We switched all users to initialize the timers as pinned and call
mod_timer(). Remove the now unused timer API function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094341.706205231@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to move the timer migration logic from a 'push' to a 'pull' model.
Under the current 'push' model pinned timers are handled via
a runtime API variant: mod_timer_pinned().
The 'pull' model requires us to store the pinned attribute of a timer
in the timer_list structure itself, as a new TIMER_PINNED bit in
timer->flags.
This flag must be set at initialization time and the timer APIs
recognize the flag.
This patch:
- Implements the new flag and associated new-style initialization
methods
- makes mod_timer() recognize new-style pinned timers,
- and adds some migration helper facility to allow
step by step conversion of old-style to new-style
pinned timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094341.049338558@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While reviewing another patch I noticed that kernel/time/tick-sched.c
had a charmingly (confusingly, annoyingly) rich set of variants for
spelling 'CPU':
cpu
cpus
CPU
CPUs
per CPU
per-CPU
per cpu
... sometimes these were mixed even within the same comment block!
Compress these variants down to a single consistent set of:
CPU
CPUs
per-CPU
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
EXPORT_SYMBOL() get_monotonic_coarse64 for new IIO timestamping clock
selection usage. This provides user apps the ability to request a
particular IIO device to timestamp samples using a monotonic coarse clock
granularity.
Signed-off-by: Gregor Boirie <gregor.boirie@parrot.com>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
Pull time(keeping) updates from John Stultz:
- Handle the 1ns issue with the old refusing to die vsyscall machinery
- More y2038 updates
- Documentation fixes
- Simplify clocksource handling
The tstats_show() function prints a ktime_t variable by converting
it to struct timespec first. The algorithm is ok, but we want to
stop using timespec in general because of the 32-bit time_t
overflow problem.
This changes the code to use struct timespec64, without any
functional change.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
udelay_test_single() uses ktime_get_ts() to get two timespec values
and calculate the difference between them, while udelay_test_show()
uses the same to printk() the current monotonic time.
Both of these are y2038 safe on all machines, but we want to
get rid of struct timespec anyway, so this converts the code to
use ktime_get_ns() and ktime_get_ts64() respectively.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
time_to_tm() takes time_t as an argument.
time_t is not y2038 safe.
Add time64_to_tm() that takes time64_t as an argument
which is y2038 safe.
The plan is to eventually replace all calls to time_to_tm()
by time64_to_tm().
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The user notices the problem in a raw and real time drift, calling
clock_gettime with CLOCK_REALTIME / CLOCK_MONOTONIC_RAW on a system
with no ntp correction taking place (no ntpd or ptp stuff running).
The problem is, that old_vsyscall_fixup adds an extra 1ns even though
xtime_nsec is already held in full nsecs and the remainder in this
case is 0. Do the rounding up buisness only if needed.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Graziadei <thomas.graziadei@omicronenergy.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In clocksource_enqueue(), it is unnecessary to continue looping
the list, if we find there is an entry that the value of rating
is smaller than the new one. It is safe to be out the loop,
because all of entry are inserted in descending order.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Only need CONFIG_NO_HZ_COMMON as this block is already in a
CONFIG_SMP block.
Signed-off-by: Pratyush Patel <pratyushpatel.1995@gmail.com>
Link: http://lkml.kernel.org/r/20160301172849.GA18152@cyborg
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Update the usleep_range() function comment to make it clear that it can
only be used in non-atomic context.
Previously we claimed usleep_range() was a drop-in replacement for udelay()
where wakeup is flexible. But that's only true in non-atomic contexts,
where it's possible to sleep instead of delay.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20160531212302.28502.44995.stgit@bhelgaas-glaptop2.roam.corp.google.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer_init_on_stack() needs a matching call to
destroy_hrtimer_on_stack(), so both need to be exported.
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
When activating a static object we need make sure that the object is
tracked in the object tracker. If it is a non-static object then the
activation is illegal.
In previous implementation, each subsystem need take care of this in
their fixup callbacks. Actually we can put it into debugobjects core.
Thus we can save duplicated code, and have *pure* fixup callbacks.
To achieve this, a new callback "is_static_object" is introduced to let
the type specific code decide whether a object is static or not. If
yes, we take it into object tracker, otherwise give warning and invoke
fixup callback.
This change has paassed debugobjects selftest, and I also do some test
with all debugobjects supports enabled.
At last, I have a concern about the fixups that can it change the object
which is in incorrect state on fixup? Because the 'addr' may not point
to any valid object if a non-static object is not tracked. Then Change
such object can overwrite someone's memory and cause unexpected
behaviour. For example, the timer_fixup_activate bind timer to function
stub_timer.
Link: http://lkml.kernel.org/r/1462576157-14539-1-git-send-email-changbin.du@intel.com
[changbin.du@intel.com: improve code comments where invoke the new is_static_object callback]
Link: http://lkml.kernel.org/r/1462777431-8171-1-git-send-email-changbin.du@intel.com
Signed-off-by: Du, Changbin <changbin.du@intel.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Triplett <josh@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the return type to use bool instead of int, corresponding to
cheange (debugobjects: make fixup functions return bool instead of int).
Signed-off-by: Du, Changbin <changbin.du@intel.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Triplett <josh@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All references to timespec_add_safe() now use timespec64_add_safe().
The plan is to replace struct timespec references with struct timespec64
throughout the kernel as timespec is not y2038 safe.
Drop timespec_add_safe() and use timespec64_add_safe() for all
architectures.
Link: http://lkml.kernel.org/r/1461947989-21926-4-git-send-email-deepa.kernel@gmail.com
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
timespec64_add_safe() has been defined in time64.h for 64 bit systems.
But, 32 bit systems only have an extern function prototype defined.
Provide a definition for the above function.
The function will be necessary as part of y2038 changes. struct
timespec is not y2038 safe. All references to timespec will be replaced
by struct timespec64. The function is meant to be a replacement for
timespec_add_safe().
The implementation is similar to timespec_add_safe().
Link: http://lkml.kernel.org/r/1461947989-21926-2-git-send-email-deepa.kernel@gmail.com
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull timer updates from Thomas Gleixner:
"A rather small set of patches from the timer departement:
- Some more y2038 work
- Yet another new clocksource driver
- The usual set of small fixes, cleanups and enhancements"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource/drivers/tegra: Remove unused suspend/resume code
clockevents/driversi/mps2: add MPS2 Timer driver
dt-bindings: document the MPS2 timer bindings
clocksource/drivers/mtk_timer: Add __init attribute
clockevents/drivers/dw_apb_timer: Implement ->set_state_oneshot_stopped()
time: Introduce do_sys_settimeofday64()
security: Introduce security_settime64()
clocksource: Add missing include of of.h.
Pull scheduler updates from Ingo Molnar:
- massive CPU hotplug rework (Thomas Gleixner)
- improve migration fairness (Peter Zijlstra)
- CPU load calculation updates/cleanups (Yuyang Du)
- cpufreq updates (Steve Muckle)
- nohz optimizations (Frederic Weisbecker)
- switch_mm() micro-optimization on x86 (Andy Lutomirski)
- ... lots of other enhancements, fixes and cleanups.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (66 commits)
ARM: Hide finish_arch_post_lock_switch() from modules
sched/core: Provide a tsk_nr_cpus_allowed() helper
sched/core: Use tsk_cpus_allowed() instead of accessing ->cpus_allowed
sched/loadavg: Fix loadavg artifacts on fully idle and on fully loaded systems
sched/fair: Correct unit of load_above_capacity
sched/fair: Clean up scale confusion
sched/nohz: Fix affine unpinned timers mess
sched/fair: Fix fairness issue on migration
sched/core: Kill sched_class::task_waking to clean up the migration logic
sched/fair: Prepare to fix fairness problems on migration
sched/fair: Move record_wakee()
sched/core: Fix comment typo in wake_q_add()
sched/core: Remove unused variable
sched: Make hrtick_notifier an explicit call
sched/fair: Make ilb_notifier an explicit call
sched/hotplug: Make activate() the last hotplug step
sched/hotplug: Move migration CPU_DYING to sched_cpu_dying()
sched/migration: Move CPU_ONLINE into scheduler state
sched/migration: Move calc_load_migrate() into CPU_DYING
sched/migration: Move prepare transition to SCHED_STARTING state
...
All the atomic operations have their arguments the wrong way around;
make atomic_fetch_or() consistent and flip them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ticks can happen while the CPU is in dynticks-idle or dynticks-singletask
mode. In fact "nohz" or "dynticks" only mean that we exit the periodic
mode and we try to minimize the ticks as much as possible. The nohz
subsystem uses a confusing terminology with the internal state
"ts->tick_stopped" which is also available through its public interface
with tick_nohz_tick_stopped(). This is a misnomer as the tick is instead
reduced with the best effort rather than stopped. In the best case the
tick can indeed be actually stopped but there is no guarantee about that.
If a timer needs to fire one second later, a tick will fire while the
CPU is in nohz mode and this is a very common scenario.
Now this confusion happens to be a problem with CPU load updates:
cpu_load_update_active() doesn't handle nohz ticks correctly because it
assumes that ticks are completely stopped in nohz mode and that
cpu_load_update_active() can't be called in dynticks mode. When that
happens, the whole previous tickless load is ignored and the function
just records the load for the current tick, ignoring potentially long
idle periods behind.
In order to solve this, we could account the current load for the
previous nohz time but there is a risk that we account the load of a
task that got freshly enqueued for the whole nohz period.
So instead, lets record the dynticks load on nohz frame entry so we know
what to record in case of nohz ticks, then use this record to account
the tickless load on nohz ticks and nohz frame end.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CPU load update related functions have a weak naming convention
currently, starting with update_cpu_load_*() which isn't ideal as
"update" is a very generic concept.
Since two of these functions are public already (and a third is to come)
that's enough to introduce a more conventional naming scheme. So let's
do the following rename instead:
update_cpu_load_*() -> cpu_load_update_*()
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The do_sys_settimeofday() function uses a timespec, which is not year
2038 safe on 32bit systems.
Thus this patch introduces do_sys_settimeofday64(), which allows us to
transition users of do_sys_settimeofday() to using 64bit time types.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
[jstultz: Include errno-base.h to avoid build issue on some arches]
Signed-off-by: John Stultz <john.stultz@linaro.org>
The tick dependency mask was intially unsigned long because this is the
type on which clear_bit() operates on and fetch_or() accepts it.
But now that we have atomic_fetch_or(), we can instead use
atomic_andnot() to clear the bit. This consolidates the type of our
tick dependency mask, reduce its size on structures and benefit from
possible architecture optimizations on atomic_t operations.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458830281-4255-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This will be needed in the patch "mm, oom: introduce oom reaper".
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the more common logging method with the eventual goal of removing
pr_warning altogether.
Miscellanea:
- Realign arguments
- Coalesce formats
- Add missing space between a few coalesced formats
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [kernel/power/suspend.c]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge second patch-bomb from Andrew Morton:
- a couple of hotfixes
- the rest of MM
- a new timer slack control in procfs
- a couple of procfs fixes
- a few misc things
- some printk tweaks
- lib/ updates, notably to radix-tree.
- add my and Nick Piggin's old userspace radix-tree test harness to
tools/testing/radix-tree/. Matthew said it was a godsend during the
radix-tree work he did.
- a few code-size improvements, switching to __always_inline where gcc
screwed up.
- partially implement character sets in sscanf
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (118 commits)
sscanf: implement basic character sets
lib/bug.c: use common WARN helper
param: convert some "on"/"off" users to strtobool
lib: add "on"/"off" support to kstrtobool
lib: update single-char callers of strtobool()
lib: move strtobool() to kstrtobool()
include/linux/unaligned: force inlining of byteswap operations
include/uapi/linux/byteorder, swab: force inlining of some byteswap operations
include/asm-generic/atomic-long.h: force inlining of some atomic_long operations
usb: common: convert to use match_string() helper
ide: hpt366: convert to use match_string() helper
ata: hpt366: convert to use match_string() helper
power: ab8500: convert to use match_string() helper
power: charger_manager: convert to use match_string() helper
drm/edid: convert to use match_string() helper
pinctrl: convert to use match_string() helper
device property: convert to use match_string() helper
lib/string: introduce match_string() helper
radix-tree tests: add test for radix_tree_iter_next
radix-tree tests: add regression3 test
...
Pull trivial tree updates from Jiri Kosina.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
drivers/rtc: broken link fix
drm/i915 Fix typos in i915_gem_fence.c
Docs: fix missing word in REPORTING-BUGS
lib+mm: fix few spelling mistakes
MAINTAINERS: add git URL for APM driver
treewide: Fix typo in printk
This changes several users of manual "on"/"off" parsing to use
strtobool.
Some side-effects:
- these uses will now parse y/n/1/0 meaningfully too
- the early_param uses will now bubble up parse errors
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Amitkumar Karwar <akarwar@marvell.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Joe Perches <joe@perches.com>
Cc: Kalle Valo <kvalo@codeaurora.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nishant Sarmukadam <nishants@marvell.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Steve French <sfrench@samba.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset introduces a /proc/<pid>/timerslack_ns interface which
would allow controlling processes to be able to set the timerslack value
on other processes in order to save power by avoiding wakeups (Something
Android currently does via out-of-tree patches).
The first patch tries to fix the internal timer_slack_ns usage which was
defined as a long, which limits the slack range to ~4 seconds on 32bit
systems. It converts it to a u64, which provides the same basically
unlimited slack (500 years) on both 32bit and 64bit machines.
The second patch introduces the /proc/<pid>/timerslack_ns interface
which allows the full 64bit slack range for a task to be read or set on
both 32bit and 64bit machines.
With these two patches, on a 32bit machine, after setting the slack on
bash to 10 seconds:
$ time sleep 1
real 0m10.747s
user 0m0.001s
sys 0m0.005s
The first patch is a little ugly, since I had to chase the slack delta
arguments through a number of functions converting them to u64s. Let me
know if it makes sense to break that up more or not.
Other than that things are fairly straightforward.
This patch (of 2):
The timer_slack_ns value in the task struct is currently a unsigned
long. This means that on 32bit applications, the maximum slack is just
over 4 seconds. However, on 64bit machines, its much much larger (~500
years).
This disparity could make application development a little (as well as
the default_slack) to a u64. This means both 32bit and 64bit systems
have the same effective internal slack range.
Now the existing ABI via PR_GET_TIMERSLACK and PR_SET_TIMERSLACK specify
the interface as a unsigned long, so we preserve that limitation on
32bit systems, where SET_TIMERSLACK can only set the slack to a unsigned
long value, and GET_TIMERSLACK will return ULONG_MAX if the slack is
actually larger then what can be stored by an unsigned long.
This patch also modifies hrtimer functions which specified the slack
delta as a unsigned long.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Oren Laadan <orenl@cellrox.com>
Cc: Ruchi Kandoi <kandoiruchi@google.com>
Cc: Rom Lemarchand <romlem@android.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Android Kernel Team <kernel-team@android.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull security layer updates from James Morris:
"There are a bunch of fixes to the TPM, IMA, and Keys code, with minor
fixes scattered across the subsystem.
IMA now requires signed policy, and that policy is also now measured
and appraised"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (67 commits)
X.509: Make algo identifiers text instead of enum
akcipher: Move the RSA DER encoding check to the crypto layer
crypto: Add hash param to pkcs1pad
sign-file: fix build with CMS support disabled
MAINTAINERS: update tpmdd urls
MODSIGN: linux/string.h should be #included to get memcpy()
certs: Fix misaligned data in extra certificate list
X.509: Handle midnight alternative notation in GeneralizedTime
X.509: Support leap seconds
Handle ISO 8601 leap seconds and encodings of midnight in mktime64()
X.509: Fix leap year handling again
PKCS#7: fix unitialized boolean 'want'
firmware: change kernel read fail to dev_dbg()
KEYS: Use the symbol value for list size, updated by scripts/insert-sys-cert
KEYS: Reserve an extra certificate symbol for inserting without recompiling
modsign: hide openssl output in silent builds
tpm_tis: fix build warning with tpm_tis_resume
ima: require signed IMA policy
ima: measure and appraise the IMA policy itself
ima: load policy using path
...
Pull timer updates from Thomas Gleixner:
"The timer department delivers this time:
- Support for cross clock domain timestamps in the core code plus a
first user. That allows more precise timestamping for PTP and
later for audio and other peripherals.
The ptp/e1000e patches have been acked by the relevant maintainers
and are carried in the timer tree to avoid merge ordering issues.
- Support for unregistering the current clocksource watchdog. That
lifts a limitation for switching clocksources which has been there
from day 1
- The usual pile of fixes and updates to the core and the drivers.
Nothing outstanding and exciting"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
time/timekeeping: Work around false positive GCC warning
e1000e: Adds hardware supported cross timestamp on e1000e nic
ptp: Add PTP_SYS_OFFSET_PRECISE for driver crosstimestamping
x86/tsc: Always Running Timer (ART) correlated clocksource
hrtimer: Revert CLOCK_MONOTONIC_RAW support
time: Add history to cross timestamp interface supporting slower devices
time: Add driver cross timestamp interface for higher precision time synchronization
time: Remove duplicated code in ktime_get_raw_and_real()
time: Add timekeeping snapshot code capturing system time and counter
time: Add cycles to nanoseconds translation
jiffies: Use CLOCKSOURCE_MASK instead of constant
clocksource: Introduce clocksource_freq2mult()
clockevents/drivers/exynos_mct: Implement ->set_state_oneshot_stopped()
clockevents/drivers/arm_global_timer: Implement ->set_state_oneshot_stopped()
clockevents/drivers/arm_arch_timer: Implement ->set_state_oneshot_stopped()
clocksource/drivers/arm_global_timer: Register delay timer
clocksource/drivers/lpc32xx: Support timer-based ARM delay
clocksource/drivers/lpc32xx: Support periodic mode
clocksource/drivers/lpc32xx: Don't use the prescaler counter for clockevents
clocksource/drivers/rockchip: Add err handle for rk_timer_init
...
Newer GCC versions trigger the following warning:
kernel/time/timekeeping.c: In function ‘get_device_system_crosststamp’:
kernel/time/timekeeping.c:987:5: warning: ‘clock_was_set_seq’ may be used uninitialized in this function [-Wmaybe-uninitialized]
if (discontinuity) {
^
kernel/time/timekeeping.c:1045:15: note: ‘clock_was_set_seq’ was declared here
unsigned int clock_was_set_seq;
^
GCC clearly is unable to recognize that the 'do_interp' boolean tracks
the initialization status of 'clock_was_set_seq'.
The GCC version used was:
gcc version 5.3.1 20151207 (Red Hat 5.3.1-2) (GCC)
Work it around by initializing clock_was_set_seq to 0. Compilers that
are able to recognize the code flow will eliminate the unnecessary
initialization.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull the cross-timestamp infrastructure from John Stultz.
Allows precise correlation of device timestamps with system time. Primary use
cases being PTP and audio.
Revert commits:
a6e707ddbd: KVM: arm/arm64: timer: Switch to CLOCK_MONOTONIC_RAW
9006a01829: hrtimer: Catch illegal clockids
9c808765e8: hrtimer: Add support for CLOCK_MONOTONIC_RAW
Marc found out, that there are fundamental issues with that patch series
because __hrtimer_get_next_event() and hrtimer_forward() need support for
CLOCK_MONOTONIC_RAW. Nothing which is easily fixed, so revert the whole lot.
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Link: http://lkml.kernel.org/r/56D6CEF0.8060607@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Another representative use case of time sync and the correlated
clocksource (in addition to PTP noted above) is PTP synchronized
audio.
In a streaming application, as an example, samples will be sent and/or
received by multiple devices with a presentation time that is in terms
of the PTP master clock. Synchronizing the audio output on these
devices requires correlating the audio clock with the PTP master
clock. The more precise this correlation is, the better the audio
quality (i.e. out of sync audio sounds bad).
From an application standpoint, to correlate the PTP master clock with
the audio device clock, the system clock is used as a intermediate
timebase. The transforms such an application would perform are:
System Clock <-> Audio clock
System Clock <-> Network Device Clock [<-> PTP Master Clock]
Modern Intel platforms can perform a more accurate cross timestamp in
hardware (ART,audio device clock). The audio driver requires
ART->system time transforms -- the same as required for the network
driver. These platforms offload audio processing (including
cross-timestamps) to a DSP which to ensure uninterrupted audio
processing, communicates and response to the host only once every
millsecond. As a result is takes up to a millisecond for the DSP to
receive a request, the request is processed by the DSP, the audio
output hardware is polled for completion, the result is copied into
shared memory, and the host is notified. All of these operation occur
on a millisecond cadence. This transaction requires about 2 ms, but
under heavier workloads it may take up to 4 ms.
Adding a history allows these slow devices the option of providing an
ART value outside of the current interval. In this case, the callback
provided is an accessor function for the previously obtained counter
value. If get_system_device_crosststamp() receives a counter value
previous to cycle_last, it consults the history provided as an
argument in history_ref and interpolates the realtime and monotonic
raw system time using the provided counter value. If there are any
clock discontinuities, e.g. from calling settimeofday(), the monotonic
raw time is interpolated in the usual way, but the realtime clock time
is adjusted by scaling the monotonic raw adjustment.
When an accessor function is used a history argument *must* be
provided. The history is initialized using ktime_get_snapshot() and
must be called before the counter values are read.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: kevin.b.stanton@intel.com
Cc: kevin.j.clarke@intel.com
Cc: hpa@zytor.com
Cc: jeffrey.t.kirsher@intel.com
Cc: netdev@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
[jstultz: Fixed up cycles_t/cycle_t type confusion]
Signed-off-by: John Stultz <john.stultz@linaro.org>
ACKNOWLEDGMENT: cross timestamp code was developed by Thomas Gleixner
<tglx@linutronix.de>. It has changed considerably and any mistakes are
mine.
The precision with which events on multiple networked systems can be
synchronized using, as an example, PTP (IEEE 1588, 802.1AS) is limited
by the precision of the cross timestamps between the system clock and
the device (timestamp) clock. Precision here is the degree of
simultaneity when capturing the cross timestamp.
Currently the PTP cross timestamp is captured in software using the
PTP device driver ioctl PTP_SYS_OFFSET. Reads of the device clock are
interleaved with reads of the realtime clock. At best, the precision
of this cross timestamp is on the order of several microseconds due to
software latencies. Sub-microsecond precision is required for
industrial control and some media applications. To achieve this level
of precision hardware supported cross timestamping is needed.
The function get_device_system_crosstimestamp() allows device drivers
to return a cross timestamp with system time properly scaled to
nanoseconds. The realtime value is needed to discipline that clock
using PTP and the monotonic raw value is used for applications that
don't require a "real" time, but need an unadjusted clock time. The
get_device_system_crosstimestamp() code calls back into the driver to
ensure that the system counter is within the current timekeeping
update interval.
Modern Intel hardware provides an Always Running Timer (ART) which is
exactly related to TSC through a known frequency ratio. The ART is
routed to devices on the system and is used to precisely and
simultaneously capture the device clock with the ART.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: kevin.b.stanton@intel.com
Cc: kevin.j.clarke@intel.com
Cc: hpa@zytor.com
Cc: jeffrey.t.kirsher@intel.com
Cc: netdev@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
[jstultz: Reworked to remove extra structures and simplify calling]
Signed-off-by: John Stultz <john.stultz@linaro.org>
The code in ktime_get_snapshot() is a superset of the code in
ktime_get_raw_and_real() code. Further, ktime_get_raw_and_real() is
called only by the PPS code, pps_get_ts(). Consolidate the
pps_get_ts() code into a single function calling ktime_get_snapshot()
and eliminate ktime_get_raw_and_real(). A side effect of this is that
the raw and real results of pps_get_ts() correspond to exactly the
same clock cycle. Previously these values represented separate reads
of the system clock.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: kevin.b.stanton@intel.com
Cc: kevin.j.clarke@intel.com
Cc: hpa@zytor.com
Cc: jeffrey.t.kirsher@intel.com
Cc: netdev@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In the current timekeeping code there isn't any interface to
atomically capture the current relationship between the system counter
and system time. ktime_get_snapshot() returns this triple (counter,
monotonic raw, realtime) in the system_time_snapshot struct.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: kevin.b.stanton@intel.com
Cc: kevin.j.clarke@intel.com
Cc: hpa@zytor.com
Cc: jeffrey.t.kirsher@intel.com
Cc: netdev@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
[jstultz: Moved structure definitions around to clean things up,
fixed cycles_t/cycle_t confusion.]
Signed-off-by: John Stultz <john.stultz@linaro.org>
The timekeeping code does not currently provide a way to translate
externally provided clocksource cycles to system time. The cycle count
is always provided by the result clocksource read() method internal to
the timekeeping code. The added function timekeeping_cycles_to_ns()
calculated a nanosecond value from a cycle count that can be added to
tk_read_base.base value yielding the current system time. This allows
clocksource cycle values external to the timekeeping code to provide a
cycle count that can be transformed to system time.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: kevin.b.stanton@intel.com
Cc: kevin.j.clarke@intel.com
Cc: hpa@zytor.com
Cc: jeffrey.t.kirsher@intel.com
Cc: netdev@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Instead of checking sched_clock_stable from the nohz subsystem to verify
its tick dependency, migrate it to the new mask in order to include it
to the all-in-one check.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Instead of providing asynchronous checks for the nohz subsystem to verify
posix cpu timers tick dependency, migrate the latter to the new mask.
In order to keep track of the running timers and expose the tick
dependency accordingly, we must probe the timers queuing and dequeuing
on threads and process lists.
Unfortunately it implies both task and signal level dependencies. We
should be able to further optimize this and merge all that on the task
level dependency, at the cost of a bit of complexity and may be overhead.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Instead of providing asynchronous checks for the nohz subsystem to verify
sched tick dependency, migrate sched to the new mask.
Everytime a task is enqueued or dequeued, we evaluate the state of the
tick dependency on top of the policy of the tasks in the runqueue, by
order of priority:
SCHED_DEADLINE: Need the tick in order to periodically check for runtime
SCHED_FIFO : Don't need the tick (no round-robin)
SCHED_RR : Need the tick if more than 1 task of the same priority
for round robin (simplified with checking if more than
one SCHED_RR task no matter what priority).
SCHED_NORMAL : Need the tick if more than 1 task for round-robin.
We could optimize that further with one flag per sched policy on the tick
dependency mask and perform only the checks relevant to the policy
concerned by an enqueue/dequeue operation.
Since the checks aren't based on the current task anymore, we could get
rid of the task switch hook but it's still needed for posix cpu
timers.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Instead of providing asynchronous checks for the nohz subsystem to verify
perf event tick dependency, migrate perf to the new mask.
Perf needs the tick for two situations:
1) Freq events. We could set the tick dependency when those are
installed on a CPU context. But setting a global dependency on top of
the global freq events accounting is much easier. If people want that
to be optimized, we can still refine that on the per-CPU tick dependency
level. This patch dooesn't change the current behaviour anyway.
2) Throttled events: this is a per-cpu dependency.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The tick dependency is evaluated on every IRQ and context switch. This
consists is a batch of checks which determine whether it is safe to
stop the tick or not. These checks are often split in many details:
posix cpu timers, scheduler, sched clock, perf events.... each of which
are made of smaller details: posix cpu timer involves checking process
wide timers then thread wide timers. Perf involves checking freq events
then more per cpu details.
Checking these informations asynchronously every time we update the full
dynticks state bring avoidable overhead and a messy layout.
Let's introduce instead tick dependency masks: one for system wide
dependency (unstable sched clock, freq based perf events), one for CPU
wide dependency (sched, throttling perf events), and task/signal level
dependencies (posix cpu timers). The subsystems are responsible
for setting and clearing their dependency through a set of APIs that will
take care of concurrent dependency mask modifications and kick targets
to restart the relevant CPU tick whenever needed.
This new dependency engine stays beside the old one until all subsystems
having a tick dependency are converted to it.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Handle the following ISO 8601 features in mktime64():
(1) Leap seconds.
Leap seconds are indicated by the seconds parameter being the value
60. Handle this by treating it the same as 00 of the following
minute.
It has been pointed out that a minute may contain two leap seconds.
However, pending discussion of what that looks like and how to handle
it, I'm not going to concern myself with it.
(2) Alternate encodings of midnight.
Two different encodings of midnight are permitted - 00:00:00 and
24:00:00 - the first is midnight today and the second is midnight
tomorrow and is exactly equivalent to the first with tomorrow's date.
As it happens, we don't actually need to change mktime64() to handle either
of these - just comment them as valid parameters.
These facility will be used by the X.509 parser. Doing it in mktime64()
makes the policy common to the whole kernel and easier to find.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
cc: John Stultz <john.stultz@linaro.org>
cc: Rudolf Polzer <rpolzer@google.com>
cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
The CLOCKSOURCE_MASK(32) macro expands to the same value, but
makes code more readable.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Link: http://lkml.kernel.org/r/1456542854-22104-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch fix spelling typos found in printk and Kconfig.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
It simplifies it and allows wide kick to be performed, even when IRQs
are disabled, without an asynchronous level in the middle.
This comes at a cost of some more overhead on features like perf and
posix cpu timers slow-paths, which is probably not much important
for nohz full users.
Requested-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull timer fixes from Thomas Gleixner:
"The timer departement delivers:
- a regression fix for the NTP code along with a proper selftest
- prevent a spurious timer interrupt in the NOHZ lowres code
- a fix for user space interfaces returning the remaining time on
architectures with CONFIG_TIME_LOW_RES=y
- a few patches to fix COMPILE_TEST fallout"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick/nohz: Set the correct expiry when switching to nohz/lowres mode
clocksource: Fix dependencies for archs w/o HAS_IOMEM
clocksource: Select CLKSRC_MMIO where needed
tick/sched: Hide unused oneshot timer code
kselftests: timers: Add adjtimex SETOFFSET validity tests
ntp: Fix ADJ_SETOFFSET being used w/ ADJ_NANO
itimers: Handle relative timers with CONFIG_TIME_LOW_RES proper
posix-timers: Handle relative timers with CONFIG_TIME_LOW_RES proper
timerfd: Handle relative timers with CONFIG_TIME_LOW_RES proper
hrtimer: Handle remaining time proper for TIME_LOW_RES
clockevents/tcb_clksrc: Prevent disabling an already disabled clock
commit 0ff53d0964 sets the next tick interrupt to the last jiffies update,
i.e. in the past, because the forward operation is invoked before the set
operation. There is no resulting damage (yet), but we get an extra pointless
tick interrupt.
Revert the order so we get the next tick interrupt in the future.
Fixes: commit 0ff53d0964 "tick: sched: Force tick interrupt and get rid of softirq magic"
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1453893967-3458-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Hyper-V vmbus module registers TSC page clocksource when loaded. This is
the clocksource with the highest rating and thus it becomes the watchdog
making unloading of the vmbus module impossible.
Separate clocksource_select_watchdog() from clocksource_enqueue_watchdog()
and use it on clocksource register/rating change/unregister.
After all, lobotomized monkeys may need some love too.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Link: http://lkml.kernel.org/r/1453483913-25672-1-git-send-email-vkuznets@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It is way too easy to take any random clockid and feed it to
the hrtimer subsystem. At best, it gets mapped to a monotonic
base, but it would be better to just catch illegal values as
early as possible.
This patch does exactly that, mapping illegal clockids to an
illegal base index, and panicing when we detect the illegal
condition.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Tomasz Nowicki <tn@semihalf.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Link: http://lkml.kernel.org/r/1452879670-16133-3-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The KVM/ARM timer implementation arms a hrtimer when a vcpu is
blocked (usually because it is waiting for an interrupt)
while its timer is going to kick in the future.
It is essential that this timer doesn't get adjusted, or the
guest will end up being woken-up at the wrong time (NTP running
on the host seems to confuse the hell out of some guests).
In order to allow this, let's add CLOCK_MONOTONIC_RAW support
to hrtimer (it is so far only supported for posix timers). It also
has the (limited) benefit of fixing de0421d53b ("mac80211_hwsim:
shuffle code to prepare for dynamic radios"), which already uses
this functionnality without realizing wasn't implemented (just being
lucky...).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Tomasz Nowicki <tn@semihalf.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Link: http://lkml.kernel.org/r/1452879670-16133-2-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A couple of functions in kernel/time/tick-sched.c are only
relevant for oneshot timer mode, i.e. when hires-timers or
nohz mode are enabled. If both are disabled, we get gcc warnings
about them:
kernel/time/tick-sched.c:98:16: warning: 'tick_init_jiffy_update' defined but not used [-Wunused-function]
static ktime_t tick_init_jiffy_update(void)
^
kernel/time/tick-sched.c:112:13: warning: 'tick_sched_do_timer' defined but not used [-Wunused-function]
static void tick_sched_do_timer(ktime_t now)
^
kernel/time/tick-sched.c:134:13: warning: 'tick_sched_handle' defined but not used [-Wunused-function]
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
^
This encloses the whole set of functions in an appropriate ifdef
to avoid the warning and to make it clearer when they are used.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/1453736525-1959191-1-git-send-email-arnd@arndb.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Recently, in commit 37cf4dc337 I forgot to check if the timeval being passed
was actually a timespec (as is signaled with ADJ_NANO).
This resulted in that patch breaking ADJ_SETOFFSET users who set
ADJ_NANO, by rejecting valid timespecs that were compared with
valid timeval ranges.
This patch addresses this by checking for the ADJ_NANO flag and
using the timepsec check instead in that case.
Reported-by: Harald Hoyer <harald@redhat.com>
Reported-by: Kay Sievers <kay@vrfy.org>
Fixes: 37cf4dc337 "time: Verify time values in adjtimex ADJ_SETOFFSET to avoid overflow"
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: David Herrmann <dh.herrmann@gmail.com>
Link: http://lkml.kernel.org/r/1453417415-19110-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* pm-cpuidle:
cpuidle: menu: Avoid pointless checks in menu_select()
sched / idle: Drop default_idle_call() fallback from call_cpuidle()
cpuidle: Don't enable all governors by default
cpuidle: Default to ladder governor on ticking systems
time: nohz: Expose tick_nohz_enabled
cpuidle: menu: Fix menu_select() for CPUIDLE_DRIVER_STATE_START == 0
As Helge reported for timerfd we have the same issue in itimers. We return
remaining time larger than the programmed relative time to user space in case
of CONFIG_TIME_LOW_RES=y. Use the proper function to adjust the extra time
added in hrtimer_start_range_ns().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Helge Deller <deller@gmx.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: dhowells@redhat.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20160114164159.528222587@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As Helge reported for timerfd we have the same issue in posix timers. We
return remaining time larger than the programmed relative time to user space
in case of CONFIG_TIME_LOW_RES=y. Use the proper function to adjust the extra
time added in hrtimer_start_range_ns().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Helge Deller <deller@gmx.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: dhowells@redhat.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20160114164159.450510905@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If CONFIG_TIME_LOW_RES is enabled we add a jiffie to the relative timeout to
prevent short sleeps, but we do not account for that in interfaces which
retrieve the remaining time.
Helge observed that timerfd can return a remaining time larger than the
relative timeout. That's not expected and breaks userland test programs.
Store the information that the timer was armed relative and provide functions
to adjust the remaining time. To avoid bloating the hrtimer struct make state
a u8, which as a bonus results in better code on x86 at least.
Reported-and-tested-by: Helge Deller <deller@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: dhowells@redhat.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20160114164159.273328486@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The cpuidle subsystem needs it.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull in fixes from Daniel Lezcano:
- Fix the vt8500 timer leading to a system lock up when dealing with too
small delta (Roman Volkov)
- Select the CLKSRC_MMIO when the fsl_ftm_timer is enabled with COMPILE_TEST
(Daniel Lezcano)
- Prevent to compile timers using the 'iomem' API when the architecture has
not HAS_IOMEM set (Richard Weinberger)
Pull workqueue update from Tejun Heo:
"Workqueue changes for v4.5. One cleanup patch and three to improve
the debuggability.
Workqueue now has a stall detector which dumps workqueue state if any
worker pool hasn't made forward progress over a certain amount of time
(30s by default) and also triggers a warning if a workqueue which can
be used in memory reclaim path tries to wait on something which can't
be.
These should make workqueue hangs a lot easier to debug."
* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: simplify the apply_workqueue_attrs_locked()
workqueue: implement lockup detector
watchdog: introduce touch_softlockup_watchdog_sched()
workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue
Pull timer updates - and a leftover fix - from Thomas Gleixner:
"A rather large (commit wise) update from the timer side:
- A bulk update to make compile tests work in the clocksource drivers
- An overhaul of the h8300 timers
- Some more Y2038 work
- A few overflow prevention checks in the timekeeping/ntp code
- The usual pile of fixes and improvements to the various
clocksource/clockevent drivers and core code"
Also:
"A single fix for the posix-clock poll code which did not make it into
4.4"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (84 commits)
clocksource/drivers/acpi_pm: Convert to pr_* macros
clocksource: Make clocksource validation work for all clocksources
timekeeping: Cap adjustments so they don't exceed the maxadj value
ntp: Fix second_overflow's input parameter type to be 64bits
ntp: Change time_reftime to time64_t and utilize 64bit __ktime_get_real_seconds
timekeeping: Provide internal function __ktime_get_real_seconds
clocksource/drivers/h8300: Use ioread / iowrite
clocksource/drivers/h8300: Initializer cleanup.
clocksource/drivers/h8300: Simplify delta handling
clocksource/drivers/h8300: Fix timer not overflow case
clocksource/drivers/h8300: Change to overflow interrupt
clocksource/drivers/lpc32: Correct pr_err() output format
clocksource/drivers/arm_global_timer: Fix suspend resume
clocksource/drivers/pistachio: Fix wrong calculated clocksource read value
clockevents/drivers/arm_global_timer: Use writel_relaxed in gt_compare_set
clocksource/drivers/dw_apb_timer: Inline apbt_readl and apbt_writel
clocksource/drivers/dw_apb_timer: Use {readl|writel}_relaxed in critical path
clocksource/drivers/dw_apb_timer: Fix apbt_readl return types
clocksource/drivers/tango-xtal: Replace code by clocksource_mmio_init
clocksource/drivers/h8300: Increase the compilation test coverage
...
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-clock: Fix return code on the poll method's error path
The posix_clock_poll function is supposed to return a bit mask of
POLLxxx values. However, in case the hardware has disappeared (due to
hot plugging for example) this code returns -ENODEV in a futile
attempt to throw an error at the file descriptor level. The kernel's
file_operations interface does not accept such error codes from the
poll method. Instead, this function aught to return POLLERR.
The value -ENODEV does, in fact, contain the POLLERR bit (and almost
all the other POLLxxx bits as well), but only by chance. This patch
fixes code to return a proper bit mask.
Credit goes to Markus Elfring for pointing out the suspicious
signed/unsigned mismatch.
Reported-by: Markus Elfring <elfring@users.sourceforge.net>
igned-off-by: Richard Cochran <richardcochran@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Link: http://lkml.kernel.org/r/1450819198-17420-1-git-send-email-richardcochran@gmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The clocksource validation which makes sure that the newly read value
is not smaller than the last value only works if the clocksource mask
is 64bit, i.e. the counter is 64bit wide. But we want to use that
mechanism also for clocksources which are less than 64bit wide.
So instead of checking whether bit 63 is set, we check whether the
most significant bit of the clocksource mask is set in the delta
result. If it is set, we return 0.
[ tglx: Simplified the implementation, added a comment and massaged
the commit message ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Cc: <linux-arm-kernel@lists.infradead.org>
Link: http://lkml.kernel.org/r/56349607.6070708@huawei.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Get the core time(keeping) updates from John Stultz
- NTP robustness tweaks
- Another signed overflow nailed down
- More y2038 changes
- Stop alarmtimer after resume
- MAINTAINERS update
- Selftest fixes
Thus its been occasionally noted that users have seen
confusing warnings like:
Adjusting tsc more than 11% (5941981 vs 7759439)
We try to limit the maximum total adjustment to 11% (10% tick
adjustment + 0.5% frequency adjustment). But this is done by
bounding the requested adjustment values, and the internal
steering that is done by tracking the error from what was
requested and what was applied, does not have any such limits.
This is usually not problematic, but in some cases has a risk
that an adjustment could cause the clocksource mult value to
overflow, so its an indication things are outside of what is
expected.
It ends up most of the reports of this 11% warning are on systems
using chrony, which utilizes the adjtimex() ADJ_TICK interface
(which allows a +-10% adjustment). The original rational for
ADJ_TICK unclear to me but my assumption it was originally added
to allow broken systems to get a big constant correction at boot
(see adjtimex userspace package for an example) which would allow
the system to work w/ ntpd's 0.5% adjustment limit.
Chrony uses ADJ_TICK to make very aggressive short term corrections
(usually right at startup). Which push us close enough to the max
bound that a few late ticks can cause the internal steering to push
past the max adjust value (tripping the warning).
Thus this patch adds some extra logic to enforce the max adjustment
cap in the internal steering.
Note: This has the potential to slow corrections when the ADJ_TICK
value is furthest away from the default value. So it would be good to
get some testing from folks using chrony, to make sure we don't
cause any troubles there.
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Tested-by: Miroslav Lichvar <mlichvar@redhat.com>
Reported-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The function "second_overflow" uses "unsign long"
as its input parameter type which will overflow after
year 2106 on 32bit systems.
Thus this patch replaces it with time64_t type.
While the 64-bit division is expensive, "next_ntp_leap_sec"
has been calculated already, so we can just re-use it in the
TIME_INS/DEL cases, allowing one expensive division per
leapsecond instead of re-doing the divsion once a second after
the leap flag has been set.
Signed-off-by: DengChao <chao.deng@linaro.org>
[jstultz: Tweaked commit message]
Signed-off-by: John Stultz <john.stultz@linaro.org>
The type of static variant "time_reftime" and the call of
get_seconds in ntp are both not y2038 safe.
So change the type of time_reftime to time64_t and replace
get_seconds with __ktime_get_real_seconds.
The local variant "secs" in ntp_update_offset represents
seconds between now and last ntp adjustment, it seems impossible
that this time will last more than 68 years, so keep its type as
"long".
Reviewed-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: DengChao <chao.deng@linaro.org>
[jstultz: Tweaked commit message]
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to fix Y2038 issues in the ntp code we will need replace
get_seconds() with ktime_get_real_seconds() but as the ntp code uses
the timekeeping lock which is also used by ktime_get_real_seconds(),
we need a version without locking.
Add a new function __ktime_get_real_seconds() in timekeeping to
do this.
Reviewed-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: DengChao <chao.deng@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
For adjtimex()'s ADJ_SETOFFSET, make sure the tv_usec value is
sane. We might multiply them later which can cause an overflow
and undefined behavior.
This patch introduces new helper functions to simplify the
checking code and adds comments to clarify
Orginally this patch was by Sasha Levin, but I've basically
rewritten it, so he should get credit for finding the issue
and I should get the blame for any mistakes made since.
Also, credit to Richard Cochran for the phrasing used in the
comment for what is considered valid here.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
We need to make sure that the offset is valid before manipulating it,
otherwise it might overflow on the multiplication.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
[jstultz: Reworked one of the checks so it makes more sense]
Signed-off-by: John Stultz <john.stultz@linaro.org>
touch_softlockup_watchdog() is used to tell watchdog that scheduler
stall is expected. One group of usage is from paths where the task
may not be able to yield for a long time such as performing slow PIO
to finicky device and coming out of suspend. The other is to account
for scheduler and timer going idle.
For scheduler softlockup detection, there's no reason to distinguish
the two cases; however, workqueue lockup detector is planned and it
can use the same signals from the former group while the latter would
spuriously prevent detection. This patch introduces a new function
touch_softlockup_watchdog_sched() and convert the latter group to call
it instead. For now, it just calls touch_softlockup_watchdog() and
there's no functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
The clocksource watchdog reporting was improved by 0b046b217a.
I want to add the info of CPU where the watchdog detects a
deviation because it is necessary to identify the trouble spot
if the clocksource is TSC.
Signed-off-by: Seiichi Ikarashi <s.ikarashi@jp.fujitsu.com>
[jstultz: Tweaked commit message]
Signed-off-by: John Stultz <john.stultz@linaro.org>
1e75fa8 "time: Condense timekeeper.xtime into xtime_sec" replaced a call to
clocksource_cyc2ns() from timekeeping_get_ns() with an open-coded version
of the same logic to avoid keeping a semi-redundant struct timespec
in struct timekeeper.
However, the commit also introduced a subtle semantic change - where
clocksource_cyc2ns() uses purely unsigned math, the new version introduces
a signed temporary, meaning that if (delta * tk->mult) has a 63-bit
overflow the following shift will still give a negative result. The
choice of 'maxsec' in __clocksource_updatefreq_scale() means this will
generally happen if there's a ~10 minute pause in examining the
clocksource.
This can be triggered on a powerpc KVM guest by stopping it from qemu for
a bit over 10 minutes. After resuming time has jumped backwards several
minutes causing numerous problems (jiffies does not advance, msleep()s can
be extended by minutes..). It doesn't happen on x86 KVM guests, because
the guest TSC is effectively frozen while the guest is stopped, which is
not the case for the powerpc timebase.
Obviously an unsigned (64 bit) overflow will only take twice as long as a
signed, 63-bit overflow. I don't know the time code well enough to know
if that will still cause incorrect calculations, or if a 64-bit overflow
is avoided elsewhere.
Still, an incorrect forwards clock adjustment will cause less trouble than
time going backwards. So, this patch removes the potential for
intermediate signed overflow.
Cc: stable@vger.kernel.org (3.7+)
Suggested-by: Laurent Vivier <lvivier@redhat.com>
Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: John Stultz <john.stultz@linaro.org>
vtime_accounting_enabled() checks if vtime is running on the current CPU
and is as such a misnomer. Lets rename it to a function that reflect its
locality. We are going to need the current name for a function that tells
if vtime runs at all on some CPU.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Before the system go to suspend (S3), if user create a timer
with clockid CLOCK_REALTIME_ALARM/CLOCK_BOOTTIME_ALARM and set a
"large" timeout value to this timer. The function
alarmtimer_suspend will be called to setup a timeout value to
RTC timer to avoid the system sleep over time. However, if the
system wakeup early than RTC timeout, the RTC timer will not be
cleared. And this will cause the hpet_rtc_interrupt come
unexpectedly until the RTC timeout. To fix this problem, just
adding alarmtimer_resume to cancel the RTC timer.
This was noticed because the HPET RTC emulation fires an
interrupt every 16ms(=1/2^DEFAULT_RTC_SHIFT) up to the point
where the alarm time is reached.
This program always hits this situation
(https://lkml.org/lkml/2015/11/8/326), if system wake up earlier
than alarm time.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Zhuo-hao Lee <zhuo-hao.lee@intel.com>
[jstultz: Tweak commit subject & formatting slightly]
Signed-off-by: John Stultz <john.stultz@linaro.org>
While going through the nohz code I got stumped by some of it.
This patch adds a few comments clarifying the code; based on discussion
with Thomas.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20151119162106.GO3816@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Usually the tick can be stopped for an idle CPU in NOHZ. However in NOHZ_FULL
mode, a non-idle CPU's tick can also be stopped. However, update_cpu_load_nohz()
does not consider the case a non-idle CPU's tick has been stopped at all.
This patch makes the update_cpu_load_nohz() know if the calling path comes
from NOHZ_FULL or idle NOHZ.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447115762-19734-3-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull irq and timer fixes from Thomas Gleixner:
- An irq regression fix to restore the wakeup behaviour of chained
interrupts.
- A timer fix for a long standing race versus timers scheduled on a
target cpu which got exposed by recent changes in the workqueue
implementation.
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq/PM: Restore system wake up from chained interrupts
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers: Use proper base migration in add_timer_on()
Switch everything to the new and more capable implementation of abs().
Mainly to give the new abs() a bit of a workout.
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Regardless of the previous CPU a timer was on, add_timer_on()
currently simply sets timer->flags to the new CPU. As the caller must
be seeing the timer as idle, this is locally fine, but the timer
leaving the old base while unlocked can lead to race conditions as
follows.
Let's say timer was on cpu 0.
cpu 0 cpu 1
-----------------------------------------------------------------------------
del_timer(timer) succeeds
del_timer(timer)
lock_timer_base(timer) locks cpu_0_base
add_timer_on(timer, 1)
spin_lock(&cpu_1_base->lock)
timer->flags set to cpu_1_base
operates on @timer operates on @timer
This triggered with mod_delayed_work_on() which contains
"if (del_timer()) add_timer_on()" sequence eventually leading to the
following oops.
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<ffffffff810ca6e9>] detach_if_pending+0x69/0x1a0
...
Workqueue: wqthrash wqthrash_workfunc [wqthrash]
task: ffff8800172ca680 ti: ffff8800172d0000 task.ti: ffff8800172d0000
RIP: 0010:[<ffffffff810ca6e9>] [<ffffffff810ca6e9>] detach_if_pending+0x69/0x1a0
...
Call Trace:
[<ffffffff810cb0b4>] del_timer+0x44/0x60
[<ffffffff8106e836>] try_to_grab_pending+0xb6/0x160
[<ffffffff8106e913>] mod_delayed_work_on+0x33/0x80
[<ffffffffa0000081>] wqthrash_workfunc+0x61/0x90 [wqthrash]
[<ffffffff8106dba8>] process_one_work+0x1e8/0x650
[<ffffffff8106e05e>] worker_thread+0x4e/0x450
[<ffffffff810746af>] kthread+0xef/0x110
[<ffffffff8185980f>] ret_from_fork+0x3f/0x70
Fix it by updating add_timer_on() to perform proper migration as
__mod_timer() does.
Reported-and-tested-by: Jeff Layton <jlayton@poochiereds.net>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Chris Worley <chris.worley@primarydata.com>
Cc: bfields@fieldses.org
Cc: Michael Skralivetsky <michael.skralivetsky@primarydata.com>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: kernel-team@fb.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20151029103113.2f893924@tlielax.poochiereds.net
Link: http://lkml.kernel.org/r/20151104171533.GI5749@mtj.duckdns.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer updates from Thomas Gleixner:
"The timer departement provides:
- More y2038 work in the area of ntp and pps.
- Optimization of posix cpu timers
- New time related selftests
- Some new clocksource drivers
- The usual pile of fixes, cleanups and improvements"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
timeconst: Update path in comment
timers/x86/hpet: Type adjustments
clocksource/drivers/armada-370-xp: Implement ARM delay timer
clocksource/drivers/tango_xtal: Add new timer for Tango SoCs
clocksource/drivers/imx: Allow timer irq affinity change
clocksource/drivers/exynos_mct: Use container_of() instead of this_cpu_ptr()
clocksource/drivers/h8300_*: Remove unneeded memset()s
clocksource/drivers/sh_cmt: Remove unneeded memset() in sh_cmt_setup()
clocksource/drivers/em_sti: Remove unneeded memset()s
clocksource/drivers/mediatek: Use GPT as sched clock source
clockevents/drivers/mtk: Fix spurious interrupt leading to crash
posix_cpu_timer: Reduce unnecessary sighand lock contention
posix_cpu_timer: Convert cputimer->running to bool
posix_cpu_timer: Check thread timers only when there are active thread timers
posix_cpu_timer: Optimize fastpath_timer_check()
timers, kselftest: Add 'adjtick' test to validate adjtimex() tick adjustments
timers: Use __fls in apply_slack()
clocksource: Remove return statement from void functions
net: sfc: avoid using timespec
ntp/pps: use y2038 safe types in pps_event_time
...
timekeeping_init() can set the wall time offset, so we need to
increment the clock_was_set_seq counter. That way hrtimers will pick
up the early offset immediately. Otherwise on a machine which does not
set wall time later in the boot process the hrtimer offset is stale at
0 and wall time timers are going to expire with a delay of 45 years.
Fixes: 868a3e915f "hrtimer: Make offset update smarter"
Reported-and-tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stefan Liebler <stli@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
It was found while running a database workload on large systems that
significant time was spent trying to acquire the sighand lock.
The issue was that whenever an itimer expired, many threads ended up
simultaneously trying to send the signal. Most of the time, nothing
happened after acquiring the sighand lock because another thread
had just already sent the signal and updated the "next expire" time.
The fastpath_timer_check() didn't help much since the "next expire"
time was updated after the threads exit fastpath_timer_check().
This patch addresses this by having the thread_group_cputimer structure
maintain a boolean to signify when a thread in the group is already
checking for process wide timers, and adds extra logic in the fastpath
to check the boolean.
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: George Spelvin <linux@horizon.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: hideaki.kimura@hpe.com
Cc: terry.rudd@hpe.com
Cc: scott.norton@hpe.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1444849677-29330-5-git-send-email-jason.low2@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In the next patch in this series, a new field 'checking_timer' will
be added to 'struct thread_group_cputimer'. Both this and the
existing 'running' integer field are just used as boolean values. To
save space in the structure, we can make both of these fields booleans.
This is a preparatory patch to convert the existing running integer
field to a boolean.
Suggested-by: George Spelvin <linux@horizon.com>
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed: George Spelvin <linux@horizon.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: hideaki.kimura@hpe.com
Cc: terry.rudd@hpe.com
Cc: scott.norton@hpe.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1444849677-29330-4-git-send-email-jason.low2@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The fastpath_timer_check() contains logic to check for if any timers
are set by checking if !task_cputime_zero(). Similarly, we can do this
before calling check_thread_timers(). In the case where there
are only process-wide timers, this will skip all of the computations for
per-thread timers when there are no per-thread timers.
As suggested by George, we can put the task_cputime_zero() check in
check_thread_timers(), since that is more of an optization to the
function. Similarly, we move the existing check of cputimer->running
to check_process_timers().
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: George Spelvin <linux@horizon.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: hideaki.kimura@hpe.com
Cc: terry.rudd@hpe.com
Cc: scott.norton@hpe.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1444849677-29330-3-git-send-email-jason.low2@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In fastpath_timer_check(), the task_cputime() function is always
called to compute the utime and stime values. However, this is not
necessary if there are no per-thread timers to check for. This patch
modifies the code such that we compute the task_cputime values only
when there are per-thread timers set.
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: George Spelvin <linux@horizon.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: hideaki.kimura@hpe.com
Cc: terry.rudd@hpe.com
Cc: scott.norton@hpe.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1444849677-29330-2-git-send-email-jason.low2@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In apply_slack(), find_last_bit() is applied to a bitmask consisting
of precisely BITS_PER_LONG bits. Since mask is non-zero, we might as
well eliminate the function call and use __fls() directly. On x86_64,
this shaves 23 bytes of the only caller, mod_timer().
This also gets rid of Coverity CID 1192106, but that is a false
positive: Coverity is not aware that mask != 0 implies that
find_last_bit will not return BITS_PER_LONG.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/1443771931-6284-1-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch fixes one cases where abs() was being used with 64-bit
nanosecond values, where the result may be capped at 32-bits.
This potentially could cause watchdog false negatives on 32-bit
systems, so this patch addresses the issue by using abs64().
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1442279124-7309-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The sync_cmos_clock has one use of struct timespec, which we want to
eventually replace with timespec64 or similar in the kernel. There
is no way this one can overflow, but the conversion to timespec64
is trivial and has no other dependencies.
Acked-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
There is exactly one caller of getnstime_raw_and_real in the kernel,
which is the pps_get_ts function. This changes the caller and
the implementation to work on timespec64 types rather than timespec,
to avoid the time_t overflow on 32-bit architectures.
For consistency with the other new functions (ktime_get_seconds,
ktime_get_real_*, ...), I'm renaming the function to
ktime_get_raw_and_real_ts64.
We still need to convert from the internal 64-bit type to 32 bit
types in the caller, but this conversion is now pushed out from
getnstime_raw_and_real to pps_get_ts. A follow-up patch changes
the remaining pps code to completely avoid the conversion.
Acked-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
There is only one user of the hardpps function in the kernel, so
it makes sense to atomically change it over to using 64-bit
timestamps for y2038 safety. In the hardpps implementation,
we also need to change the pps_normtime structure, which is
similar to struct timespec and also requires a 64-bit
seconds portion.
This introduces two temporary variables in pps_kc_event() to
do the conversion, they will be removed again in the next step,
which seemed preferable to having a larger patch changing it
all at the same time.
Acked-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
timer_stats_account_timer() reads timer->start_site, then checks it
for NULL and then re-reads it again, while
timer_stats_timer_clear_start_info() can concurrently reset
timer->start_site to NULL. This should not lead to crashes, but can
double number of entries in timer stats as start_site is used during
comparison, the doubled entries will have unuseful NULL start_site.
Read timer->start_site only once in timer_stats_account_timer().
The data race was found with KernelThreadSanitizer (KTSAN).
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: andreyknvl@google.com
Cc: glider@google.com
Cc: kcc@google.com
Cc: ktsan@googlegroups.com
Cc: john.stultz@linaro.org
Link: http://lkml.kernel.org/r/1442584463-69553-1-git-send-email-dvyukov@google.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tianhong Ding <dingtianhong@huawei.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Xinwei Hu <huxinwei@huawei.com>
Cc: Xunlei Pang <pang.xunlei@linaro.org>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1440484973-13892-1-git-send-email-thunder.leizhen@huawei.com
[ Fixed yet another typo in one of the sentences fixed. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timer fixes from Ingo Molnar:
"A fix for an abs()/abs64() bug that caused too slow NTP convergence on
32-bit kernels, plus a removal of an obsolete clockevents driver
facility after all users got converted during the merge window"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clockevents: Remove unused set_mode() callback
time: Fix timekeeping_freqadjust()'s incorrect use of abs() instead of abs64()
The internal clocksteering done for fine-grained error
correction uses a logarithmic approximation, so any time
adjtimex() adjusts the clock steering, timekeeping_freqadjust()
quickly approximates the correct clock frequency over a series
of ticks.
Unfortunately, the logic in timekeeping_freqadjust(), introduced
in commit:
dc491596f6 ("timekeeping: Rework frequency adjustments to work better w/ nohz")
used the abs() function with a s64 error value to calculate the
size of the approximated adjustment to be made.
Per include/linux/kernel.h:
"abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()".
Thus on 32-bit platforms, this resulted in the clocksteering to
take a quite dampended random walk trying to converge on the
proper frequency, which caused the adjustments to be made much
slower then intended (most easily observed when large
adjustments are made).
This patch fixes the issue by using abs64() instead.
Reported-by: Nuno Gonçalves <nunojpg@gmail.com>
Tested-by: Nuno Goncalves <nunojpg@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: <stable@vger.kernel.org> # v3.17+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1441840051-20244-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The code ensures that when nohz full is running, at least the
boot CPU serves as a housekeeper and it can't be later offlined.
Let's assert this assumption to make sure that we have CPUs to
handle unbound jobs like workqueues and timers while nohz full
CPUs run undisturbed.
Also improve the comments on housekeeper offlining prevention.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Vatika Harlalka <vatikaharlalka@gmail.com>
Link: http://lkml.kernel.org/r/1441119060-2230-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timer updates from Thomas Gleixner:
"Rather large, but nothing exiting:
- new range check for settimeofday() to prevent that boot time
becomes negative.
- fix for file time rounding
- a few simplifications of the hrtimer code
- fix for the proc/timerlist code so the output of clock realtime
timers is accurate
- more y2038 work
- tree wide conversion of clockevent drivers to the new callbacks"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (88 commits)
hrtimer: Handle failure of tick_init_highres() gracefully
hrtimer: Unconfuse switch_hrtimer_base() a bit
hrtimer: Simplify get_target_base() by returning current base
hrtimer: Drop return code of hrtimer_switch_to_hres()
time: Introduce timespec64_to_jiffies()/jiffies_to_timespec64()
time: Introduce current_kernel_time64()
time: Introduce struct itimerspec64
time: Add the common weak version of update_persistent_clock()
time: Always make sure wall_to_monotonic isn't positive
time: Fix nanosecond file time rounding in timespec_trunc()
timer_list: Add the base offset so remaining nsecs are accurate for non monotonic timers
cris/time: Migrate to new 'set-state' interface
kernel: broadcast-hrtimer: Migrate to new 'set-state' interface
xtensa/time: Migrate to new 'set-state' interface
unicore/time: Migrate to new 'set-state' interface
um/time: Migrate to new 'set-state' interface
sparc/time: Migrate to new 'set-state' interface
sh/localtimer: Migrate to new 'set-state' interface
score/time: Migrate to new 'set-state' interface
s390/time: Migrate to new 'set-state' interface
...
Pull NOHZ updates from Ingo Molnar:
"The main changes, mostly written by Frederic Weisbecker, include:
- Fix some jiffies based cputime assumptions. (No real harm because
the concerned code isn't used by full dynticks.)
- Simplify jiffies <-> usecs conversions. Remove dead code.
- Remove early hacks on nohz full code that avoided messing up idle
nohz internals. Now nohz integrates well full and idle and such
hack have become needless.
- Restart nohz full tick from irq exit. (A simplification and a
preparation for future optimization on scheduler kick to nohz
full)
- Code cleanups.
- Tile driver isolation enhancement on top of nohz. (Chris Metcalf)"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
nohz: Remove useless argument on tick_nohz_task_switch()
nohz: Move tick_nohz_restart_sched_tick() above its users
nohz: Restart nohz full tick from irq exit
nohz: Remove idle task special case
nohz: Prevent tilegx network driver interrupts
alpha: Fix jiffies based cputime assumption
apm32: Fix cputime == jiffies assumption
jiffies: Remove HZ > USEC_PER_SEC special case
Pull RCU updates from Ingo Molnar:
"The main RCU changes in this cycle are:
- the combination of tree geometry-initialization simplifications and
OS-jitter-reduction changes to expedited grace periods. These two
are stacked due to the large number of conflicts that would
otherwise result.
- privatize smp_mb__after_unlock_lock().
This commit moves the definition of smp_mb__after_unlock_lock() to
kernel/rcu/tree.h, in recognition of the fact that RCU is the only
thing using this, that nothing else is likely to use it, and that
it is likely to go away completely.
- documentation updates.
- torture-test updates.
- misc fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
rcu,locking: Privatize smp_mb__after_unlock_lock()
rcu: Silence lockdep false positive for expedited grace periods
rcu: Don't disable CPU hotplug during OOM notifiers
scripts: Make checkpatch.pl warn on expedited RCU grace periods
rcu: Update MAINTAINERS entry
rcu: Clarify CONFIG_RCU_EQS_DEBUG help text
rcu: Fix backwards RCU_LOCKDEP_WARN() in synchronize_rcu_tasks()
rcu: Rename rcu_lockdep_assert() to RCU_LOCKDEP_WARN()
rcu: Make rcu_is_watching() really notrace
cpu: Wait for RCU grace periods concurrently
rcu: Create a synchronize_rcu_mult()
rcu: Fix obsolete priority-boosting comment
rcu: Use WRITE_ONCE in RCU_INIT_POINTER
rcu: Hide RCU_NOCB_CPU behind RCU_EXPERT
rcu: Add RCU-sched flavors of get-state and cond-sync
rcu: Add fastpath bypassing funnel locking
rcu: Rename RCU_GP_DONE_FQS to RCU_GP_DOING_FQS
rcu: Pull out wait_event*() condition into helper function
documentation: Describe new expedited stall warnings
rcu: Add stall warnings to synchronize_sched_expedited()
...
Commit 75e3b37d05 ("hrtimer: Drop return code of hrtimer_switch_to_hres()")
drops the return code of hrtimer_switch_to_hres(). While doing so, it also
drops the return statement itself on failure. This may cause a system hang.
Seen when running arm:multi_v7_defconfig in qemu with devicetree file
vexpress-v2p-ca9.
Fixes: 75e3b37d05 ("hrtimer: Drop return code of hrtimer_switch_to_hres()")
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Link: http://lkml.kernel.org/r/1440231047-16256-1-git-send-email-linux@roeck-us.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The variable called "this_base" is confusing because its name suggests
it's of "struct hrtimer_clock_base" type, along with "base" and "new_base"
which doesn't help understanding this complicated function.
Make its name clearer and fix the misleading comment while at it.
[ tglx: Fixed the comment for real ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1439907509-9553-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
lock_timer_base() cannot prevent the following :
CPU1 ( in __mod_timer()
timer->flags |= TIMER_MIGRATING;
spin_unlock(&base->lock);
base = new_base;
spin_lock(&base->lock);
// The next line clears TIMER_MIGRATING
timer->flags &= ~TIMER_BASEMASK;
CPU2 (in lock_timer_base())
see timer base is cpu0 base
spin_lock_irqsave(&base->lock, *flags);
if (timer->flags == tf)
return base; // oops, wrong base
timer->flags |= base->cpu // too late
We must write timer->flags in one go, otherwise we can fool other cpus.
Fixes: bc7a34b8b9 ("timer: Reduce timer migration overhead if disabled")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Jon Christopherson <jon@jons.org>
Cc: David Miller <davem@davemloft.net>
Cc: xen-devel@lists.xen.org
Cc: david.vrabel@citrix.com
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Link: http://lkml.kernel.org/r/1439831928.32680.11.camel@edumazet-glaptop2.roam.corp.google.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
The conversion between struct timespec and jiffies is not year 2038
safe on 32bit systems. Introduce timespec64_to_jiffies() and
jiffies_to_timespec64() functions which use struct timespec64 to
make it ready for 2038 issue.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The current_kernel_time() is not year 2038 safe on 32bit systems
since it returns a timespec value. Introduce current_kernel_time64()
which returns a timespec64 value.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The weak update_persistent_clock64() calls update_persistent_clock(),
if the architecture defines an update_persistent_clock64() to replace
and remove its update_persistent_clock() version, when building the
kernel the linker will throw an undefined symbol error, that is, any
arch that switches to update_persistent_clock64() will have this issue.
To solve the issue, we add the common weak update_persistent_clock().
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Two issues were found on an IMX6 development board without an
enabled RTC device(resulting in the boot time and monotonic
time being initialized to 0).
Issue 1:exportfs -a generate:
"exportfs: /opt/nfs/arm does not support NFS export"
Issue 2:cat /proc/stat:
"btime 4294967236"
The same issues can be reproduced on x86 after running the
following code:
int main(void)
{
struct timeval val;
int ret;
val.tv_sec = 0;
val.tv_usec = 0;
ret = settimeofday(&val, NULL);
return 0;
}
Two issues are different symptoms of same problem:
The reason is a positive wall_to_monotonic pushes boot time back
to the time before Epoch, and getboottime will return negative
value.
In symptom 1:
negative boot time cause get_expiry() to overflow time_t
when input expire time is 2147483647, then cache_flush()
always clears entries just added in ip_map_parse.
In symptom 2:
show_stat() uses "unsigned long" to print negative btime
value returned by getboottime.
This patch fix the problem by prohibiting time from being set to a value which
would cause a negative boot time. As a result one can't set the CLOCK_REALTIME
time prior to (1970 + system uptime).
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Wang YanQing <udknight@gmail.com>
[jstultz: reworded commit message]
Signed-off-by: John Stultz <john.stultz@linaro.org>
timespec_trunc() avoids rounding if granularity <= nanoseconds-per-jiffie
(or TICK_NSEC). This optimization assumes that:
1. current_kernel_time().tv_nsec is already rounded to TICK_NSEC (i.e.
with HZ=1000 you'd get 1000000, 2000000, 3000000... but never 1000001).
This is no longer true (probably since hrtimers introduced in 2.6.16).
2. TICK_NSEC is evenly divisible by all possible granularities. This may
be true for HZ=100, 250, 1000, but obviously not for HZ=300 /
TICK_NSEC=3333333 (introduced in 2.6.20).
Thus, sub-second portions of in-core file times are not rounded to on-disk
granularity. I.e. file times may change when the inode is re-read from disk
or when the file system is remounted.
This affects all file systems with file time granularities > 1 ns and < 1s,
e.g. CEPH (1000 ns), UDF (1000 ns), CIFS (100 ns), NTFS (100 ns) and FUSE
(configurable from user mode via struct fuse_init_out.time_gran).
Steps to reproduce with e.g. UDF:
$ dd if=/dev/zero of=udfdisk count=10000 && mkudffs udfdisk
$ mkdir udf && mount udfdisk udf
$ touch udf/test && stat -c %y udf/test
2015-06-09 10:22:56.130006767 +0200
$ umount udf && mount udfdisk udf
$ stat -c %y udf/test
2015-06-09 10:22:56.130006000 +0200
Remounting truncates the mtime to 1 µs.
Fix the rounding in timespec_trunc() and update the documentation.
timespec_trunc() is exclusively used to calculate inode's [acm]time (mostly
via current_fs_time()), and always with super_block.s_time_gran as second
argument. So this can safely be changed without side effects.
Note: This does _not_ fix the issue for FAT's 2 second mtime resolution,
as super_block.s_time_gran isn't prepared to handle different ctime /
mtime / atime resolutions nor resolutions > 1 second.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Karsten Blees <blees@dcon.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
I noticed for non-monotonic timers in timer_list, some of the
output looked a little confusing.
For example:
#1: <0000000000000000>, posix_timer_fn, S:01, hrtimer_start_range_ns, leap-a-day/2360
# expires at 1434412800000000000-1434412800000000000 nsecs [in 1434410725062375469 to 1434410725062375469 nsecs]
You'll note the relative time till the expiration "[in xxx to
yyy nsecs]" is incorrect. This is because its printing the delta
between CLOCK_MONOTONIC time to the CLOCK_REALTIME expiration.
This patch fixes this issue by adding the clock offset to the
"now" time which we use to calculate the delta.
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Pull RCU changes from Paul E. McKenney:
- The combination of tree geometry-initialization simplifications
and OS-jitter-reduction changes to expedited grace periods.
These two are stacked due to the large number of conflicts
that would otherwise result.
[ With one addition, a temporary commit to silence a lockdep false
positive. Additional changes to the expedited grace-period
primitives (queued for 4.4) remove the cause of this false
positive, and therefore include a revert of this temporary commit. ]
- Documentation updates.
- Torture-test updates.
- Miscellaneous fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Migrate broadcast-hrtimer driver to the new 'set-state' interface
provided by clockevents core, the earlier 'set-mode' interface is marked
obsolete now.
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Restart the tick when necessary from the irq exit path. It makes nohz
full more flexible, simplify the related IPIs and doesn't bring
significant overhead on irq exit.
In a longer term view, it will allow us to piggyback the nohz kick
on the scheduler IPI in the future instead of sending a dedicated IPI
that often doubles the scheduler IPI on task wakeup. This will require
more changes though including careful review of resched_curr() callers
to include nohz full needs.
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
On nohz full early days, idle dynticks and full dynticks weren't well
integrated and we couldn't risk full dynticks calls on idle without
risking messing up tick idle statistics. This is why we prevented such
thing to happen.
Nowadays full dynticks and idle dynticks are better integrated and
interact without known issue.
So lets remove that.
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
HZ never goes much further 1000 and a bit. And if we ever reach one tick
per microsecond, we might be having a problem.
Lets stop maintaining this special case, just leave a paranoid check.
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc; John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
tick_broadcast_oneshot_control got moved from tick-broadcast to
tick-common, but the export stayed in the old place. Fix it up.
Fixes: f32dd11705 'tick/broadcast: Make idle check independent from mode and config'
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Dan reported that the recent changes to the broadcast code introduced
a potential NULL dereference.
Add the proper check.
Fixes: e045431190 "tick/broadcast: Sanity check the shutdown of the local clock_event"
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Andriy reported that on a virtual machine the warning about negative
expiry time in the clock events programming code triggered:
hpet: hpet0 irq 40 for MSI
hpet: hpet1 irq 41 for MSI
Switching to clocksource hpet
WARNING: at kernel/time/clockevents.c:239
[<ffffffff810ce6eb>] clockevents_program_event+0xdb/0xf0
[<ffffffff810cf211>] tick_handle_periodic_broadcast+0x41/0x50
[<ffffffff81016525>] timer_interrupt+0x15/0x20
When the second hpet is installed as a per cpu timer the broadcast
event is not longer required and stopped, which sets the next_evt of
the broadcast device to KTIME_MAX.
If after that a spurious interrupt happens on the broadcast device,
then the current code blindly handles it and tries to reprogram the
broadcast device afterwards, which adds the period to
next_evt. KTIME_MAX + period results in a negative expiry value
causing the WARN_ON in the clockevents code to trigger.
Add a proper check for the state of the broadcast device into the
interrupt handler and return if the interrupt is spurious.
[ Folded in pointer fix from Sudeep ]
Reported-by: Andriy Gapon <avg@FreeBSD.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20150705205221.802094647@linutronix.de
If the current cpu is the one which has the hrtimer based broadcast
queued then we better return busy immediately instead of going through
loops and hoops to figure that out.
[ Split out from a larger combo patch ]
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
Tell the idle code not to go deep if the broadcast IPI is about to
arrive.
[ Split out from a larger combo patch ]
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
If the system is in periodic mode and the broadcast device is hrtimer
based, return busy as we have no proper handling for this.
[ Split out from a larger combo patch ]
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
We need to check more than the periodic mode for proper operation in
all runtime combinations. To avoid code duplication move the check
into the enter state handling.
No functional change.
[ Split out from a larger combo patch ]
Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
Add a check for a installed broadcast device to the oneshot control
function and return busy if not.
[ Split out from a larger combo patch ]
Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
Currently the broadcast busy check, which prevents the idle code from
going into deep idle, works only in one shot mode.
If NOHZ and HIGHRES are off (config or command line) there is no
sanity check at all, so under certain conditions cpus are allowed to
go into deep idle, where the local timer stops, and are not woken up
again because there is no broadcast timer installed or a hrtimer based
broadcast device is not evaluated.
Move tick_broadcast_oneshot_control() into the common code and provide
proper subfunctions for the various config combinations.
The common check in tick_broadcast_oneshot_control() is for the C3STOP
misfeature flag of the local clock event device. If its not set, idle
can proceed. If set, further checks are necessary.
Provide checks for the trivial cases:
- If broadcast is disabled in the config, then return busy
- If oneshot mode (NOHZ/HIGHES) is disabled in the config, return
busy if the broadcast device is hrtimer based.
- If oneshot mode is enabled in the config call the original
tick_broadcast_oneshot_control() function. That function needs
extra checks which will be implemented in seperate patches.
[ Split out from a larger combo patch ]
Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
The broadcast code shuts down the local clock event unconditionally
even if no broadcast device is installed or if the broadcast device is
hrtimer based.
Add proper sanity checks.
[ Split out from a larger combo patch ]
Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
The hrtimer based broadcast vehicle can cause a hrtimer recursion
which went unnoticed until we changed the hrtimer expiry code to keep
track of the currently running timer.
local_timer_interrupt()
local_handler()
hrtimer_interrupt()
expire_hrtimers()
broadcast_hrtimer()
send_ipis()
local_handler()
hrtimer_interrupt()
....
Solution is simple: Prevent the local handler call from the broadcast
code when the broadcast 'device' is hrtimer based.
[ Split out from a larger combo patch ]
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Suzuki Poulose <Suzuki.Poulose@arm.com>
Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Cc: Catalin Marinas <Catalin.Marinas@arm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
Its mandatory for the drivers to provide set_state_{oneshot|periodic}()
(only if related modes are supported) and set_state_shutdown() callbacks
today, if they are implementing the new set-state interface.
But this leads to unnecessary noop callbacks for drivers which don't
want to implement them. Over that, it will lead to a full function call
for nothing really useful.
Lets make all set-state callbacks optional.
Suggested-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: http://lkml.kernel.org/r/1436256875-15562-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The RCU_USER_QS Kconfig parameter is now just a synonym for NO_HZ_FULL,
so this commit eliminates RCU_USER_QS, replacing all uses with NO_HZ_FULL.
Reported-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull timer fixes from Thomas Gleixner:
"This contains:
- a build regression fix introduced by the timeconst move
- a hotplug regression fix introduced by the timer wheel diet
- a cpu hotplug bug fix for the exynos clocksource driver"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Remove development rules from Kbuild/Makefile
timer: Fix hotplug regression
clocksource: exynos_mct: Avoid blocking calls in the cpu hotplug notifier
Main excitement here is Peter Zijlstra's lockless rbtree optimization to
speed module address lookup. He found some abusers of the module lock
doing that too.
A little bit of parameter work here too; including Dan Streetman's breaking
up the big param mutex so writing a parameter can load another module (yeah,
really). Unfortunately that broke the usual suspects, !CONFIG_MODULES and
!CONFIG_SYSFS, so those fixes were appended too.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkgKHAAoJENkgDmzRrbjxQpwQAJVmBN6jF3SnwbQXv9vRixjH
58V33sb1G1RW+kXxQ3/e8jLX/4VaN479CufruXQp+IJWXsN/CH0lbC3k8m7u50d7
b1Zeqd/Yrh79rkc11b0X1698uGCSMlzz+V54Z0QOTEEX+nSu2ZZvccFS4UaHkn3z
rqDo00lb7rxQz8U25qro2OZrG6D3ub2q20TkWUB8EO4AOHkPn8KWP2r429Axrr0K
wlDWDTTt8/IsvPbuPf3T15RAhq1avkMXWn9nDXDjyWbpLfTn8NFnWmtesgY7Jl4t
GjbXC5WYekX3w2ZDB9KaT/DAMQ1a7RbMXNSz4RX4VbzDl+yYeSLmIh2G9fZb1PbB
PsIxrOgy4BquOWsJPm+zeFPSC3q9Cfu219L4AmxSjiZxC3dlosg5rIB892Mjoyv4
qxmg6oiqtc4Jxv+Gl9lRFVOqyHZrTC5IJ+xgfv1EyP6kKMUKLlDZtxZAuQxpUyxR
HZLq220RYnYSvkWauikq4M8fqFM8bdt6hLJnv7bVqllseROk9stCvjSiE3A9szH5
OgtOfYV5GhOeb8pCZqJKlGDw+RoJ21jtNCgOr6DgkNKV9CX/kL/Puwv8gnA0B0eh
dxCeB7f/gcLl7Cg3Z3gVVcGlgak6JWrLf5ITAJhBZ8Lv+AtL2DKmwEWS/iIMRmek
tLdh/a9GiCitqS0bT7GE
=tWPQ
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
"Main excitement here is Peter Zijlstra's lockless rbtree optimization
to speed module address lookup. He found some abusers of the module
lock doing that too.
A little bit of parameter work here too; including Dan Streetman's
breaking up the big param mutex so writing a parameter can load
another module (yeah, really). Unfortunately that broke the usual
suspects, !CONFIG_MODULES and !CONFIG_SYSFS, so those fixes were
appended too"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (26 commits)
modules: only use mod->param_lock if CONFIG_MODULES
param: fix module param locks when !CONFIG_SYSFS.
rcu: merge fix for Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
module: add per-module param_lock
module: make perm const
params: suppress unused variable error, warn once just in case code changes.
modules: clarify CONFIG_MODULE_COMPRESS help, suggest 'N'.
kernel/module.c: avoid ifdefs for sig_enforce declaration
kernel/workqueue.c: remove ifdefs over wq_power_efficient
kernel/params.c: export param_ops_bool_enable_only
kernel/params.c: generalize bool_enable_only
kernel/module.c: use generic module param operaters for sig_enforce
kernel/params: constify struct kernel_param_ops uses
sysfs: tightened sysfs permission checks
module: Rework module_addr_{min,max}
module: Use __module_address() for module_address_lookup()
module: Make the mod_tree stuff conditional on PERF_EVENTS || TRACING
module: Optimize __module_address() using a latched RB-tree
rbtree: Implement generic latch_tree
seqlock: Introduce raw_read_seqcount_latch()
...
time.o gets rebuilt unconditionally due to a leftover Makefile rule
which was placed there for development purposes.
Remove it along with the commented out always rule in the toplevel
Kbuild file.
Fixes: 0a227985d4 'time: Move timeconst.h into include/generated'
Reported-by; Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Nicholas Mc Guire <der.herr@hofr.at>
The recent timer wheel rework removed the get/put_cpu_var() pair in
the hotplug migration code, which results in:
BUG: using smp_processor_id() in preemptible [00000000] code: hib.sh/2845
...
[<ffffffff810d4fa3>] timer_cpu_notify+0x53/0x12
That hunk is a leftover from an earlier iteration and went unnoticed
so far.
Restore the previous code which was obviously correct.
Fixes: 0eeda71bc3 'timer: Replace timer base by a cpu index'
Reported-and_tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
- ACPICA update to upstream revision 20150515 including basic
support for ACPI 6 features: new ACPI tables introduced by
ACPI 6 (STAO, XENV, WPBT, NFIT, IORT), changes related to the
other tables (DTRM, FADT, LPIT, MADT), new predefined names
(_BTH, _CR3, _DSD, _LPI, _MTL, _PRR, _RDI, _RST, _TFP, _TSN),
fixes and cleanups (Bob Moore, Lv Zheng).
- ACPI device power management core code update to follow ACPI 6
which reflects the ACPI device power management implementation
in Windows (Rafael J Wysocki).
- Rework of the backlight interface selection logic to reduce the
number of kernel command line options and improve the handling
of DMI quirks that may be involved in that and to make the
code generally more straightforward (Hans de Goede).
- Fixes for the ACPI Embedded Controller (EC) driver related to
the handling of EC transactions (Lv Zheng).
- Fix for a regression related to the ACPI resources management
and resulting from a recent change of ACPI initialization code
ordering (Rafael J Wysocki).
- Fix for a system initialization regression related to ACPI
introduced during the 3.14 cycle and caused by running the
code that switches the platform over to the ACPI mode too
early in the initialization sequence (Rafael J Wysocki).
- Support for the ACPI _CCA device configuration object related
to DMA cache coherence (Suravee Suthikulpanit).
- ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov).
- ACPI battery driver cleanups (Luis Henriques, Mathias Krause).
- ACPI processor driver cleanups (Hanjun Guo).
- Cleanups and documentation update related to the ACPI device
properties interface based on _DSD (Rafael J Wysocki).
- ACPI device power management fixes (Rafael J Wysocki).
- Assorted cleanups related to ACPI (Dominik Brodowski. Fabian
Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki).
- Fix for a long-standing issue causing General Protection Faults
to be generated occasionally on return to user space after resume
from ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar).
- Fix to make the suspend core code return -EBUSY consistently in
all cases when system suspend is aborted due to wakeup detection
(Ruchi Kandoi).
- Support for automated device wakeup IRQ handling allowing drivers
to make their PM support more starightforward (Tony Lindgren).
- New tracepoints for suspend-to-idle tracing and rework of the
prepare/complete callbacks tracing in the PM core (Todd E Brandt,
Rafael J Wysocki).
- Wakeup sources framework enhancements (Jin Qian).
- New macro for noirq system PM callbacks (Grygorii Strashko).
- Assorted cleanups related to system suspend (Rafael J Wysocki).
- cpuidle core cleanups to make the code more efficient (Rafael J
Wysocki).
- powernv/pseries cpuidle driver update (Shilpasri G Bhat).
- cpufreq core fixes related to CPU online/offline that should
reduce the overhead of these operations quite a bit, unless the
CPU in question is physically going away (Viresh Kumar, Saravana
Kannan).
- Serialization of cpufreq governor callbacks to avoid race
conditions in some cases (Viresh Kumar).
- intel_pstate driver fixes and cleanups (Doug Smythies, Prarit
Bhargava, Joe Konno).
- cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep
Holla, Felipe Balbi, Tang Yuantian).
- Assorted cleanups in cpufreq drivers and core (Shailendra Verma,
Fabian Frederick, Wang Long).
- New Device Tree bindings for representing Operating Performance
Points (Viresh Kumar).
- Updates for the common clock operations support code in the PM
core (Rajendra Nayak, Geert Uytterhoeven).
- PM domains core code update (Geert Uytterhoeven).
- Intel Knights Landing support for the RAPL (Running Average Power
Limit) power capping driver (Dasaratharaman Chandramouli).
- Fixes related to the floor frequency setting on Atom SoCs in the
RAPL power capping driver (Ajay Thomas).
- Runtime PM framework documentation update (Ben Dooks).
- cpupower tool fix (Herton R Krzesinski).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJViJdWAAoJEILEb/54YlRx/9gP/3gHoFevNRycvn0VpKqdufCI
Mxy2LBBLlfyW2uD3+NvqvA2WWSo0Cs/LgXa04eAVxPdU7k48s8w+54U23wSouzjW
gfwAmuHxzDR8v0h8X3h6BxNzmkIQHtmDcQlA/cZdHejY/UUw01yxRGNUUZDNbxlm
WXn2nmlBLmGqXTYq0fpBV+3jicUghJqHHsBCqa3VR2yQioHMJG01F4UZMqYTZunN
OIvDUghxByKz6alzdCqlLl1Y0exV6vwWUAzBsl1qHqmHu/bWFSZn3ujNNVrjqHhw
Kl7/8dC2pQkv3Zo3gEVvfQ0onotwWZxGHzPQRdvmxvRnBunQVCi/wynx90yABX/r
PPb/iBNV0mZskbF0zb0GZT3ZZWGA8Z0p3o5JQv2jV4m62qTzx8w50Y5kbn9N1WT+
5bre7AVbVAlGonWszcS9iE+6TOboRz9OD1CCwPFXHItFutlBkau+1hHfFoLM0o9n
LhpGuyszT/EUa1BHkLzuCckFqO2DpbF3N2CKmuTekw0CdgdsvRL2pRByuerk3j7R
WQhlcvBq5YH6j43AuoEZKp8r1iN8oG/iqlrMYQaYWrW9hJaoQOoU8dGJxp/e7gKN
r/qeYjETI+tIsjCbtH5WQzzxDI3gPISAYAtfqs7G34EEo+Lwp6kyRUAF4kDot2V3
ZIyuKMmTu4cdwDETr/O+
=7jTj
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"The rework of backlight interface selection API from Hans de Goede
stands out from the number of commits and the number of affected
places perspective. The cpufreq core fixes from Viresh Kumar are
quite significant too as far as the number of commits goes and because
they should reduce CPU online/offline overhead quite a bit in the
majority of cases.
From the new featues point of view, the ACPICA update (to upstream
revision 20150515) adding support for new ACPI 6 material to ACPICA is
the one that matters the most as some new significant features will be
based on it going forward. Also included is an update of the ACPI
device power management core to follow ACPI 6 (which in turn reflects
the Windows' device PM implementation), a PM core extension to support
wakeup interrupts in a more generic way and support for the ACPI _CCA
device configuration object.
The rest is mostly fixes and cleanups all over and some documentation
updates, including new DT bindings for Operating Performance Points.
There is one fix for a regression introduced in the 4.1 cycle, but it
adds quite a number of lines of code, it wasn't really ready before
Thursday and you were on vacation, so I refrained from pushing it on
the last minute for 4.1.
Specifics:
- ACPICA update to upstream revision 20150515 including basic support
for ACPI 6 features: new ACPI tables introduced by ACPI 6 (STAO,
XENV, WPBT, NFIT, IORT), changes related to the other tables (DTRM,
FADT, LPIT, MADT), new predefined names (_BTH, _CR3, _DSD, _LPI,
_MTL, _PRR, _RDI, _RST, _TFP, _TSN), fixes and cleanups (Bob Moore,
Lv Zheng).
- ACPI device power management core code update to follow ACPI 6
which reflects the ACPI device power management implementation in
Windows (Rafael J Wysocki).
- rework of the backlight interface selection logic to reduce the
number of kernel command line options and improve the handling of
DMI quirks that may be involved in that and to make the code
generally more straightforward (Hans de Goede).
- fixes for the ACPI Embedded Controller (EC) driver related to the
handling of EC transactions (Lv Zheng).
- fix for a regression related to the ACPI resources management and
resulting from a recent change of ACPI initialization code ordering
(Rafael J Wysocki).
- fix for a system initialization regression related to ACPI
introduced during the 3.14 cycle and caused by running the code
that switches the platform over to the ACPI mode too early in the
initialization sequence (Rafael J Wysocki).
- support for the ACPI _CCA device configuration object related to
DMA cache coherence (Suravee Suthikulpanit).
- ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov).
- ACPI battery driver cleanups (Luis Henriques, Mathias Krause).
- ACPI processor driver cleanups (Hanjun Guo).
- cleanups and documentation update related to the ACPI device
properties interface based on _DSD (Rafael J Wysocki).
- ACPI device power management fixes (Rafael J Wysocki).
- assorted cleanups related to ACPI (Dominik Brodowski, Fabian
Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki).
- fix for a long-standing issue causing General Protection Faults to
be generated occasionally on return to user space after resume from
ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar).
- fix to make the suspend core code return -EBUSY consistently in all
cases when system suspend is aborted due to wakeup detection (Ruchi
Kandoi).
- support for automated device wakeup IRQ handling allowing drivers
to make their PM support more starightforward (Tony Lindgren).
- new tracepoints for suspend-to-idle tracing and rework of the
prepare/complete callbacks tracing in the PM core (Todd E Brandt,
Rafael J Wysocki).
- wakeup sources framework enhancements (Jin Qian).
- new macro for noirq system PM callbacks (Grygorii Strashko).
- assorted cleanups related to system suspend (Rafael J Wysocki).
- cpuidle core cleanups to make the code more efficient (Rafael J
Wysocki).
- powernv/pseries cpuidle driver update (Shilpasri G Bhat).
- cpufreq core fixes related to CPU online/offline that should reduce
the overhead of these operations quite a bit, unless the CPU in
question is physically going away (Viresh Kumar, Saravana Kannan).
- serialization of cpufreq governor callbacks to avoid race
conditions in some cases (Viresh Kumar).
- intel_pstate driver fixes and cleanups (Doug Smythies, Prarit
Bhargava, Joe Konno).
- cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep
Holla, Felipe Balbi, Tang Yuantian).
- assorted cleanups in cpufreq drivers and core (Shailendra Verma,
Fabian Frederick, Wang Long).
- new Device Tree bindings for representing Operating Performance
Points (Viresh Kumar).
- updates for the common clock operations support code in the PM core
(Rajendra Nayak, Geert Uytterhoeven).
- PM domains core code update (Geert Uytterhoeven).
- Intel Knights Landing support for the RAPL (Running Average Power
Limit) power capping driver (Dasaratharaman Chandramouli).
- fixes related to the floor frequency setting on Atom SoCs in the
RAPL power capping driver (Ajay Thomas).
- runtime PM framework documentation update (Ben Dooks).
- cpupower tool fix (Herton R Krzesinski)"
* tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (194 commits)
cpuidle: powernv/pseries: Auto-promotion of snooze to deeper idle state
x86: Load __USER_DS into DS/ES after resume
PM / OPP: Add binding for 'opp-suspend'
PM / OPP: Allow multiple OPP tables to be passed via DT
PM / OPP: Add new bindings to address shortcomings of existing bindings
ACPI: Constify ACPI device IDs in documentation
ACPI / enumeration: Document the rules regarding the PRP0001 device ID
ACPI / video: Make acpi_video_unregister_backlight() private
acpi-video-detect: Remove old API
toshiba-acpi: Port to new backlight interface selection API
thinkpad-acpi: Port to new backlight interface selection API
sony-laptop: Port to new backlight interface selection API
samsung-laptop: Port to new backlight interface selection API
msi-wmi: Port to new backlight interface selection API
msi-laptop: Port to new backlight interface selection API
intel-oaktrail: Port to new backlight interface selection API
ideapad-laptop: Port to new backlight interface selection API
fujitsu-laptop: Port to new backlight interface selection API
eeepc-laptop: Port to new backlight interface selection API
dell-wmi: Port to new backlight interface selection API
...
Pull timer updates from Thomas Gleixner:
"A rather largish update for everything time and timer related:
- Cache footprint optimizations for both hrtimers and timer wheel
- Lower the NOHZ impact on systems which have NOHZ or timer migration
disabled at runtime.
- Optimize run time overhead of hrtimer interrupt by making the clock
offset updates smarter
- hrtimer cleanups and removal of restrictions to tackle some
problems in sched/perf
- Some more leap second tweaks
- Another round of changes addressing the 2038 problem
- First step to change the internals of clock event devices by
introducing the necessary infrastructure
- Allow constant folding for usecs/msecs_to_jiffies()
- The usual pile of clockevent/clocksource driver updates
The hrtimer changes contain updates to sched, perf and x86 as they
depend on them plus changes all over the tree to cleanup API changes
and redundant code, which got copied all over the place. The y2038
changes touch s390 to remove the last non 2038 safe code related to
boot/persistant clock"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
clocksource: Increase dependencies of timer-stm32 to limit build wreckage
timer: Minimize nohz off overhead
timer: Reduce timer migration overhead if disabled
timer: Stats: Simplify the flags handling
timer: Replace timer base by a cpu index
timer: Use hlist for the timer wheel hash buckets
timer: Remove FIFO "guarantee"
timers: Sanitize catchup_timer_jiffies() usage
hrtimer: Allow hrtimer::function() to free the timer
seqcount: Introduce raw_write_seqcount_barrier()
seqcount: Rename write_seqcount_barrier()
hrtimer: Fix hrtimer_is_queued() hole
hrtimer: Remove HRTIMER_STATE_MIGRATE
selftest: Timers: Avoid signal deadlock in leap-a-day
timekeeping: Copy the shadow-timekeeper over the real timekeeper last
clockevents: Check state instead of mode in suspend/resume path
selftests: timers: Add leap-second timer edge testing to leap-a-day.c
ntp: Do leapsecond adjustment in adjtimex read path
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
ntp: Introduce and use SECS_PER_DAY macro instead of 86400
...
If nohz is disabled on the kernel command line the [hr]timer code
still calls wake_up_nohz_cpu() and tick_nohz_full_cpu(), a pretty
pointless exercise. Cache nohz_active in [hr]timer per cpu bases and
avoid the overhead.
Before:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu
After:
48.73% hog [.] main
15.36% [kernel] [k] _raw_spin_lock_irqsave
9.77% [kernel] [k] _raw_spin_unlock_irqrestore
6.61% [kernel] [k] lock_timer_base.isra.38
6.42% [kernel] [k] mod_timer
3.90% [kernel] [k] detach_if_pending
3.76% [kernel] [k] del_timer
2.41% [kernel] [k] internal_add_timer
1.39% [kernel] [k] __internal_add_timer
0.76% [kernel] [k] timerfn
We probably should have a cached value for nohz full in the per cpu
bases as well to avoid the cpumask check. The base cache line is hot
already, the cpumask not necessarily.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.207378134@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Eric reported that the timer_migration sysctl is not really nice
performance wise as it needs to check at every timer insertion whether
the feature is enabled or not. Further the check does not live in the
timer code, so we have an extra function call which checks an extra
cache line to figure out that it is disabled.
We can do better and store that information in the per cpu (hr)timer
bases. I pondered to use a static key, but that's a nightmare to
update from the nohz code and the timer base cache line is hot anyway
when we select a timer base.
The old logic enabled the timer migration unconditionally if
CONFIG_NO_HZ was set even if nohz was disabled on the kernel command
line.
With this modification, we start off with migration disabled. The user
visible sysctl is still set to enabled. If the kernel switches to NOHZ
migration is enabled, if the user did not disable it via the sysctl
prior to the switch. If nohz=off is on the kernel command line,
migration stays disabled no matter what.
Before:
47.76% hog [.] main
14.84% [kernel] [k] _raw_spin_lock_irqsave
9.55% [kernel] [k] _raw_spin_unlock_irqrestore
6.71% [kernel] [k] mod_timer
6.24% [kernel] [k] lock_timer_base.isra.38
3.76% [kernel] [k] detach_if_pending
3.71% [kernel] [k] del_timer
2.50% [kernel] [k] internal_add_timer
1.51% [kernel] [k] get_nohz_timer_target
1.28% [kernel] [k] __internal_add_timer
0.78% [kernel] [k] timerfn
0.48% [kernel] [k] wake_up_nohz_cpu
After:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.127050787@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Simplify the handling of the flag storage for the timer statistics. No
intermediate storage anymore. Just hand over the flags field.
I left the printout of 'deferrable' for now because changing this
would be an ABI update and I have no idea how strong people feel about
that. OTOH, I wonder whether we should kill the whole timer stats
stuff because all of that information can be retrieved via ftrace/perf
as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224512.046626248@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Instead of storing a pointer to the per cpu tvec_base we can simply
cache a CPU index in the timer_list and use that to get hold of the
correct per cpu tvec_base. This is only used in lock_timer_base() and
the slightly larger code is peanuts versus the spinlock operation and
the d-cache foot print of the timer wheel.
Aside of that this allows to get rid of following nuisances:
- boot_tvec_base
That statically allocated 4k bss data is just kept around so the
timer has a home when it gets statically initialized. It serves no
other purpose.
With the CPU index we assign the timer to CPU0 at static
initialization time and therefor can avoid the whole boot_tvec_base
dance. That also simplifies the init code, which just can use the
per cpu base.
Before:
text data bss dec hex filename
17491 9201 4160 30852 7884 ../build/kernel/time/timer.o
After:
text data bss dec hex filename
17440 9193 0 26633 6809 ../build/kernel/time/timer.o
- Overloading the base pointer with various flags
The CPU index has enough space to hold the flags (deferrable,
irqsafe) so we can get rid of the extra masking and bit fiddling
with the base pointer.
As a benefit we reduce the size of struct timer_list on 64 bit
machines. 4 - 8 bytes, a size reduction up to 15% per struct timer_list,
which is a real win as we have tons of them embedded in other structs.
This changes also the newly added deferrable printout of the timer
start trace point to capture and print all timer->flags, which allows
us to decode the target cpu of the timer as well.
We might have used bitfields for this, but that would change the
static initializers and the init function for no value to accomodate
big endian bitfields.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Badhri Jagan Sridharan <Badhri@google.com>
Link: http://lkml.kernel.org/r/20150526224511.950084301@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This reduces the size of struct tvec_base by 50% and results in
slightly smaller code as well.
Before:
struct tvec_base: size: 8256, cachelines: 129
text data bss dec hex filename
17698 13297 8256 39251 9953 ../build/kernel/time/timer.o
After:
struct tvec_base: 4160, cachelines: 65
text data bss dec hex filename
17491 9201 4160 30852 7884 ../build/kernel/time/timer.o
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224511.854731214@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The FIFO guarantee is only there if two timers are queued into the
same bucket at the same jiffie on the same cpu:
- The slack value depends on the delta between expiry and enqueue
time, so the resulting expiry time can be different for timers
which are queued in different jiffies.
- Timers which are queued into the secondary array end up after a
later queued timer which was queued into the primary array due to
cascading.
- Timers can end up on different cpus due to the NOHZ target moving
around. Obviously there is no guarantee of expiry ordering between
cpus.
So anything which relies on FIFO behaviour of the timer wheel is
broken already.
This is a preparatory patch for converting the timer wheel to hlist
which reduces the memory foot print of the wheel by 50%.
It's a seperate patch so any (unlikely to happen) regression caused by
this can be identified clearly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Cc: George Spelvin <linux@horizon.com>
Link: http://lkml.kernel.org/r/20150526224511.757520403@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
catchup_timer_jiffies() has been applied blindly to several functions
without looking for possible better ways to do it.
1) internal_add_timer()
Move the update to base->all_timers before we actually insert the
timer into the wheel.
2) detach_if_pending()
Again the update to base->all_timers allows us to explicitely do
the timer_jiffies update in place, if this was the last timer which
got removed.
3) __run_timers()
We only check on entry, which is silly, because base->timer_jiffies
can be behind - especially on NOHZ kernels - and if there is a
single deferrable timer somewhere between base->timer_jiffies and
jiffies we expire it and then loop until base->timer_jiffies ==
jiffies.
Move it into the loop.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joonwoo Park <joonwoop@codeaurora.org>
Cc: Wenbo Wang <wenbo.wang@memblaze.com>
Link: http://lkml.kernel.org/r/20150526224511.662994644@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* pm-sleep:
PM / sleep: trace_device_pm_callback coverage in dpm_prepare/complete
PM / wakeup: add a dummy wakeup_source to record statistics
PM / sleep: Make suspend-to-idle-specific code depend on CONFIG_SUSPEND
PM / sleep: Return -EBUSY from suspend_enter() on wakeup detection
PM / tick: Add tracepoints for suspend-to-idle diagnostics
PM / sleep: Fix symbol name in a comment in kernel/power/main.c
leds / PM: fix hibernation on arm when gpio-led used with CPU led trigger
ARM: omap-device: use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS
bus: omap_l3_noc: add missed callbacks for suspend-to-disk
PM / sleep: Add macro to define common noirq system PM callbacks
PM / sleep: Refine diagnostic messages in enter_state()
PM / wakeup: validate wakeup source before activating it.
* pm-runtime:
PM / Runtime: Update last_busy in rpm_resume
PM / runtime: add note about re-calling in during device probe()
Currently an hrtimer callback function cannot free its own timer
because __run_hrtimer() still needs to clear HRTIMER_STATE_CALLBACK
after it. Freeing the timer would result in a clear use-after-free.
Solve this by using a scheme similar to regular timers; track the
current running timer in hrtimer_clock_base::running.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: wanpeng.li@linux.intel.com
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124743.471563047@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The fix in d151832650 (time: Move clock_was_set_seq update
before updating shadow-timekeeper) was unfortunately incomplete.
The main gist of that change was to do the shadow-copy update
last, so that any state changes were properly duplicated, and
we wouldn't accidentally have stale data in the shadow.
Unfortunately in the main update_wall_time() logic, we update
use the shadow-timekeeper to calculate the next update values,
then while holding the lock, copy the shadow-timekeeper over,
then call timekeeping_update() to do some additional
bookkeeping, (skipping the shadow mirror). The bug with this is
the additional bookkeeping isn't all read-only, and some
changes timkeeper state. Thus we might then overwrite this state
change on the next update.
To avoid this problem, do the timekeeping_update() on the
shadow-timekeeper prior to copying the full state over to
the real-timekeeper.
This avoids problems with both the clock_was_set_seq and
next_leap_ktime being overwritten and possibly the
fast-timekeepers as well.
Many thanks to Prarit for his rigorous testing, which discovered
this problem, along with Prarit and Daniel's work validating this
fix.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434560753-7441-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CLOCK_EVT_MODE_* macros are present for backward compatibility (as most
of the drivers are still using old ->set_mode() interface).
These macro's shouldn't be used anymore in code, that is common to both
driver interfaces, i.e. ->set_mode() and ->set_state_*().
Drivers implementing ->set_state_*() interface, which have their
clkevt->mode set to 0 (clkevt device structures are normally globally
defined), will not participate in suspend/resume as they will always be
marked as UNUSED.
Fix this by checking state of the clockevent device instead of mode,
which is updated for both the interfaces.
Fixes: ac34ad27fc ("clockevents: Do not suspend/resume if unused")
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: alexandre.belloni@free-electrons.com
Cc: sylvain.rochet@finsecur.com
Link: http://lkml.kernel.org/r/a1964eef6e8a47d02b1ff9083c6c91f73f0ff643.1434537215.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since the leapsecond is applied at tick-time, this means there is a
small window of time at the start of a leap-second where we cross into
the next second before applying the leap.
This patch modified adjtimex so that the leap-second is applied on the
second edge. Providing more correct leapsecond behavior.
This does make it so that adjtimex()'s returned time values can be
inconsistent with time values read from gettimeofday() or
clock_gettime(CLOCK_REALTIME,...) for a brief period of one tick at
the leapsecond. However, those other interfaces do not provide the
TIME_OOP time_state return that adjtimex() provides, which allows the
leapsecond to be properly represented. They instead only see a time
discontinuity, and cannot tell the first 23:59:59 from the repeated
23:59:59 leap second.
This seems like a reasonable tradeoff given clock_gettime() /
gettimeofday() cannot properly represent a leapsecond, and users
likely care more about performance, while folks who are using
adjtimex() more likely care about leap-second correctness.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434063297-28657-5-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently, leapsecond adjustments are done at tick time. As a result,
the leapsecond was applied at the first timer tick *after* the
leapsecond (~1-10ms late depending on HZ), rather then exactly on the
second edge.
This was in part historical from back when we were always tick based,
but correcting this since has been avoided since it adds extra
conditional checks in the gettime fastpath, which has performance
overhead.
However, it was recently pointed out that ABS_TIME CLOCK_REALTIME
timers set for right after the leapsecond could fire a second early,
since some timers may be expired before we trigger the timekeeping
timer, which then applies the leapsecond.
This isn't quite as bad as it sounds, since behaviorally it is similar
to what is possible w/ ntpd made leapsecond adjustments done w/o using
the kernel discipline. Where due to latencies, timers may fire just
prior to the settimeofday call. (Also, one should note that all
applications using CLOCK_REALTIME timers should always be careful,
since they are prone to quirks from settimeofday() disturbances.)
However, the purpose of having the kernel do the leap adjustment is to
avoid such latencies, so I think this is worth fixing.
So in order to properly keep those timers from firing a second early,
this patch modifies the ntp and timekeeping logic so that we keep
enough state so that the update_base_offsets_now accessor, which
provides the hrtimer core the current time, can check and apply the
leapsecond adjustment on the second edge. This prevents the hrtimer
core from expiring timers too early.
This patch does not modify any other time read path, so no additional
overhead is incurred. However, this also means that the leap-second
continues to be applied at tick time for all other read-paths.
Apologies to Richard Cochran, who pushed for similar changes years
ago, which I resisted due to the concerns about the performance
overhead.
While I suspect this isn't extremely critical, folks who care about
strict leap-second correctness will likely want to watch
this. Potentially a -stable candidate eventually.
Originally-suggested-by: Richard Cochran <richardcochran@gmail.com>
Reported-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reported-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434063297-28657-4-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently the leapsecond logic uses what looks like magic values.
Improve this by defining SECS_PER_DAY and using that macro
to make the logic more clear.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1434063297-28657-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It was reported that 868a3e915f (hrtimer: Make offset
update smarter) was causing timer problems after suspend/resume.
The problem with that change is the modification to
clock_was_set_seq in timekeeping_update is done prior to
mirroring the time state to the shadow-timekeeper. Thus the
next time we do update_wall_time() the updated sequence is
overwritten by whats in the shadow copy.
This patch moves the shadow-timekeeper mirroring to the end
of the function, after all updates have been made, so all data
is kept in sync.
(This patch also affects the update_fast_timekeeper calls which
were also problematically done prior to the mirroring).
Reported-and-tested-by: Jeremiah Mahler <jmmahler@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1434063297-28657-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
clocksource messages aren't prefixed in dmesg so it's a bit unclear
what subsystem emits the messages.
Use pr_fmt and pr_<level> to auto-prefix the messages appropriately.
Miscellanea:
o Remove "Warning" from KERN_WARNING level messages
o Align "timekeeping watchdog: " messages
o Coalesce formats
o Align multiline arguments
Signed-off-by: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/1432579795.2846.75.camel@perches.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the usecs_to_jiffies conditional code part in time.c and
jiffies.h putting it into conditional functions rather than #ifdefs
to improve readability. This is analogous to the msecs_to_jiffies()
cleanup in commit ca42aaf0c8 ("time: Refactor msecs_to_jiffies")
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1432832996-12129-1-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The only sensible way to make abuse of core internal fields obvious
and easy to grep for.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
We want to rename dev->state, so provide proper get and set
functions. Rename clockevents_set_state() to
clockevents_switch_state() to avoid confusion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Because with latches there is a strict data dependency on the seq load
we can avoid the rmb in favour of a read_barrier_depends.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Improve the documentation of the latch technique as used in the
current timekeeping code, such that it can be readily employed
elsewhere.
Borrow from the comments in timekeeping and replace those with a
reference to this more generic comment.
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There is no point in calling suspend/resume for unused clockevents as
they are already stopped and disabled.
This is really important for AT91 as the hardware is a trainwreck and
takes ages to synchronize.
Reported-by: Sylvain Rochet <sylvain.rochet@finsecur.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Nicolas Ferre <nicolas.ferre@atmel.com>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Maxime Ripard <maxime.ripard@free-electrons.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/1421399151-26800-1-git-send-email-alexandre.belloni@free-electrons.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now that we have a read_boot_clock64() function available on every
architecture, and converted all the users to it, it's time to remove
the (now unused) read_boot_clock() completely from the kernel.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
[jstultz: Minor commit message tweak suggested by Ingo]
Signed-off-by: John Stultz <john.stultz@linaro.org>
The timer_start event now shows whether the timer is
deferrable in case of a low-res timer. The debug_activate
function now includes a deferrable flag while calling
the trace_timer_start event.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Badhri Jagan Sridharan <Badhri@google.com>
[jstultz: Fixed minor whitespace and grammer tweaks
pointed out by Ingo]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Ingo suggested that the timekeeping debugging variables
recently added should not be global, and should be tied
to the timekeeper's read_base.
Thus this patch implements that suggestion.
This version is different from the earlier versions
as it keeps the variables in the timekeeper structure
rather then in the tkr.
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch series introduces a new function
u32 ktime_get_resolution_ns(void)
which allows to clean up some driver code.
In particular the IIO subsystem has a function to provide timestamps for
events but no means to get their resolution. So currently the dht11 driver
tries to guess the resolution in a rather messy and convoluted way. We
can do much better with the new code.
This API is not designed to be exposed to user space.
This has been tested on i386, sunxi and mxs.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Harald Geyer <harald@ccbib.org>
[jstultz: Tweaked to make it build after upstream changes]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Invalid values may overflow later, leading to undefined behaviour when
multiplied by 60 to get the amount of seconds.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
To avoid getting spurious interrupts on a tickless CPU, clockevent
device can now be stopped by switching to ONESHOT_STOPPED state.
The natural place for handling this transition is tick_program_event().
On 'expires == KTIME_MAX', we skip programming the event and so we need
to fix such call sites as well, to always call tick_program_event()
irrespective of the expires value.
Once the clockevent device is required again, check if it was earlier
put into ONESHOT_STOPPED state. If yes, switch its state to ONESHOT
before programming its event.
To make sure we haven't missed any corner case, add a WARN() for the
case where we try to reprogram clockevent device while we aren't
configured in ONESHOT_STOPPED state.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5146b07be7f0bc497e0ebae036590ec2fa73e540.1428031396.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When no timers/hrtimers are pending, the expiry time is set to a
special value: 'KTIME_MAX'. This normally happens with
NO_HZ_{IDLE|FULL} in both LOWRES/HIGHRES modes.
When 'expiry == KTIME_MAX', we either cancel the 'tick-sched' hrtimer
(NOHZ_MODE_HIGHRES) or skip reprogramming clockevent device
(NOHZ_MODE_LOWRES). But, the clockevent device is already
reprogrammed from the tick-handler for next tick.
As the clock event device is programmed in ONESHOT mode it will at
least fire one more time (unnecessarily). Timers on few
implementations (like arm_arch_timer, etc.) only support PERIODIC mode
and their drivers emulate ONESHOT over that. Which means that on these
platforms we will get spurious interrupts periodically (at last
programmed interval rate, normally tick rate).
In order to avoid spurious interrupts, the clockevent device should be
stopped or its interrupts should be masked.
A simple (yet hacky) solution to get this fixed could be: update
hrtimer_force_reprogram() to always reprogram clockevent device and
update clockevent drivers to STOP generating events (or delay it to
max time) when 'expires' is set to KTIME_MAX. But the drawback here is
that every clockevent driver has to be hacked for this particular case
and its very easy for new ones to miss this.
However, Thomas suggested to add an optional state ONESHOT_STOPPED to
solve this problem: lkml.org/lkml/2014/5/9/508.
This patch adds support for ONESHOT_STOPPED state in clockevents
core. It will only be available to drivers that implement the
state-specific callbacks instead of the legacy ->set_mode() callback.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: linaro-kernel@lists.linaro.org
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/b8b383a03ac07b13312c16850b5106b82e4245b5.1428031396.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor the msecs_to_jiffies conditional code part in time.c and
jiffies.h putting it into conditional functions rather than #ifdefs
to improve readability.
[ tglx: Verified that there is no binary code change ]
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1431951554-5563-2-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
kernel/time/timeconst.h is moved to include/generated/ and generated
by the top level Kbuild. This allows using timeconst.h in an earlier
build stage.
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1431951554-5563-1-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since idle_should_freeze() is defined to always return 'false'
for CONFIG_SUSPEND unset, all of the code depending on it in
cpuidle_idle_call() is not necessary in that case.
Make that code depend on CONFIG_SUSPEND too to avoid building it
when it is not going to be used.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Add suspend/resume tracepoints to tick_freeze() and tick_unfreeze()
to catch when timekeeping is suspended and resumed during suspend-to-idle
so as to be able to check whether or not we enter the "frozen" state
and to measure the time spent in it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
It was noted that the 32bit implementation of ktime_divns()
was doing unsigned division and didn't properly handle
negative values.
And when a ktime helper was changed to utilize
ktime_divns, it caused a regression on some IR blasters.
See the following bugzilla for details:
https://bugzilla.redhat.com/show_bug.cgi?id=1200353
This patch fixes the problem in ktime_divns by checking
and preserving the sign bit, and then reapplying it if
appropriate after the division, it also changes the return
type to a s64 to make it more obvious this is expected.
Nicolas also pointed out that negative dividers would
cause infinite loops on 32bit systems, negative dividers
is unlikely for users of this function, but out of caution
this patch adds checks for negative dividers for both
32-bit (BUG_ON) and 64-bit(WARN_ON) versions to make sure
no such use cases creep in.
[ tglx: Hand an u64 to do_div() to avoid the compiler warning ]
Fixes: 166afb6451 'ktime: Sanitize ktime_to_us/ms conversion'
Reported-and-tested-by: Trevor Cordes <trevor@tecnopolis.ca>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1431118043-23452-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer fix from Thomas Gleixner:
"A simple fix to actually shut down a detached device instead of
keeping it active"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clockevents: Shutdown detached clockevent device
Recent optimizations were made to thread_group_cputimer to improve its
scalability by keeping track of cputime stats without a lock. However,
the values were open coded to the structure, causing them to be at
a different abstraction level from the regular task_cputime structure.
Furthermore, any subsequent similar optimizations would not be able to
share the new code, since they are specific to thread_group_cputimer.
This patch adds the new task_cputime_atomic data structure (introduced in
the previous patch in the series) to thread_group_cputimer for keeping
track of the cputime atomically, which also helps generalize the code.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Waiman Long <Waiman.Long@hp.com>
Link: http://lkml.kernel.org/r/1430251224-5764-6-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While running a database workload, we found a scalability issue with itimers.
Much of the problem was caused by the thread_group_cputimer spinlock.
Each time we account for group system/user time, we need to obtain a
thread_group_cputimer's spinlock to update the timers. On larger systems
(such as a 16 socket machine), this caused more than 30% of total time
spent trying to obtain this kernel lock to update these group timer stats.
This patch converts the timers to 64-bit atomic variables and use
atomic add to update them without a lock. With this patch, the percent
of total time spent updating thread group cputimer timers was reduced
from 30% down to less than 1%.
Note: On 32-bit systems using the generic 64-bit atomics, this causes
sample_group_cputimer() to take locks 3 times instead of just 1 time.
However, we tested this patch on a 32-bit system ARM system using the
generic atomics and did not find the overhead to be much of an issue.
An explanation for why this isn't an issue is that 32-bit systems usually
have small numbers of CPUs, and cacheline contention from extra spinlocks
called periodically is not really apparent on smaller systems.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Waiman Long <Waiman.Long@hp.com>
Link: http://lkml.kernel.org/r/1430251224-5764-4-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Simon Horman reported this crash on a system with
high-res timers disabled but nohz enabled:
> ------------[ cut here ]------------
> kernel BUG at kernel/irq_work.c:135!
BUG_ON(!irqs_disabled());
So something enabled interrupts in the periodic tick handling machinery,
and that code path indeed has a local_irq_disable()/enable pair in
tick_nohz_switch_to_nohz() which causes havoc. Fix it.
This patch also fixes a +nohz -hrtimers hang reported by Ingo Molnar.
Reported-by: Simon Horman <horms@verge.net.au>
Reported-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: LAK <linux-arm-kernel@lists.infradead.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1505071425520.4225@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The hrtimer callback in the hrtimer's tick broadcast code sometimes
incorrectly ends up scheduling events at the current tick causing the
kernel to hang servicing the same hrtimer forever. This typically
happens when a device is swapped out by
tick_install_broadcast_device(), which replaces the event handler with
clock_events_handle_noop() and sets the device mode to
CLOCK_EVT_MODE_UNUSED. If the timer is scheduled when this happens,
the next_event field will not be updated and the hrtimer ends up being
restarted at the current tick. To prevent this from happening, only
try to restart the hrtimer if the broadcast clock event device is in
one of the active modes and try to cancel the timer when entering the
CLOCK_EVT_MODE_UNUSED mode.
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1429880765-5558-1-git-send-email-andreas.sandberg@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Today the number of bits of the broadcast masks that is output into
/proc/timer_list is sizeof(unsigned long). This means that on machines
with a larger number of CPUs, the bitmasks of CPUs beyond this range do
not appear.
Fix this by using bitmap printing through "%*pb" instead, so as to
output the broadcast masks for the range of nr_cpu_ids into
/proc/timer_list.
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: peterz@infradead.org
Cc: linuxppc-dev@ozlabs.org
Cc: john.stultz@linaro.org
Link: http://lkml.kernel.org/r/20150428084520.3314.62668.stgit@preeti.in.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Simplify the oneshot logic by avoiding the reprogramming loops. That
also allows to call the cpu local handler outside of the
broadcast_lock held region.
Tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With the removal of the hrtimer softirq the switch to highres/nohz
mode happens in the tick interrupt. That leads to a livelock when the
per cpu event handler is directly called from the broadcast handler
under broadcast lock because broadcast lock needs to be taken for the
highres/nohz switch as well.
Solve this by calling the cpu local handler outside the broadcast_lock
held region.
Fixes: c6eb3f70d4 "hrtimer: Get rid of hrtimer softirq"
Reported-and-tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A clockevent device is marked DETACHED when it is replaced by another
clockevent device.
The device is shutdown properly for drivers that implement legacy
->set_mode() callback, as we call ->set_mode() for CLOCK_EVT_MODE_UNUSED
as well.
But for the new per-state callback interface, we skip shutting down the
device, as we thought its an internal state change. That wasn't correct.
The effect is that the device is left programmed in oneshot or periodic
mode.
Fall-back to 'case CLOCK_EVT_STATE_SHUTDOWN', to shutdown the device.
Fixes: bd624d75db "clockevents: Introduce mode specific callbacks"
Reported-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/eef0a91c51b74d4e52c8e5a95eca27b5a0563f07.1428650683.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Because we drop cpu_base->lock around calling hrtimer::function, it is
possible for hrtimer_start() to come in between and enqueue the timer.
If hrtimer::function then returns HRTIMER_RESTART we'll hit the BUG_ON
because HRTIMER_STATE_ENQUEUED will be set.
Since the above is a perfectly valid scenario, remove the BUG_ON and
make the enqueue_hrtimer() call conditional on the timer not being
enqueued already.
NOTE: in that concurrent scenario its entirely common for both sites
to want to modify the hrtimer, since hrtimers don't provide
serialization themselves be sure to provide some such that the
hrtimer::function and the hrtimer_start() caller don't both try and
fudge the expiration state at the same time.
To that effect, add a WARN when someone tries to forward an already
enqueued timer, the most common way to change the expiry of self
restarting timers. Ideally we'd put the WARN in everything modifying
the expiry but most of that is inlines and we don't need the bloat.
Fixes: 2d44ae4d71 ("hrtimer: clean up cpu->base locking tricks")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415113105.GT5029@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
do_usleep_range() and schedule_hrtimeout_range() are __sched as
well. So it makes no sense to have the exported function in a
different section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203503.833709502@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The only user ignores it anyway and rightfully so.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203503.756060258@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We can do a lockless check for hrtimer_active before actually taking
the lock in hrtimer[_try_to]_cancel. This is useful for hotpath users
like nanosleep as they avoid the lock dance when the timer has
expired.
This is safe because active is true when the timer is enqueued or the
callback is running. Taking the hrtimer base lock does not protect
against concurrent hrtimer_start calls, the callsite has to do the
proper serialization itself.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203503.580273114@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No user was ever interested whether the timer was active or not when
it was started. All abusers of the return value are gone, so get rid
of it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203503.483556394@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The assignment of bc_moved in the conditional construct relies on the
fact that in the case of hrtimer_start() invocation the return value
is always 0. It took me a while to understand it.
We want to get rid of the hrtimer_start() return value. Open code the
logic which makes it readable as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203503.404751457@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We want to get rid of the hrtimer_start() return value and the alarm
timer return value is nowhere used. Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20150414203503.243910615@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The check for hrtimer_active() after starting the timer is
pointless. If the timer is inactive it has expired already and
therefor the task pointer is already NULL.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.907149271@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point for an extra export just to set the extra argument of
hrtimer_start_range_ns() to 0.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.808544539@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The evaluation of the next timer in the nohz code is based on jiffies
while all the tick internals are nano seconds based. We have also to
convert hrtimer nanoseconds to jiffies in the !highres case. That's
just wrong and introduces interesting corner cases.
Turn it around and convert the next timer wheel timer expiry and the
rcu event to clock monotonic and base all calculations on
nanoseconds. That identifies the case where no timer is pending
clearly with an absolute expiry value of KTIME_MAX.
Makes the code more readable and gets rid of the jiffies magic in the
nohz code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Link: http://lkml.kernel.org/r/20150414203502.184198593@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Get rid of one indentation level. Preparatory patch for a major
rework. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Link: http://lkml.kernel.org/r/20150414203502.101563235@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We already got rid of the hrtimer reprogramming loops and hoops as
hrtimer now enforces an interrupt if the enqueued time is in the past.
Do the same for the nohz non highres mode. That gets rid of the need
to raise the softirq which only serves the purpose of getting the
machine out of the inner idle loop.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Link: http://lkml.kernel.org/r/20150414203502.023464878@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer_start() enforces a timer interrupt if the timer is already
expired. Get rid of the checks and the forward loop.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Link: http://lkml.kernel.org/r/20150414203501.943658239@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer softirq is a leftover from the initial implementation and
serves only the purpose to handle the enqueueing of already expired
timers in the high resolution timer mode. We discussed whether we
change the return value and force all start sites to handle that the
timer is already expired, but that would be a Herculean task and I'm
not sure whether its a good idea to enforce that handling on
everyone.
A simpler solution is to enforce a timer interrupt instead of raising
and scheduling a softirq. Just use the existing infrastructure to do
so and remove all the softirq leftovers.
The HRTIMER softirq enum is now unused, but kept around because trace
parsers rely on the existing numbering.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.840834708@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
__remove_hrtimer() needs to evaluate the expiry time to figure out
whether the timer which is removed is eventually the first expiring
timer on the cpu. Keep a pointer to it, which is lazily updated, so we
can avoid the evaluation dance and retrieve the information from there.
Generates slightly better code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.752838019@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the return value instead of reevaluating the information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.658152945@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The active_bases field is guaranteed to be in sync with the timerqueue
of the corresponding clock base. So we can use it for iterating over
the clock bases. This allows to break out early if no more active
clock bases are available and avoids touching the cache lines of
inactive clock bases.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.322887675@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On every tick/hrtimer interrupt we update the offset variables of the
clock bases. That's silly because these offsets change very seldom.
Add a sequence counter to the time keeping code which keeps track of
the offset updates (clock_was_set()). Have a sequence cache in the
hrtimer cpu bases to evaluate whether the offsets must be updated or
not. This allows us later to avoid pointless cacheline pollution.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20150414203501.132820245@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
The softirq time field in the clock bases is an optimization from the
early days of hrtimers. It provides a coarse "jiffies" like time
mostly for self rearming timers.
But that comes with a price:
- Larger code size
- Extra storage space
- Duplicated functions with really small differences
The benefit of this is optimization is marginal for contemporary
systems.
Consolidate everything on the high resolution timer
implementation. This makes further optimizations possible.
Text size reduction:
x8664 -95, i386 -356, ARM -148, ARM64 -40, power64 -16
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.039977424@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point in having usigned long for /proc/timer_list statistics. Make
them unsigned int.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.959773467@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The resolution is directly accessible now. So its simpler just to fill
in the values of the timespec and be done with it.
Text size reduction (combined with "hrtimer: Get rid of the resolution
field in hrtimer_clock_base"):
x8664 -61, i386 -221, ARM -60, power64 -48
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.879888080@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The field has no value because all clock bases have the same
resolution. The resolution only changes when we switch to high
resolution timer mode. We can evaluate that from a single static
variable as well. In the !HIGHRES case its simply a constant.
Export the variable, so we can simplify the usage sites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.645454122@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
'active_bases' indicates which clock-base have active timer. The
intention of this bit field was to avoid evaluating inactive bases. It
was introduced with the introduction of the BOOTTIME and TAI clock
bases, but it was never brought into full use.
We want to use it now, but in __remove_hrtimer() the update happens
after the calling hrtimer_force_reprogram() which has to evaluate all
clock bases for the next expiring timer. So in case the last timer of
a clock base got removed we still see the active bit and therefor
evaluate the clock base for no value. There are further optimizations
possible when active_bases is updated in the right place.
Move the update before the call to hrtimer_force_reprogram()
[ tglx: Massaged changelog ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/20150414203500.533438642@linutronix.de
Link: http://lkml.kernel.org/r/c7c8ebcd9ed88bb09d76059c745a1fafb48314e7.1428039899.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Document the calling context conditions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150413210035.178751779@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 61edec81d2 "timekeeping: Simplify timekeeping_clocktai()"
implemented timekeeping_clocktai() as an inline function, but left the
old extern prototype in the header file. Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This macro can be converted to a static function to reduce
object size.
(x86-64 defconfig)
$ size kernel/time/timer_list.o*
text data bss dec hex filename
6583 8 0 6591 19bf kernel/time/timer_list.o.old
4647 8 0 4655 122f kernel/time/timer_list.o.new
Signed-off-by: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/1429295958.2850.104.camel@perches.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Here's the big char/misc driver patchset for 4.1-rc1.
Lots of different driver subsystem updates here, nothing major, full
details are in the shortlog below.
All of this has been in linux-next for a while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlU2IMEACgkQMUfUDdst+yloDQCfbyIRL23WVAn9ckQse/y8gbjB
OT4AoKTJbwndDP9Kb/lrj2tjd9QjNVrC
=xhen
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here's the big char/misc driver patchset for 4.1-rc1.
Lots of different driver subsystem updates here, nothing major, full
details are in the shortlog.
All of this has been in linux-next for a while"
* tag 'char-misc-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (133 commits)
mei: trace: remove unused TRACE_SYSTEM_STRING
DTS: ARM: OMAP3-N900: Add lis3lv02d support
Documentation: DT: lis302: update wakeup binding
lis3lv02d: DT: add wakeup unit 2 and wakeup threshold
lis3lv02d: DT: use s32 to support negative values
Drivers: hv: hv_balloon: correctly handle num_pages>INT_MAX case
Drivers: hv: hv_balloon: correctly handle val.freeram<num_pages case
mei: replace check for connection instead of transitioning
mei: use mei_cl_is_connected consistently
mei: fix mei_poll operation
hv_vmbus: Add gradually increased delay for retries in vmbus_post_msg()
Drivers: hv: hv_balloon: survive ballooning request with num_pages=0
Drivers: hv: hv_balloon: eliminate jumps in piecewiese linear floor function
Drivers: hv: hv_balloon: do not online pages in offline blocks
hv: remove the per-channel workqueue
hv: don't schedule new works in vmbus_onoffer()/vmbus_onoffer_rescind()
hv: run non-blocking message handlers in the dispatch tasklet
coresight: moving to new "hwtracing" directory
coresight-tmc: Adding a status interface to sysfs
coresight: remove the unnecessary configuration coresight-default-sink
...
Arch specific management of xtime/jiffies/wall_to_monotonic is
gone for quite a while. Zap the stale comment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/2422730.dmO29q661S@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the cleanup function for a dead cpu and invoke it
directly from the cpu down code. Make it conditional on
CPU_HOTPLUG as well.
Temporary change, will be refined in the future.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebased, added clockevents_notify() removal ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1735025.raBZdQHM3m@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the tick_handover call and invoke it explicitely from
the hotplug code. Temporary solution will be cleaned up in later
patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1658173.RkEEILFiQZ@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that all users are converted over to explicit calls into the
clockevents state machine, remove the notification chain leftovers.
Original-from: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/14018863.NQUzkFuafr@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the broadcast oneshot control into a separate function
and provide inline helpers. Switch clockevents_notify() over.
This will go away once all callers are converted.
This also gets rid of the nested locking of clockevents_lock and
broadcast_lock. The broadcast oneshot control functions do not
require clockevents_lock. Only the managing functions
(setup/shutdown/suspend/resume of the broadcast device require
clockevents_lock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Alexandre Courbot <gnurou@gmail.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Warren <swarren@wwwdotorg.org>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Tony Lindgren <tony@atomide.com>
Link: http://lkml.kernel.org/r/13000649.8qZuEDV0OA@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All users converted. Remove the notify leftovers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/2076318.76XJZ8QYP3@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the broadcast control into a separate function and
provide inline helpers. Switch clockevents_notify() over. This
will go away once all callers are converted.
This also gets rid of the nested locking of clockevents_lock and
broadcast_lock. The broadcast control functions do not require
clockevents_lock. Only the managing functions
(setup/shutdown/suspend/resume of the broadcast device require
clockevents_lock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Lindgren <tony@atomide.com>
Link: http://lkml.kernel.org/r/8086559.ttsuS0n1Xr@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ingo noted that the description of clocks_calc_max_nsecs()'s
50% safety margin was somewhat circular. So this patch tries
to improve the comment to better explain what we mean by the
50% safety margin and why we need it.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1427945681-29972-20-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a system does not provide a persistent_clock(), the time
will be updated on resume by rtc_resume(). With the addition
of the non-stop clocksources for suspend timing, those systems
set the time on resume in timekeeping_resume(), but may not
provide a valid persistent_clock().
This results in the rtc_resume() logic thinking no one has set
the time and it then will over-write the suspend time again,
which is not necessary and only increases clock error.
So, fix this for rtc_resume().
This patch also improves the name of persistent_clock_exist to
make it more grammatical.
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1427945681-29972-19-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When there's no persistent clock, normally
timekeeping_suspend_time should always be zero, but this can
break in timekeeping_suspend().
At T1, there was a system suspend, so old_delta was assigned T1.
After some time, one time adjustment happened, and xtime got the
value of T1-dt(0s<dt<2s). Then, there comes another system
suspend soon after this adjustment, obviously we will get a
small negative delta_delta, resulting in a negative
timekeeping_suspend_time.
This is problematic, when doing timekeeping_resume() if there is
no nonstop clocksource for example, it will hit the else leg and
inject the improper sleeptime which is the wrong logic.
So, we can solve this problem by only doing delta related code
when the persistent clock is existent. Actually the code only
makes sense for persistent clock cases.
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1427945681-29972-18-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
timekeeping_inject_sleeptime64() is only used by RTC
suspend/resume, so add build dependencies on the necessary RTC
related macros.
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
[ Improve commit message clarity. ]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1427945681-29972-16-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As part of addressing in-kernel y2038 issues, this patch adds
update_persistent_clock64() and replaces all the call sites of
update_persistent_clock() with this function. This is a __weak
implementation, which simply calls the existing y2038 unsafe
update_persistent_clock().
This allows architecture specific implementations to be
converted independently, and eventually y2038-unsafe
update_persistent_clock() can be removed after all its
architecture specific implementations have been converted to
update_persistent_clock64().
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1427945681-29972-4-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As part of addressing in-kernel y2038 issues, this patch adds
read_persistent_clock64() and replaces all the call sites of
read_persistent_clock() with this function. This is a __weak
implementation, which simply calls the existing y2038 unsafe
read_persistent_clock().
This allows architecture specific implementations to be
converted independently, and eventually the y2038 unsafe
read_persistent_clock() can be removed after all its
architecture specific implementations have been converted to
read_persistent_clock64().
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1427945681-29972-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As part of addressing in-kernel y2038 issues, this patch adds
read_boot_clock64() and replaces all the call sites of
read_boot_clock() with this function. This is a __weak
implementation, which simply calls the existing y2038 unsafe
read_boot_clock().
This allows architecture specific implementations to be
converted independently, and eventually the y2038 unsafe
read_boot_clock() can be removed after all its architecture
specific implementations have been converted to
read_boot_clock64().
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1427945681-29972-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove one CONFIG_HOTPLUG_CPU #ifdef in trade for introducing one
CONFIG_SMP #ifdef.
The CONFIG_SMP ifdef avoids declaring the per-CPU __tvec_bases storage
on UP systems since they already have boot_tvec_bases.
Also (re)add a runtime check on the base alignment -- for the paranoid
amongst us :-)
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/fdd2d35e169bdc554ffa3fe77f77716298c75ada.1427814611.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no need to call init_timers_cpu() on every CPU hotplug event,
there is not much we need to reset.
- Timer-lists are already empty at the end of migrate_timers().
- timer_jiffies will be refreshed while adding a new timer, after the
CPU is online again.
- active_timers and all_timers can be reset from migrate_timers().
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/54a1c30ea7b805af55beb220cadf5a07a21b0a4d.1427814611.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>