Commit Graph

1094 Commits

Author SHA1 Message Date
Yan, Zheng
76dda93c6a Btrfs: add snapshot/subvolume destroy ioctl
This patch adds snapshot/subvolume destroy ioctl.  A subvolume that isn't being
used and doesn't contains links to other subvolumes can be destroyed.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 16:00:26 -04:00
Yan, Zheng
4df27c4d5c Btrfs: change how subvolumes are organized
btrfs allows subvolumes and snapshots anywhere in the directory tree.
If we snapshot a subvolume that contains a link to other subvolume
called subvolA, subvolA can be accessed through both the original
subvolume and the snapshot. This is similar to creating hard link to
directory, and has the very similar problems.

The aim of this patch is enforcing there is only one access point to
each subvolume. Only the first directory entry (the one added when
the subvolume/snapshot was created) is treated as valid access point.
The first directory entry is distinguished by checking root forward
reference. If the corresponding root forward reference is missing,
we know the entry is not the first one.

This patch also adds snapshot/subvolume rename support, the code
allows rename subvolume link across subvolumes.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 15:56:00 -04:00
Yan, Zheng
13a8a7c8c4 Btrfs: do not reuse objectid of deleted snapshot/subvol
The new back reference format does not allow reusing objectid of
deleted snapshot/subvol. So we use ++highest_objectid to allocate
objectid for new snapshot/subvol.

Now we use ++highest_objectid to allocate objectid for both new inode
and new snapshot/subvolume, so this patch removes 'find hole' code in
btrfs_find_free_objectid.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 15:56:00 -04:00
Yan, Zheng
1c4850e21d Btrfs: speed up snapshot dropping
This patch contains two changes to avoid unnecessary tree block reads during
snapshot dropping.

First, check tree block's reference count and flags before reading the tree
block. if reference count > 1 and there is no need to update backrefs, we can
avoid reading the tree block.

Second, save when snapshot was created in root_key.offset. we can compare block
pointer's generation with snapshot's creation generation during updating
backrefs. If a given block was created before snapshot was created, the
snapshot can't be the tree block's owner. So we can avoid reading the block.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 15:55:59 -04:00
Chris Mason
b917b7c3be Btrfs: search for an allocation hint while filling file COW
The allocator has some nice knobs for sending hints about where
to try and allocate new blocks, but when we're doing file allocations
we're not sending any hint at all.

This commit adds a simple extent map search to see if we can
quickly and easily find a hint for the allocator.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-18 16:08:52 -04:00
Chris Mason
f85d7d6c8f Btrfs: properly honor wbc->nr_to_write changes
When btrfs fills a delayed allocation, it tries to increase
the wbc nr_to_write to cover a big part of allocation.  The
theory is that we're doing contiguous IO and writing a few
more blocks will save seeks overall at a very low cost.

The problem is that extent_write_cache_pages could ignore
the new higher nr_to_write if nr_to_write had already gone
down to zero.  We fix that by rechecking the nr_to_write
for every page that is processed in the pagevec.

This updates the math around bumping the nr_to_write value
to make sure we don't leave a tiny amount of IO hanging
around for the very end of a new extent.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-18 16:08:46 -04:00
Yan Zheng
11833d66be Btrfs: improve async block group caching
This patch gets rid of two limitations of async block group caching.
The old code delays handling pinned extents when block group is in
caching. To allocate logged file extents, the old code need wait
until block group is fully cached. To get rid of the limitations,
This patch introduces a data structure to track the progress of
caching. Base on the caching progress, we know which extents should
be added to the free space cache when handling the pinned extents.
The logged file extents are also handled in a similar way.

This patch also changes how pinned extents are tracked. The old
code uses one tree to track pinned extents, and copy the pinned
extents tree at transaction commit time. This patch makes it use
two trees to track pinned extents. One tree for extents that are
pinned in the running transaction, one tree for extents that can
be unpinned. At transaction commit time, we swap the two trees.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-17 15:47:36 -04:00
Chris Mason
6e74057c46 Btrfs: Fix async thread shutdown race
It was possible for an async worker thread to be selected to
receive a new work item, but exit before the work item was
actually placed into that thread's work list.

This commit fixes the race by incrementing the num_pending
counter earlier, and making sure to check the number of pending
work items before a thread exits.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-15 20:20:17 -04:00
Chris Mason
627e421a3f Btrfs: fix worker thread double spin_lock_irq
The exit-on-idle code for async worker threads was incorrectly
calling spin_lock_irq with interrupts already off.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-15 20:20:17 -04:00
Chris Mason
3e99d8eb34 Btrfs: fix async worker startup race
After a new worker thread starts, it is placed into the
list of idle threads.  But, this may race with a
check for idle done by the worker thread itself, resulting
in a double list_add operation.

This fix adds a check to make sure the idle thread addition
is done properly.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-15 20:20:16 -04:00
Chris Mason
83ebade34b Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable 2009-09-11 19:07:25 -04:00
Chris Mason
93c82d5750 Btrfs: zero page past end of inline file items
When btrfs_get_extent is reading inline file items for readpage,
it needs to copy the inline extent into the page.  If the
inline extent doesn't cover all of the page, that means there
is a hole in the file, or that our file is smaller than one
page.

readpage does zeroing for the case where the file is smaller than one
page, but nobody is currently zeroing for the case where there is
a hole after the inline item.

This commit changes btrfs_get_extent to zero fill the page past
the end of the inline item.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:08 -04:00
Chris Mason
50a9b214bc Btrfs: fix btrfs page_mkwrite to return locked page
This closes a whole where the page may be written before
the page_mkwrite caller has a chance to dirty it

(thanks to Nick Piggin)

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:08 -04:00
Chris Mason
a1ed835e1a Btrfs: Fix extent replacment race
Data COW means that whenever we write to a file, we replace any old
extent pointers with new ones.  There was a window where a readpage
might find the old extent pointers on disk and cache them in the
extent_map tree in ram in the middle of a given write replacing them.

Even though both the readpage and the write had their respective bytes
in the file locked, the extent readpage inserts may cover more bytes than
it had locked down.

This commit closes the race by keeping the new extent pinned in the extent
map tree until after the on-disk btree is properly setup with the new
extent pointers.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:07 -04:00
Chris Mason
8b62b72b26 Btrfs: Use PagePrivate2 to track pages in the data=ordered code.
Btrfs writes go through delalloc to the data=ordered code.  This
makes sure that all of the data is on disk before the metadata
that references it.  The tracking means that we have to make sure
each page in an extent is fully written before we add that extent into
the on-disk btree.

This was done in the past by setting the EXTENT_ORDERED bit for the
range of an extent when it was added to the data=ordered code, and then
clearing the EXTENT_ORDERED bit in the extent state tree as each page
finished IO.

One of the reasons we had to do this was because sometimes pages are
magically dirtied without page_mkwrite being called.  The EXTENT_ORDERED
bit is checked at writepage time, and if it isn't there, our page become
dirty without going through the proper path.

These bit operations make for a number of rbtree searches for each page,
and can cause considerable lock contention.

This commit switches from the EXTENT_ORDERED bit to use PagePrivate2.
As pages go into the ordered code, PagePrivate2 is set on each one.
This is a cheap operation because we already have all the pages locked
and ready to go.

As IO finishes, the PagePrivate2 bit is cleared and the ordered
accoutning is updated for each page.

At writepage time, if the PagePrivate2 bit is missing, we go into the
writepage fixup code to handle improperly dirtied pages.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:07 -04:00
Chris Mason
9655d2982b Btrfs: use a cached state for extent state operations during delalloc
This changes the btrfs code to find delalloc ranges in the extent state
tree to use the new state caching code from set/test bit.  It reduces
one of the biggest causes of rbtree searches in the writeback path.

test_range_bit is also modified to take the cached state as a starting
point while searching.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:07 -04:00
Chris Mason
d5550c6315 Btrfs: don't lock bits in the extent tree during writepage
At writepage time, we have the page locked and we have the
extent_map entry for this extent pinned in the extent_map tree.
So, the page can't go away and its mapping can't change.

There is no need for the extra extent_state lock bits during writepage.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:06 -04:00
Chris Mason
2c64c53d8d Btrfs: cache values for locking extents
Many of the btrfs extent state tree users follow the same pattern.
They lock an extent range in the tree, do some operation and then
unlock.

This translates to at least 2 rbtree searches, and maybe more if they
are doing operations on the extent state tree.  A locked extent
in the tree isn't going to be merged or changed, and so we can
safely return the extent state structure as a cached handle.

This changes set_extent_bit to give back a cached handle, and also
changes both set_extent_bit and clear_extent_bit to use the cached
handle if it is available.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:06 -04:00
Chris Mason
1edbb734b4 Btrfs: reduce CPU usage in the extent_state tree
Btrfs is currently mirroring some of the page state bits into
its extent state tree.  The goal behind this was to use it in supporting
blocksizes other than the page size.

But, we don't currently support that, and we're using quite a lot of CPU
on the rb tree and its spin lock.  This commit starts a series of
cleanups to reduce the amount of work done in the extent state tree as
part of each IO.

This commit:

* Adds the ability to lock an extent in the state tree and also set
other bits.  The idea is to do locking and delalloc in one call

* Removes the EXTENT_WRITEBACK and EXTENT_DIRTY bits.  Btrfs is using
a combination of the page bits and the ordered write code for this
instead.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:06 -04:00
Chris Mason
e48c465bb3 Btrfs: Fix new state initialization order
As the extent state tree is manipulated, there are call backs
that are used to take extra actions when different state bits are set
or cleared.  One example of this is a counter for the total number
of delayed allocation bytes in a single inode and in the whole FS.

When new states are inserted, this callback is being done before we
properly setup the new state.  This hasn't caused problems before
because the lock bit was always done first, and the existing call backs
don't care about the lock bit.

This patch makes sure the state is properly setup before using the
callback, which is important for later optimizations that do more work
without using the lock bit.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:05 -04:00
Chris Mason
890871be85 Btrfs: switch extent_map to a rw lock
There are two main users of the extent_map tree.  The
first is regular file inodes, where it is evenly spread
between readers and writers.

The second is the chunk allocation tree, which maps blocks from
logical addresses to phyiscal ones, and it is 99.99% reads.

The mapping tree is a point of lock contention during heavy IO
workloads, so this commit switches things to a rw lock.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:05 -04:00
Chris Mason
57fd5a5ff8 Btrfs: tweak congestion backoff
The btrfs io submission thread tries to back off congested devices in
favor of rotating off to another disk.

But, it tries to make sure it submits at least some IO before rotating
on (the others may be congested too), and so it has a magic number of
requests it tries to write before it hops.

This makes the magic number smaller.  Testing shows that we're spending
too much time on congested devices and leaving the other devices idle.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:05 -04:00
Chris Mason
a97adc9fff Btrfs: use larger nr_to_write for larger extents
When btrfs fills a large delayed allocation extent, it is a good idea
to try and convince the write_cache_pages caller to go ahead and
write a good chunk of that extent.  The extra IO is basically free
because we know it is contiguous.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:04 -04:00
Chris Mason
4f878e8475 Btrfs: reduce worker thread spin_lock_irq hold times
This changes the btrfs worker threads to batch work items
into a local list.  It allows us to pull work items in
large chunks and significantly reduces the number of times we
need to take the worker thread spinlock.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:04 -04:00
Chris Mason
4e3f9c5042 Btrfs: keep irqs on more often in the worker threads
The btrfs worker thread spinlock was being used both for the
queueing of IO and for the processing of ordered events.

The ordered events never happen from end_io handlers, and so they
don't need to use the _irq version of spinlocks.  This adds a
dedicated lock to the ordered lists so they don't have to run
with irqs off.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:04 -04:00
Chris Mason
40431d6c12 Btrfs: optimize set extent bit
The Btrfs set_extent_bit call currently searches the rbtree
every time it needs to find more extent_state objects to fill
the requested operation.

This adds a simple test with rb_next to see if the next object
in the tree was adjacent to the one we just found.  If so,
we skip the search and just use the next object.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:31:03 -04:00
Chris Mason
9042846bc7 Btrfs: Allow worker threads to exit when idle
The Btrfs worker threads don't currently die off after they have
been idle for a while, leading to a lot of threads sitting around
doing nothing for each mount.

Also, they are unable to start atomically (from end_io hanlders).

This commit reworks the worker threads so they can be started
from end_io handlers (just setting a flag that asks for a thread
to be added at a later date) and so they can exit if they
have been idle for a long time.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 13:30:56 -04:00
From: Nick Piggin
03e860bd9f btrfs: fix inode rbtree corruption
Node may not be inserted over existing node. This causes inode tree
corruption and I was seeing crashes in inode_tree_del which I can not
reproduce after this patch.

The other way to fix this would be to tie inode lifetime in the rbtree
with inode while not in freeing state. I had a look at this but it is
not so trivial at this point. At least this patch gets things working again.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Chris Mason <chris.mason@oracle.com>
Acked-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-08-21 10:09:44 +02:00
Linus Torvalds
d6a0967c90 Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
  Btrfs: fix balancing oops when invalidate_inode_pages2 returns EBUSY
  Btrfs: correct error-handling zlib error handling
  Btrfs: remove superfluous NULL pointer check in btrfs_rename()
  Btrfs: make sure the async caching thread advances the key
  Btrfs: fix btrfs_remove_from_free_space corner case
2009-08-07 19:03:09 -07:00
Yan Zheng
ceab36edd3 Btrfs: fix balancing oops when invalidate_inode_pages2 returns EBUSY
invalidate_inode_pages2_range may return -EBUSY occasionally
which results Oops. This patch fixes the issue by moving
invalidate_inode_pages2_range into a loop and keeping calling
it until the return value is not -EBUSY.

The EBUSY return is temporary, and can happen when the btrfs release page
function is unable to release a page because the EXTENT_LOCK
bit is set.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-08-07 13:51:33 -04:00
Julia Lawall
60f2e8f8a0 Btrfs: correct error-handling zlib error handling
find_zlib_workspace returns an ERR_PTR value in an error case instead of NULL.

A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)

// <smpl>
@match exists@
expression x, E;
statement S1, S2;
@@

x = find_zlib_workspace(...)
... when != x = E
(
*  if (x == NULL || ...) S1 else S2
|
*  if (x == NULL && ...) S1 else S2
)
// </smpl>

Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-08-07 13:51:33 -04:00
Bartlomiej Zolnierkiewicz
4baf8c9201 Btrfs: remove superfluous NULL pointer check in btrfs_rename()
This takes care of the following entry from Dan's list:

fs/btrfs/inode.c +4788 btrfs_rename(36) warning: variable derefenced before check 'old_inode'

Reported-by: Dan Carpenter <error27@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Eugene Teo <eteo@redhat.com>
Cc: Julia Lawall <julia@diku.dk>
Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-08-07 13:47:08 -04:00
Chris Mason
013f1b12f4 Btrfs: make sure the async caching thread advances the key
The async caching thread can end up looping forever if a given
search puts it at the last key in a leaf.  It will end up calling
btrfs_next_leaf and then checking if it needs to politely drop
the read semaphore.

Most of the time this looping isn't noticed because it is able to
make progress the next time around.  But, during log replay,
we wait on the async caching thread to finish, and the async thread
is waiting on the commit, and no progress is really made.

The fix used here is to copy the key out of the next leaf,
that way our search lands there properly.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-31 14:57:55 -04:00
Josef Bacik
6606bb97e1 Btrfs: fix btrfs_remove_from_free_space corner case
Yan Zheng hit a problem where we tried to remove some free space but failed
because we couldn't find the free space entry.  This is because the free space
was held within a bitmap that had a starting offset well before the actual
offset of the free space, and there were free space extents that were in the
same range as that offset, so tree_search_offset returned with NULL because we
couldn't find a free space extent that had that offset.  This is fixed by
making sure that if we fail to find the entry, we re-search again with
bitmap_only set to 1 and do an offset_to_bitmap so we can get the appropriate
bitmap.  A similar problem happens in btrfs_alloc_from_bitmap for the
clustering code, but that is not as bad since we will just go and redo our
cluster allocation.

Also this adds some debugging checks to make sure that the free space we are
trying to remove from the bitmap is in fact there.  This can probably go away
after a while, but since this code is only used by the tree-logging stuff it
would be nice to run with it for a while to make sure there are no problems.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-31 11:03:58 -04:00
Linus Torvalds
ec6a8679fa Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
  Btrfs: be more polite in the async caching threads
  Btrfs: preserve commit_root for async caching
2009-07-30 16:46:48 -07:00
Chris Mason
f36f3042ea Btrfs: be more polite in the async caching threads
The semaphore used by the async caching threads can prevent a
transaction commit, which can make the FS appear to stall.  This
releases the semaphore more often when a transaction commit is
in progress.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-30 10:14:46 -04:00
Yan Zheng
276e680d19 Btrfs: preserve commit_root for async caching
The async block group caching code uses the commit_root pointer
to get a stable version of the extent allocation tree for scanning.
This copy of the tree root isn't going to change and it significantly
reduces the complexity of the scanning code.

During a commit, we have a loop where we update the extent allocation
tree root.  We need to loop because updating the root pointer in
the tree of tree roots may allocate blocks which may change the
extent allocation tree.

Right now the commit_root pointer is changed inside this loop.  It
is more correct to change the commit_root pointer only after all the
looping is done.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-30 09:40:40 -04:00
Linus Torvalds
655c5d8fc1 Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (22 commits)
  Btrfs: Fix async caching interaction with unmount
  Btrfs: change how we unpin extents
  Btrfs: Correct redundant test in add_inode_ref
  Btrfs: find smallest available device extent during chunk allocation
  Btrfs: clear all space_info->full after removing a block group
  Btrfs: make flushoncommit mount option correctly wait on ordered_extents
  Btrfs: Avoid delayed reference update looping
  Btrfs: Fix ordering of key field checks in btrfs_previous_item
  Btrfs: find_free_dev_extent doesn't handle holes at the start of the device
  Btrfs: Remove code duplication in comp_keys
  Btrfs: async block group caching
  Btrfs: use hybrid extents+bitmap rb tree for free space
  Btrfs: Fix crash on read failures at mount
  Btrfs: remove of redundant btrfs_header_level
  Btrfs: adjust NULL test
  Btrfs: Remove broken sanity check from btrfs_rmap_block()
  Btrfs: convert nested spin_lock_irqsave to spin_lock
  Btrfs: make sure all dirty blocks are written at commit time
  Btrfs: fix locking issue in btrfs_find_next_key
  Btrfs: fix double increment of path->slots[0] in btrfs_next_leaf
  ...
2009-07-28 14:27:06 -07:00
Yan Zheng
f25784b35f Btrfs: Fix async caching interaction with unmount
- don't stop the caching thread until btrfs_commit_super return.

- if caching is interrupted by umount, set last to (u64)-1.
  otherwise the un-scanned range of block group will be considered
  as free extent.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-28 08:41:57 -04:00
Josef Bacik
68b38550dd Btrfs: change how we unpin extents
We are racy with async block caching and unpinning extents.  This patch makes
things much less complicated by only unpinning the extent if the block group is
cached.  We check the block_group->cached var under the block_group->lock spin
lock.  If it is set to BTRFS_CACHE_FINISHED then we update the pinned counters,
and unpin the extent and add the free space back.  If it is not set to this, we
start the caching of the block group so the next time we unpin extents we can
unpin the extent.  This keeps us from racing with the async caching threads,
lets us kill the fs wide async thread counter, and keeps us from having to set
DELALLOC bits for every extent we hit if there are caching kthreads going.

One thing that needed to be changed was btrfs_free_super_mirror_extents.  Now
instead of just looking for LOCKED extents, we also look for DIRTY extents,
since we could have left some extents pinned in the previous transaction that
will never get freed now that we are unmounting, which would cause us to leak
memory.  So btrfs_free_super_mirror_extents has been changed to
btrfs_free_pinned_extents, and it will clear the extents locked for the super
mirror, and any remaining pinned extents that may be present.  Thank you,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-27 13:57:01 -04:00
Julia Lawall
631c07c8d1 Btrfs: Correct redundant test in add_inode_ref
dir has already been tested.  It seems that this test should be on the
recently returned value inode.

A simplified version of the semantic match that finds this problem is as
follows: (http://www.emn.fr/x-info/coccinelle/)

Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-27 13:57:00 -04:00
Chris Mason
9779b72f05 Btrfs: find smallest available device extent during chunk allocation
Allocating new block group is easy when the disk has plenty of space.
But things get difficult as the disk fills up, especially if
the FS has been run through btrfs-vol -b.  The balance operation
is likely to make the total bytes available on the device greater
than the largest extent we'll actually be able to allocate.

But the device extent allocation code incorrectly assumes that a device
with 5G free will be able to allocate a 5G extent.  It isn't normally a
problem because device extents don't get freed unless btrfs-vol -b
is run.

This fixes the device extent allocator to remember the largest free
extent it can find, and then uses that value as a fallback.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 16:41:41 -04:00
Chris Mason
283bb1979f Btrfs: clear all space_info->full after removing a block group
Btrfs allocates individual extents from block groups, and each
block group has a specific type.  It may hold metadata, data
mirrored or striped etc.

When we balance space (btrfs-vol -b) or remove a drive (btrfs-vol -r)
we free block groups.  Once a block group is freed, the space it was
using on the device may be available for use by new block groups.

btrfs_remove_block_group was clearing the flag that said
'our devices are full, don't even try to allocate new block groups',
but it was only clearing that flag for a specific type of block group.

This commit clears the full flag for all of the types of block groups,
making it much more likely that we'll be able to balance space when
the drive is close to full.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 16:30:55 -04:00
Sage Weil
ebecd3d9d2 Btrfs: make flushoncommit mount option correctly wait on ordered_extents
The commit_transaction call to wait_ordered_extents when snap_pending
passes nocow_only=1 to process only NOCOW or PREALLOC extents.  This isn't
correct for the 'flushoncommit' mode, as it skips extents we just started
IO on in start_delalloc_inodes.

So, in the flushoncommit case, wait on all ordered extents.  Otherwise,
only pass the nocow_only flag to wait_ordered_extents if snap_pending.

Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 13:17:44 -04:00
Yan Zheng
d717aa1d31 Btrfs: Avoid delayed reference update looping
btrfs_split_leaf and btrfs_del_items can end up in a loop
where one is constantly spliting a given leaf and the other
is constantly merging it back with the adjacent nodes.

There is a better fix for this, but in the interest of something
small, this patch just changes btrfs_del_items back to balancing less
often.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 12:42:46 -04:00
Yan Zheng
0a4eefbb74 Btrfs: Fix ordering of key field checks in btrfs_previous_item
Check objectid of item before checking the item type, otherwise we may return
zero for a key that is actually too low.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 11:22:47 -04:00
Yan Zheng
1fcbac581b Btrfs: find_free_dev_extent doesn't handle holes at the start of the device
find_free_dev_extent does not properly handle the case where
the device is not complete free, and there is a free extent
at the beginning of the device.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 11:22:47 -04:00
Diego Calleja
20736abaa3 Btrfs: Remove code duplication in comp_keys
comp_keys is duplicating what is done in btrfs_comp_cpu_keys, so just
call it.

Signed-off-by: Diego Calleja <diegocg@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 11:22:46 -04:00
Josef Bacik
817d52f8db Btrfs: async block group caching
This patch moves the caching of the block group off to a kthread in order to
allow people to allocate sooner.  Instead of blocking up behind the caching
mutex, we instead kick of the caching kthread, and then attempt to make an
allocation.  If we cannot, we wait on the block groups caching waitqueue, which
the caching kthread will wake the waiting threads up everytime it finds 2 meg
worth of space, and then again when its finished caching.  This is how I tested
the speedup from this

mkfs the disk
mount the disk
fill the disk up with fs_mark
unmount the disk
mount the disk
time touch /mnt/foo

Without my changes this took 11 seconds on my box, with these changes it now
takes 1 second.

Another change thats been put in place is we lock the super mirror's in the
pinned extent map in order to keep us from adding that stuff as free space when
caching the block group.  This doesn't really change anything else as far as the
pinned extent map is concerned, since for actual pinned extents we use
EXTENT_DIRTY, but it does mean that when we unmount we have to go in and unlock
those extents to keep from leaking memory.

I've also added a check where when we are reading block groups from disk, if the
amount of space used == the size of the block group, we go ahead and mark the
block group as cached.  This drastically reduces the amount of time it takes to
cache the block groups.  Using the same test as above, except doing a dd to a
file and then unmounting, it used to take 33 seconds to umount, now it takes 3
seconds.

This version uses the commit_root in the caching kthread, and then keeps track
of how many async caching threads are running at any given time so if one of the
async threads is still running as we cross transactions we can wait until its
finished before handling the pinned extents.  Thank you,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 09:23:39 -04:00
Josef Bacik
9630308170 Btrfs: use hybrid extents+bitmap rb tree for free space
Currently btrfs has a problem where it can use a ridiculous amount of RAM simply
tracking free space.  As free space gets fragmented, we end up with thousands of
entries on an rb-tree per block group, which usually spans 1 gig of area.  Since
we currently don't ever flush free space cache back to disk this gets to be a
bit unweildly on large fs's with lots of fragmentation.

This patch solves this problem by using PAGE_SIZE bitmaps for parts of the free
space cache.  Initially we calculate a threshold of extent entries we can
handle, which is however many extent entries we can cram into 16k of ram.  The
maximum amount of RAM that should ever be used to track 1 gigabyte of diskspace
will be 32k of RAM, which scales much better than we did before.

Once we pass the extent threshold, we start adding bitmaps and using those
instead for tracking the free space.  This patch also makes it so that any free
space thats less than 4 * sectorsize we go ahead and put into a bitmap.  This is
nice since we try and allocate out of the front of a block group, so if the
front of a block group is heavily fragmented and then has a huge chunk of free
space at the end, we go ahead and add the fragmented areas to bitmaps and use a
normal extent entry to track the big chunk at the back of the block group.

I've also taken the opportunity to revamp how we search for free space.
Previously we indexed free space via an offset indexed rb tree and a bytes
indexed rb tree.  I've dropped the bytes indexed rb tree and use only the offset
indexed rb tree.  This cuts the number of tree operations we were doing
previously down by half, and gives us a little bit of a better allocation
pattern since we will always start from a specific offset and search forward
from there, instead of searching for the size we need and try and get it as
close as possible to the offset we want.

I've given this a healthy amount of testing pre-new format stuff, as well as
post-new format stuff.  I've booted up my fedora box which is installed on btrfs
with this patch and ran with it for a few days without issues.  I've not seen
any performance regressions in any of my tests.

Since the last patch Yan Zheng fixed a problem where we could have overlapping
entries, so updating their offset inline would cause problems.  Thanks,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 09:23:30 -04:00