvm_arch struct
      KVM: PPC: Deflect page write faults properly in kvmppc_st
      KVM: PPC: Book3S: Stop PTE lookup on write errors
      KVM: PPC: Book3S: Add hack for split real mode
      KVM: PPC: Book3S: Make magic page properly 4k mappable
      KVM: PPC: Remove 440 support
      KVM: Rename and add argument to check_extension
      KVM: Allow KVM_CHECK_EXTENSION on the vm fd
      KVM: PPC: Book3S: Provide different CAPs based on HV or PR mode
      KVM: PPC: Implement kvmppc_xlate for all targets
      KVM: PPC: Move kvmppc_ld/st to common code
      KVM: PPC: Remove kvmppc_bad_hva()
      KVM: PPC: Use kvm_read_guest in kvmppc_ld
      KVM: PPC: Handle magic page in kvmppc_ld/st
      KVM: PPC: Separate loadstore emulation from priv emulation
      KVM: PPC: Expose helper functions for data/inst faults
      KVM: PPC: Remove DCR handling
      KVM: PPC: HV: Remove generic instruction emulation
      KVM: PPC: PR: Handle FSCR feature deselects

Alexey Kardashevskiy (1):
      KVM: PPC: Book3S: Fix LPCR one_reg interface

Aneesh Kumar K.V (4):
      KVM: PPC: BOOK3S: PR: Fix PURR and SPURR emulation
      KVM: PPC: BOOK3S: PR: Emulate virtual timebase register
      KVM: PPC: BOOK3S: PR: Emulate instruction counter
      KVM: PPC: BOOK3S: HV: Update compute_tlbie_rb to handle 16MB base page

Anton Blanchard (2):
      KVM: PPC: Book3S HV: Fix ABIv2 indirect branch issue
      KVM: PPC: Assembly functions exported to modules need _GLOBAL_TOC()

Bharat Bhushan (10):
      kvm: ppc: bookehv: Added wrapper macros for shadow registers
      kvm: ppc: booke: Use the shared struct helpers of SRR0 and SRR1
      kvm: ppc: booke: Use the shared struct helpers of SPRN_DEAR
      kvm: ppc: booke: Add shared struct helpers of SPRN_ESR
      kvm: ppc: booke: Use the shared struct helpers for SPRN_SPRG0-7
      kvm: ppc: Add SPRN_EPR get helper function
      kvm: ppc: bookehv: Save restore SPRN_SPRG9 on guest entry exit
      KVM: PPC: Booke-hv: Add one reg interface for SPRG9
      KVM: PPC: Remove comment saying SPRG1 is used for vcpu pointer
      KVM: PPC: BOOKEHV: rename e500hv_spr to bookehv_spr

Michael Neuling (1):
      KVM: PPC: Book3S HV: Add H_SET_MODE hcall handling

Mihai Caraman (8):
      KVM: PPC: e500mc: Enhance tlb invalidation condition on vcpu schedule
      KVM: PPC: e500: Fix default tlb for victim hint
      KVM: PPC: e500: Emulate power management control SPR
      KVM: PPC: e500mc: Revert "add load inst fixup"
      KVM: PPC: Book3e: Add TLBSEL/TSIZE defines for MAS0/1
      KVM: PPC: Book3s: Remove kvmppc_read_inst() function
      KVM: PPC: Allow kvmppc_get_last_inst() to fail
      KVM: PPC: Bookehv: Get vcpu's last instruction for emulation

Paul Mackerras (4):
      KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling
      KVM: PPC: Book3S: Allow only implemented hcalls to be enabled or disabled
      KVM: PPC: Book3S PR: Take SRCU read lock around RTAS kvm_read_guest() call
      KVM: PPC: Book3S: Make kvmppc_ld return a more accurate error indication

Stewart Smith (2):
      Split out struct kvmppc_vcore creation to separate function
      Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8

Conflicts:
	Documentation/virtual/kvm/api.txt
2014-08-05 09:58:11 +02:00
Madhusudanan Kandasamy
eeb03a6eaa powerpc: Fail remap_4k_pfn() if PFN doesn't fit inside PTE
remap_4k_pfn() silently truncates upper bits of input 4K PFN
if it cannot be contained in PTE. This leads invalid memory mapping and could
result in a system crash when the memory is accessed. This patch fails
remap_4k_pfn() and returns -EINVAL if the input 4K PFN cannot be contained in
PTE.

V3 : Added parentheses to protect 'pfn' and entire macro as suggested by Brian.
V2 : Rewritten to avoid helper function as suggested by Stephen Rothwell.

Signed-off-by: Madhusudanan Kandasamy <kmadhu@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 16:34:06 +10:00
Mahesh Salgaonkar
0ef95b411e powerpc/powernv: Invoke opal call to handle hmi.
When we hit the HMI in Linux, invoke opal call to handle/recover from HMI
errors in real mode and then in virtual mode during check_irq_replay()
invoke opal_poll_events()/opal_do_notifier() to retrieve HMI event from
OPAL and act accordingly.

Now that we are ready to handle HMI interrupt directly in linux, remove
the HMI interrupt registration with firmware.

Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 16:33:52 +10:00
Mahesh Salgaonkar
0869b6fd20 powerpc/book3s: Add basic infrastructure to handle HMI in Linux.
Handle Hypervisor Maintenance Interrupt (HMI) in Linux. This patch implements
basic infrastructure to handle HMI in Linux host. The design is to invoke
opal handle hmi in real mode for recovery and set irq_pending when we hit HMI.
During check_irq_replay pull opal hmi event and print hmi info on console.

Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 16:33:48 +10:00
Gavin Shan
5ca27efbd8 powerpc/powernv: Allow to freeze PE
The patch synchronizes header file with firmware to have new OPAL
API opal_pci_eeh_freeze_set(), which is used to freeze the specified
PE in order to support "compound" PE.

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 15:41:52 +10:00
Guo Chao
262af557dd powerpc/powernv: Enable M64 aperatus for PHB3
This patch enables M64 aperatus for PHB3.

We already had platform hook (ppc_md.pcibios_window_alignment) to affect
the PCI resource assignment done in PCI core so that each PE's M32 resource
was built on basis of M32 segment size. Similarly, we're using that for
M64 assignment on basis of M64 segment size.

   * We're using last M64 BAR to cover M64 aperatus, and it's shared by all
     256 PEs.
   * We don't support P7IOC yet. However, some function callbacks are added
     to (struct pnv_phb) so that we can reuse them on P7IOC in future.
   * PE, corresponding to PCI bus with large M64 BAR device attached, might
     span multiple M64 segments. We introduce "compound" PE to cover the case.
     The compound PE is a list of PEs and the master PE is used as before.
     The slave PEs are just for MMIO isolation.

Signed-off-by: Guo Chao <yan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 15:41:47 +10:00
Gavin Shan
bb593c0049 powerpc/eeh: Aux PE data for error log
The patch allows PE (struct eeh_pe) instance to have auxillary data,
whose size is configurable on basis of platform. For PowerNV, the
auxillary data will be used to cache PHB diag-data for that PE
(frozen PE or fenced PHB). In turn, we can retrieve the diag-data
at any later points.

It's useful for the case of VFIO PCI devices where the error log
should be cached, and then be retrieved by the guest at later point.
Also, it can avoid PHB diag-data overwritting if another frozen PE
reported and the previous diag-data isn't fetched by guest.

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 15:41:43 +10:00
Gavin Shan
f18440fb7e powerpc/eeh: Make diag-data not endian dependent
It's followup of commit ddf0322a ("powerpc/powernv: Fix endianness
problems in EEH"). The patch helps to get non-endian-dependent
diag-data.

Cc: Guo Chao <yan@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 15:41:38 +10:00
Gavin Shan
dc561fb9e7 powerpc/eeh: Selectively enable IO for error log
According to the experiment I did, PCI config access is blocked
on P7IOC frozen PE by hardware, but PHB3 doesn't do that. That
means we always get 0xFF's while dumping PCI config space of the
frozen PE on P7IOC. We don't have the problem on PHB3. So we have
to enable I/O prioir to collecting error log. Otherwise, meaningless
0xFF's are always returned.

The patch fixes it by EEH flag (EEH_ENABLE_IO_FOR_LOG), which is
selectively set to indicate the case for: P7IOC on PowerNV platform,
pSeries platform.

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 15:41:25 +10:00
Gavin Shan
05b1721d9f powerpc/eeh: Refactor EEH flag accessors
There are multiple global EEH flags. Almost each flag has its own
accessor, which doesn't make sense. The patch refactors EEH flag
accessors so that they look unified:

  eeh_add_flag():   Add EEH flag
  eeh_clear_flag(): Clear EEH flag
  eeh_has_flag():   Check if one specific flag has been set
  eeh_enabled():    Check if EEH functionality has been enabled

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 15:41:21 +10:00
Gavin Shan
212d16cdca powerpc/eeh: EEH support for VFIO PCI device
The patch exports functions to be used by new VFIO ioctl command,
which will be introduced in subsequent patch, to support EEH
functinality for VFIO PCI devices.

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 15:28:48 +10:00
Gavin Shan
05ec424e38 powerpc/eeh: Avoid event on passed PE
We must not handle EEH error on devices which are passed to somebody
else. Instead, we expect that the frozen device owner detects an EEH
error and recovers from it.

This avoids EEH error handling on passed through devices so the device
owner gets a chance to handle them.

Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 15:28:47 +10:00
Benjamin Herrenschmidt
9287b95ec9 Merge remote-tracking branch 'scott/next' into next
Scott writes:

Highlights include e6500 hardware threading support, an e6500 TLB erratum
workaround, corenet error reporting, support for a new board, and some
minor fixes.
2014-08-05 14:13:41 +10:00
Linus Torvalds
8efb90cf1e Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
 "The main changes in this cycle are:

   - big rtmutex and futex cleanup and robustification from Thomas
     Gleixner
   - mutex optimizations and refinements from Jason Low
   - arch_mutex_cpu_relax() removal and related cleanups
   - smaller lockdep tweaks"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  arch, locking: Ciao arch_mutex_cpu_relax()
  locking/lockdep: Only ask for /proc/lock_stat output when available
  locking/mutexes: Optimize mutex trylock slowpath
  locking/mutexes: Try to acquire mutex only if it is unlocked
  locking/mutexes: Delete the MUTEX_SHOW_NO_WAITER macro
  locking/mutexes: Correct documentation on mutex optimistic spinning
  rtmutex: Make the rtmutex tester depend on BROKEN
  futex: Simplify futex_lock_pi_atomic() and make it more robust
  futex: Split out the first waiter attachment from lookup_pi_state()
  futex: Split out the waiter check from lookup_pi_state()
  futex: Use futex_top_waiter() in lookup_pi_state()
  futex: Make unlock_pi more robust
  rtmutex: Avoid pointless requeueing in the deadlock detection chain walk
  rtmutex: Cleanup deadlock detector debug logic
  rtmutex: Confine deadlock logic to futex
  rtmutex: Simplify remove_waiter()
  rtmutex: Document pi chain walk
  rtmutex: Clarify the boost/deboost part
  rtmutex: No need to keep task ref for lock owner check
  rtmutex: Simplify and document try_to_take_rtmutex()
  ...
2014-08-04 16:09:06 -07:00
Alexander Graf
8e6afa36e7 KVM: PPC: PR: Handle FSCR feature deselects
We handle FSCR feature bits (well, TAR only really today) lazily when the guest
starts using them. So when a guest activates the bit and later uses that feature
we enable it for real in hardware.

However, when the guest stops using that bit we don't stop setting it in
hardware. That means we can potentially lose a trap that the guest expects to
happen because it thinks a feature is not active.

This patch adds support to drop TAR when then guest turns it off in FSCR. While
at it it also restricts FSCR access to 64bit systems - 32bit ones don't have it.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-31 10:23:46 +02:00
Bharat Bhushan
5a484c7c1e KVM: PPC: BOOKEHV: rename e500hv_spr to bookehv_spr
This are not specific to e500hv but applicable for bookehv
(As per comment from Scott Wood on my patch
"kvm: ppc: bookehv: Added wrapper macros for shadow registers")

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-30 11:39:52 +02:00
Andy Fleming
e16c876553 powerpc/e6500: Add support for hardware threads
The general idea is that each core will release all of its
threads into the secondary thread startup code, which will
eventually wait in the secondary core holding area, for the
appropriate bit in the PACA to be set. The kick_cpu function
pointer will set that bit in the PACA, and thus "release"
the core/thread to boot. We also need to do a few things that
U-Boot normally does for CPUs (like enable branch prediction).

Signed-off-by: Andy Fleming <afleming@freescale.com>
[scottwood@freescale.com: various changes, including only enabling
 threads if Linux wants to kick them]
Signed-off-by: Scott Wood <scottwood@freescale.com>
2014-07-29 19:26:20 -05:00
Scott Wood
7251a24e4d powerpc/booke: Define MSR bits the same way as reg.h
This ensures that all MSR definitions are consistently unsigned long,
and that MSR_CM does not become 0xffffffff80000000 (this is usually
harmless because MSR is 32-bit on booke and is mainly noticeable when
debugging, but still I'd rather avoid it).

Signed-off-by: Scott Wood <scottwood@freescale.com>
2014-07-29 19:24:38 -05:00
Alexander Graf
ce91ddc471 KVM: PPC: Remove DCR handling
DCR handling was only needed for 440 KVM. Since we removed it, we can also
remove handling of DCR accesses.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 19:29:15 +02:00
Alexander Graf
8de12015ff KVM: PPC: Expose helper functions for data/inst faults
We're going to implement guest code interpretation in KVM for some rare
corner cases. This code needs to be able to inject data and instruction
faults into the guest when it encounters them.

Expose generic APIs to do this in a reasonably subarch agnostic fashion.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 18:30:18 +02:00
Alexander Graf
d69614a295 KVM: PPC: Separate loadstore emulation from priv emulation
Today the instruction emulator can get called via 2 separate code paths. It
can either be called by MMIO emulation detection code or by privileged
instruction traps.

This is bad, as both code paths prepare the environment differently. For MMIO
emulation we already know the virtual address we faulted on, so instructions
there don't have to actually fetch that information.

Split out the two separate use cases into separate files.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 18:30:10 +02:00
Alexander Graf
c12fb43c2f KVM: PPC: Handle magic page in kvmppc_ld/st
We use kvmppc_ld and kvmppc_st to emulate load/store instructions that may as
well access the magic page. Special case it out so that we can properly access
it.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:35:53 +02:00
Alexander Graf
35c4a7330d KVM: PPC: Move kvmppc_ld/st to common code
We have enough common infrastructure now to resolve GVA->GPA mappings at
runtime. With this we can move our book3s specific helpers to load / store
in guest virtual address space to common code as well.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:27:12 +02:00
Alexander Graf
7d15c06f1a KVM: PPC: Implement kvmppc_xlate for all targets
We have a nice API to find the translated GPAs of a GVA including protection
flags. So far we only use it on Book3S, but there's no reason the same shouldn't
be used on BookE as well.

Implement a kvmppc_xlate() version for BookE and clean it up to make it more
readable in general.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:15:50 +02:00
Aneesh Kumar K.V
63fff5c1e3 KVM: PPC: BOOK3S: HV: Update compute_tlbie_rb to handle 16MB base page
When calculating the lower bits of AVA field, use the shift
count based on the base page size. Also add the missing segment
size and remove stale comment.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 16:09:17 +02:00
Stewart Smith
9678cdaae9 Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8
The POWER8 processor has a Micro Partition Prefetch Engine, which is
a fancy way of saying "has way to store and load contents of L2 or
L2+MRU way of L3 cache". We initiate the storing of the log (list of
addresses) using the logmpp instruction and start restore by writing
to a SPR.

The logmpp instruction takes parameters in a single 64bit register:
- starting address of the table to store log of L2/L2+L3 cache contents
  - 32kb for L2
  - 128kb for L2+L3
  - Aligned relative to maximum size of the table (32kb or 128kb)
- Log control (no-op, L2 only, L2 and L3, abort logout)

We should abort any ongoing logging before initiating one.

To initiate restore, we write to the MPPR SPR. The format of what to write
to the SPR is similar to the logmpp instruction parameter:
- starting address of the table to read from (same alignment requirements)
- table size (no data, until end of table)
- prefetch rate (from fastest possible to slower. about every 8, 16, 24 or
  32 cycles)

The idea behind loading and storing the contents of L2/L3 cache is to
reduce memory latency in a system that is frequently swapping vcores on
a physical CPU.

The best case scenario for doing this is when some vcores are doing very
cache heavy workloads. The worst case is when they have about 0 cache hits,
so we just generate needless memory operations.

This implementation just does L2 store/load. In my benchmarks this proves
to be useful.

Benchmark 1:
 - 16 core POWER8
 - 3x Ubuntu 14.04LTS guests (LE) with 8 VCPUs each
 - No split core/SMT
 - two guests running sysbench memory test.
   sysbench --test=memory --num-threads=8 run
 - one guest running apache bench (of default HTML page)
   ab -n 490000 -c 400 http://localhost/

This benchmark aims to measure performance of real world application (apache)
where other guests are cache hot with their own workloads. The sysbench memory
benchmark does pointer sized writes to a (small) memory buffer in a loop.

In this benchmark with this patch I can see an improvement both in requests
per second (~5%) and in mean and median response times (again, about 5%).
The spread of minimum and maximum response times were largely unchanged.

benchmark 2:
 - Same VM config as benchmark 1
 - all three guests running sysbench memory benchmark

This benchmark aims to see if there is a positive or negative affect to this
cache heavy benchmark. Although due to the nature of the benchmark (stores) we
may not see a difference in performance, but rather hopefully an improvement
in consistency of performance (when vcore switched in, don't have to wait
many times for cachelines to be pulled in)

The results of this benchmark are improvements in consistency of performance
rather than performance itself. With this patch, the few outliers in duration
go away and we get more consistent performance in each guest.

benchmark 3:
 - same 3 guests and CPU configuration as benchmark 1 and 2.
 - two idle guests
 - 1 guest running STREAM benchmark

This scenario also saw performance improvement with this patch. On Copy and
Scale workloads from STREAM, I got 5-6% improvement with this patch. For
Add and triad, it was around 10% (or more).

benchmark 4:
 - same 3 guests as previous benchmarks
 - two guests running sysbench --memory, distinctly different cache heavy
   workload
 - one guest running STREAM benchmark.

Similar improvements to benchmark 3.

benchmark 5:
 - 1 guest, 8 VCPUs, Ubuntu 14.04
 - Host configured with split core (SMT8, subcores-per-core=4)
 - STREAM benchmark

In this benchmark, we see a 10-20% performance improvement across the board
of STREAM benchmark results with this patch.

Based on preliminary investigation and microbenchmarks
by Prerna Saxena <prerna@linux.vnet.ibm.com>

Signed-off-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:17 +02:00
Alexander Graf
b2677b8dd8 KVM: PPC: Remove 440 support
The 440 target hasn't been properly functioning for a few releases and
before I was the only one who fixes a very serious bug that indicates to
me that nobody used it before either.

Furthermore KVM on 440 is slow to the extent of unusable.

We don't have to carry along completely unused code. Remove 440 and give
us one less thing to worry about.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:15 +02:00
Bharat Bhushan
8c95ead603 KVM: PPC: Remove comment saying SPRG1 is used for vcpu pointer
Scott Wood pointed out that We are no longer using SPRG1 for vcpu pointer,
but using SPRN_SPRG_THREAD <=> SPRG3 (thread->vcpu). So this comment
is not valid now.

Note: SPRN_SPRG3R is not supported (do not see any need as of now),
and if we want to support this in future then we have to shift to using
SPRG1 for VCPU pointer.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:15 +02:00
Bharat Bhushan
99e99d19a8 kvm: ppc: bookehv: Save restore SPRN_SPRG9 on guest entry exit
SPRN_SPRG is used by debug interrupt handler, so this is required for
debug support.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:14 +02:00
Mihai Caraman
51f047261e KVM: PPC: Allow kvmppc_get_last_inst() to fail
On book3e, guest last instruction is read on the exit path using load
external pid (lwepx) dedicated instruction. This load operation may fail
due to TLB eviction and execute-but-not-read entries.

This patch lay down the path for an alternative solution to read the guest
last instruction, by allowing kvmppc_get_lat_inst() function to fail.
Architecture specific implmentations of kvmppc_load_last_inst() may read
last guest instruction and instruct the emulation layer to re-execute the
guest in case of failure.

Make kvmppc_get_last_inst() definition common between architectures.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:14 +02:00
Mihai Caraman
9c0d4e0dcf KVM: PPC: Book3e: Add TLBSEL/TSIZE defines for MAS0/1
Add mising defines MAS0_GET_TLBSEL() and MAS1_GET_TSIZE() for Book3E.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:13 +02:00
Bharat Bhushan
34f754b99e kvm: ppc: Add SPRN_EPR get helper function
kvmppc_set_epr() is already defined in asm/kvm_ppc.h, So
rename and move get_epr helper function to same file.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
[agraf: remove duplicate return]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:13 +02:00
Bharat Bhushan
dc168549d9 kvm: ppc: booke: Add shared struct helpers of SPRN_ESR
Add and use kvmppc_set_esr() and kvmppc_get_esr() helper functions

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:12 +02:00
Bharat Bhushan
1dc0c5b88c kvm: ppc: bookehv: Added wrapper macros for shadow registers
There are shadow registers like, GSPRG[0-3], GSRR0, GSRR1 etc on
BOOKE-HV and these shadow registers are guest accessible.
So these shadow registers needs to be updated on BOOKE-HV.
This patch adds new macro for get/set helper of shadow register .

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:11 +02:00
Alexander Graf
89b68c96a2 KVM: PPC: Book3S: Make magic page properly 4k mappable
The magic page is defined as a 4k page of per-vCPU data that is shared
between the guest and the host to accelerate accesses to privileged
registers.

However, when the host is using 64k page size granularity we weren't quite
as strict about that rule anymore. Instead, we partially treated all of the
upper 64k as magic page and mapped only the uppermost 4k with the actual
magic contents.

This works well enough for Linux which doesn't use any memory in kernel
space in the upper 64k, but Mac OS X got upset. So this patch makes magic
page actually stay in a 4k range even on 64k page size hosts.

This patch fixes magic page usage with Mac OS X (using MOL) on 64k PAGE_SIZE
hosts for me.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:11 +02:00
Alexander Graf
c01e3f66cd KVM: PPC: Book3S: Add hack for split real mode
Today we handle split real mode by mapping both instruction and data faults
into a special virtual address space that only exists during the split mode
phase.

This is good enough to catch 32bit Linux guests that use split real mode for
copy_from/to_user. In this case we're always prefixed with 0xc0000000 for our
instruction pointer and can map the user space process freely below there.

However, that approach fails when we're running KVM inside of KVM. Here the 1st
level last_inst reader may well be in the same virtual page as a 2nd level
interrupt handler.

It also fails when running Mac OS X guests. Here we have a 4G/4G split, so a
kernel copy_from/to_user implementation can easily overlap with user space
addresses.

The architecturally correct way to fix this would be to implement an instruction
interpreter in KVM that kicks in whenever we go into split real mode. This
interpreter however would not receive a great amount of testing and be a lot of
bloat for a reasonably isolated corner case.

So I went back to the drawing board and tried to come up with a way to make
split real mode work with a single flat address space. And then I realized that
we could get away with the same trick that makes it work for Linux:

Whenever we see an instruction address during split real mode that may collide,
we just move it higher up the virtual address space to a place that hopefully
does not collide (keep your fingers crossed!).

That approach does work surprisingly well. I am able to successfully run
Mac OS X guests with KVM and QEMU (no split real mode hacks like MOL) when I
apply a tiny timing probe hack to QEMU. I'd say this is a win over even more
broken split real mode :).

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:23:10 +02:00