Peter Zijlstra found a bug in the way softirq time is accounted in
VIRT_CPU_ACCOUNTING on this thread:
http://lkml.indiana.edu/hypermail//linux/kernel/1009.2/01366.html
The problem is, softirq processing uses local_bh_disable internally. There
is no way, later in the flow, to differentiate between whether softirq is
being processed or is it just that bh has been disabled. So, a hardirq when bh
is disabled results in time being wrongly accounted as softirq.
Looking at the code a bit more, the problem exists in !VIRT_CPU_ACCOUNTING
as well. As account_system_time() in normal tick based accouting also uses
softirq_count, which will be set even when not in softirq with bh disabled.
Peter also suggested solution of using 2*SOFTIRQ_OFFSET as irq count
for local_bh_{disable,enable} and using just SOFTIRQ_OFFSET while softirq
processing. The patch below does that and adds API in_serving_softirq() which
returns whether we are currently processing softirq or not.
Also changes one of the usages of softirq_count in net/sched/cls_cgroup.c
to in_serving_softirq.
Looks like many usages of in_softirq really want in_serving_softirq. Those
changes can be made individually on a case by case basis.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1286237003-12406-2-git-send-email-venki@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When SD_PREFER_SIBLING is set on a sched domain, drop group_capacity to 1
only if the local group has extra capacity. The extra check prevents the case
where you always pull from the heaviest group when it is already under-utilized
(possible with a large weight task outweighs the tasks on the system).
For example, consider a 16-cpu quad-core quad-socket machine with MC and NUMA
scheduling domains. Let's say we spawn 15 nice0 tasks and one nice-15 task,
and each task is running on one core. In this case, we observe the following
events when balancing at the NUMA domain:
- find_busiest_group() will always pick the sched group containing the niced
task to be the busiest group.
- find_busiest_queue() will then always pick one of the cpus running the
nice0 task (never picks the cpu with the nice -15 task since
weighted_cpuload > imbalance).
- The load balancer fails to migrate the task since it is the running task
and increments sd->nr_balance_failed.
- It repeats the above steps a few more times until sd->nr_balance_failed > 5,
at which point it kicks off the active load balancer, wakes up the migration
thread and kicks the nice 0 task off the cpu.
The load balancer doesn't stop until we kick out all nice 0 tasks from
the sched group, leaving you with 3 idle cpus and one cpu running the
nice -15 task.
When balancing at the NUMA domain, we drop sgs.group_capacity to 1 if the child
domain (in this case MC) has SD_PREFER_SIBLING set. Subsequent load checks are
not relevant because the niced task has a very large weight.
In this patch, we add an extra condition to the "if(prefer_sibling)" check in
update_sd_lb_stats(). We drop the capacity of a group only if the local group
has extra capacity, ie. nr_running < group_capacity. This patch preserves the
original intent of the prefer_siblings check (to spread tasks across the system
in low utilization scenarios) and fixes the case above.
It helps in the following ways:
- In low utilization cases (where nr_tasks << nr_cpus), we still drop
group_capacity down to 1 if we prefer siblings.
- On very busy systems (where nr_tasks >> nr_cpus), sgs.nr_running will most
likely be > sgs.group_capacity.
- When balancing large weight tasks, if the local group does not have extra
capacity, we do not pick the group with the niced task as the busiest group.
This prevents failed balances, active migration and the under-utilization
described above.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1287173550-30365-5-git-send-email-ncrao@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch forces a load balance on a newly idle cpu when the local group has
extra capacity and the busiest group does not have any. It improves system
utilization when balancing tasks with a large weight differential.
Under certain situations, such as a niced down task (i.e. nice = -15) in the
presence of nr_cpus NICE0 tasks, the niced task lands on a sched group and
kicks away other tasks because of its large weight. This leads to sub-optimal
utilization of the machine. Even though the sched group has capacity, it does
not pull tasks because sds.this_load >> sds.max_load, and f_b_g() returns NULL.
With this patch, if the local group has extra capacity, we shortcut the checks
in f_b_g() and try to pull a task over. A sched group has extra capacity if the
group capacity is greater than the number of running tasks in that group.
Thanks to Mike Galbraith for discussions leading to this patch and for the
insight to reuse SD_NEWIDLE_BALANCE.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1287173550-30365-4-git-send-email-ncrao@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When cycling through sched groups to determine the busiest group, set
group_imb only if the busiest cpu has more than 1 runnable task. This patch
fixes the case where two cpus in a group have one runnable task each, but there
is a large weight differential between these two tasks. The load balancer is
unable to migrate any task from this group, and hence do not consider this
group to be imbalanced.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1286996978-7007-3-git-send-email-ncrao@google.com>
[ small code readability edits ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds a check in task_hot to return if the task has SCHED_IDLE
policy. SCHED_IDLE tasks have very low weight, and when run with regular
workloads, are typically scheduled many milliseconds apart. There is no
need to consider these tasks hot for load balancing.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1287173550-30365-2-git-send-email-ncrao@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Load weights are for the CFS, they do not belong in the RT task. This makes all
RT scheduling classes leave the CFS weights alone.
This fixes a real bug as well: I noticed the following phonomena: a process
elevated to SCHED_RR forks with SCHED_RESET_ON_FORK set, and the child is
indeed SCHED_OTHER, and the niceval is indeed reset to 0. However the weight
inserted by set_load_weight() remains at 0, giving the task insignificat
priority.
With this fix, the weight is reset to what the task had before being elevated
to SCHED_RR/SCHED_FIFO.
Cc: Lennart Poettering <lennart@poettering.net>
Cc: stable@kernel.org
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1286807811-10568-1-git-send-email-linus.walleij@stericsson.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to separate the stop/migrate work thread from the SCHED_FIFO
implementation, create a special class for it that is of higher priority than
SCHED_FIFO itself.
This currently solves a problem where cpu-hotplug consumes so much cpu-time
that the SCHED_FIFO class gets throttled, but has the bandwidth replenishment
timer pending on the now dead cpu.
It is also required for when we add the planned deadline scheduling class above
SCHED_FIFO, as the stop/migrate thread still needs to transcent those tasks.
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1285165776.2275.1022.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Labels should be on column 0.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Targeted preemption latency and minimal preemption granularity
for CPU-bound tasks have been changed.
This patch updates the comments about these values.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20101014160913.eb24fef4.yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Time stamps for the ring buffer are created by the difference between
two events. Each page of the ring buffer holds a full 64 bit timestamp.
Each event has a 27 bit delta stamp from the last event. The unit of time
is nanoseconds, so 27 bits can hold ~134 milliseconds. If two events
happen more than 134 milliseconds apart, a time extend is inserted
to add more bits for the delta. The time extend has 59 bits, which
is good for ~18 years.
Currently the time extend is committed separately from the event.
If an event is discarded before it is committed, due to filtering,
the time extend still exists. If all events are being filtered, then
after ~134 milliseconds a new time extend will be added to the buffer.
This can only happen till the end of the page. Since each page holds
a full timestamp, there is no reason to add a time extend to the
beginning of a page. Time extends can only fill a page that has actual
data at the beginning, so there is no fear that time extends will fill
more than a page without any data.
When reading an event, a loop is made to skip over time extends
since they are only used to maintain the time stamp and are never
given to the caller. As a paranoid check to prevent the loop running
forever, with the knowledge that time extends may only fill a page,
a check is made that tests the iteration of the loop, and if the
iteration is more than the number of time extends that can fit in a page
a warning is printed and the ring buffer is disabled (all of ftrace
is also disabled with it).
There is another event type that is called a TIMESTAMP which can
hold 64 bits of data in the theoretical case that two events happen
18 years apart. This code has not been implemented, but the name
of this event exists, as well as the structure for it. The
size of a TIMESTAMP is 16 bytes, where as a time extend is only
8 bytes. The macro used to calculate how many time extends can fit on
a page used the TIMESTAMP size instead of the time extend size
cutting the amount in half.
The following test case can easily trigger the warning since we only
need to have half the page filled with time extends to trigger the
warning:
# cd /sys/kernel/debug/tracing/
# echo function > current_tracer
# echo 'common_pid < 0' > events/ftrace/function/filter
# echo > trace
# echo 1 > trace_marker
# sleep 120
# cat trace
Enabling the function tracer and then setting the filter to only trace
functions where the process id is negative (no events), then clearing
the trace buffer to ensure that we have nothing in the buffer,
then write to trace_marker to add an event to the beginning of a page,
sleep for 2 minutes (only 35 seconds is probably needed, but this
guarantees the bug), and then finally reading the trace which will
trigger the bug.
This patch fixes the typo and prevents the false positive of that warning.
Reported-by: Hans J. Koch <hjk@linutronix.de>
Tested-by: Hans J. Koch <hjk@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stable Kernel <stable@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
perf events: repair incorrect use of copy_from_user
This makes the perf_event_period() return 0 instead of
-EFAULT on success.
Signed-off-by: John Blackwood<john.blackwood@ccur.com>
Signed-off-by: Joe Korty <joe.korty@ccur.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100928220311.GA18145@tsunami.ccur.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'hwpoison-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6:
HWPOISON: Stop shrinking at right page count
HWPOISON: Report correct address granuality for AO huge page errors
HWPOISON: Copy si_addr_lsb to user
page-types.c: fix name of unpoison interface
When proc_doulongvec_minmax() is used with an array of longs, and no
min/max check requested (.extra1 or .extra2 being NULL), we dereference a
NULL pointer for the second element of the array.
Noticed while doing some changes in network stack for the "16TB problem"
Fix is to not change min & max pointers in __do_proc_doulongvec_minmax(),
so that all elements of the vector share an unique min/max limit, like
proc_dointvec_minmax().
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original hwpoison code added a new siginfo field si_addr_lsb to
pass the granuality of the fault address to user space. Unfortunately
this field was never copied to user space. Fix this here.
I added explicit checks for the MCEERR codes to avoid having
to patch all potential callers to initialize the field.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
With all the recent module loading cleanups, we've minimized the code
that sits under module_mutex, fixing various deadlocks and making it
possible to do most of the module loading in parallel.
However, that whole conversion totally missed the rather obscure code
that adds a new module to the list for BUG() handling. That code was
doubly obscure because (a) the code itself lives in lib/bugs.c (for
dubious reasons) and (b) it gets called from the architecture-specific
"module_finalize()" rather than from generic code.
Calling it from arch-specific code makes no sense what-so-ever to begin
with, and is now actively wrong since that code isn't protected by the
module loading lock any more.
So this commit moves the "module_bug_{finalize,cleanup}()" calls away
from the arch-specific code, and into the generic code - and in the
process protects it with the module_mutex so that the list operations
are now safe.
Future fixups:
- move the module list handling code into kernel/module.c where it
belongs.
- get rid of 'module_bug_list' and just use the regular list of modules
(called 'modules' - imagine that) that we already create and maintain
for other reasons.
Reported-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kfifo_dma family of functions use sg_mark_end() on the last element in
their scatterlist. This forces use of a fresh scatterlist for each DMA
operation, which makes recycling a single scatterlist impossible.
Change the behavior of the kfifo_dma functions to match the usage of the
dma_map_sg function. This means that users must respect the returned
nents value. The sample code is updated to reflect the change.
This bug is trivial to cause: call kfifo_dma_in_prepare() such that it
prepares a scatterlist with a single entry comprising the whole fifo.
This is the case when you map the entirety of a newly created empty fifo.
This causes the setup_sgl() function to mark the first scatterlist entry
as the end of the chain, no matter what comes after it.
Afterwards, add and remove some data from the fifo such that another call
to kfifo_dma_in_prepare() will create two scatterlist entries. It returns
nents=2. However, due to the previous sg_mark_end() call, sg_is_last()
will now return true for the first scatterlist element. This causes the
sample code to print a single scatterlist element when it should print
two.
By removing the call to sg_mark_end(), we make the API as similar as
possible to the DMA mapping API. All users are required to respect the
returned nents.
Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu>
Cc: Stefani Seibold <stefani@seibold.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The below bug in fork led to the rmap walk finding the parent huge-pmd
twice instead of just once, because the anon_vma_chain objects of the
child vma still point to the vma->vm_mm of the parent.
The patch fixes it by making the rmap walk accurate during fork. It's not
a big deal normally but it worth being accurate considering the cost is
the same.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Fix nohz balance kick
sched: Fix user time incorrectly accounted as system time on 32-bit
Add a tracepoint that shows the priority of a task being boosted
via priority inheritance.
Cc: Gregory Haskins <ghaskins@novell.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If a high priority task is waking up on a CPU that is running a
lower priority task that is bound to a CPU, see if we can move the
high RT task to another CPU first. Note, if all other CPUs are
running higher priority tasks than the CPU bounded current task,
then it will be preempted regardless.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Gregory Haskins <ghaskins@novell.com>
LKML-Reference: <20100921024138.888922071@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When first working on the RT scheduler design, we concentrated on
keeping all CPUs running RT tasks instead of having multiple RT
tasks on a single CPU waiting for the migration thread to move
them. Instead we take a more proactive stance and push or pull RT
tasks from one CPU to another on wakeup or scheduling.
When an RT task wakes up on a CPU that is running another RT task,
instead of preempting it and killing the cache of the running RT
task, we look to see if we can migrate the RT task that is waking
up, even if the RT task waking up is of higher priority.
This may sound a bit odd, but RT tasks should be limited in
migration by the user anyway. But in practice, people do not do
this, which causes high prio RT tasks to bounce around the CPUs.
This becomes even worse when we have priority inheritance, because
a high prio task can block on a lower prio task and boost its
priority. When the lower prio task wakes up the high prio task, if
it happens to be on the same CPU it will migrate off of it.
But in reality, the above does not happen much either, because the
wake up of the lower prio task, which has already been boosted, if
it was on the same CPU as the higher prio task, it would then
migrate off of it. But anyway, we do not want to migrate them
either.
To examine the scheduling, I created a test program and examined it
under kernelshark. The test program created CPU * 2 threads, where
each thread had a different priority. The program takes different
options. The options used in this change log was to have priority
inheritance mutexes or not.
All threads did the following loop:
static void grab_lock(long id, int iter, int l)
{
ftrace_write("thread %ld iter %d, taking lock %d\n",
id, iter, l);
pthread_mutex_lock(&locks[l]);
ftrace_write("thread %ld iter %d, took lock %d\n",
id, iter, l);
busy_loop(nr_tasks - id);
ftrace_write("thread %ld iter %d, unlock lock %d\n",
id, iter, l);
pthread_mutex_unlock(&locks[l]);
}
void *start_task(void *id)
{
[...]
while (!done) {
for (l = 0; l < nr_locks; l++) {
grab_lock(id, i, l);
ftrace_write("thread %ld iter %d sleeping\n",
id, i);
ms_sleep(id);
}
i++;
}
[...]
}
The busy_loop(ms) keeps the CPU spinning for ms milliseconds. The
ms_sleep(ms) sleeps for ms milliseconds. The ftrace_write() writes
to the ftrace buffer to help analyze via ftrace.
The higher the id, the higher the prio, the shorter it does the
busy loop, but the longer it spins. This is usually the case with
RT tasks, the lower priority tasks usually run longer than higher
priority tasks.
At the end of the test, it records the number of loops each thread
took, as well as the number of voluntary preemptions, non-voluntary
preemptions, and number of migrations each thread took, taking the
information from /proc/$$/sched and /proc/$$/status.
Running this on a 4 CPU processor, the results without changes to
the kernel looked like this:
Task vol nonvol migrated iterations
---- --- ------ -------- ----------
0: 53 3220 1470 98
1: 562 773 724 98
2: 752 933 1375 98
3: 749 39 697 98
4: 758 5 515 98
5: 764 2 679 99
6: 761 2 535 99
7: 757 3 346 99
total: 5156 4977 6341 787
Each thread regardless of priority migrated a few hundred times.
The higher priority tasks, were a little better but still took
quite an impact.
By letting higher priority tasks bump the lower prio task from the
CPU, things changed a bit:
Task vol nonvol migrated iterations
---- --- ------ -------- ----------
0: 37 2835 1937 98
1: 666 1821 1865 98
2: 654 1003 1385 98
3: 664 635 973 99
4: 698 197 352 99
5: 703 101 159 99
6: 708 1 75 99
7: 713 1 2 99
total: 4843 6594 6748 789
The total # of migrations did not change (several runs showed the
difference all within the noise). But we now see a dramatic
improvement to the higher priority tasks. (kernelshark showed that
the watchdog timer bumped the highest priority task to give it the
2 count. This was actually consistent with every run).
Notice that the # of iterations did not change either.
The above was with priority inheritance mutexes. That is, when the
higher prority task blocked on a lower priority task, the lower
priority task would inherit the higher priority task (which shows
why task 6 was bumped so many times). When not using priority
inheritance mutexes, the current kernel shows this:
Task vol nonvol migrated iterations
---- --- ------ -------- ----------
0: 56 3101 1892 95
1: 594 713 937 95
2: 625 188 618 95
3: 628 4 491 96
4: 640 7 468 96
5: 631 2 501 96
6: 641 1 466 96
7: 643 2 497 96
total: 4458 4018 5870 765
Not much changed with or without priority inheritance mutexes. But
if we let the high priority task bump lower priority tasks on
wakeup we see:
Task vol nonvol migrated iterations
---- --- ------ -------- ----------
0: 115 3439 2782 98
1: 633 1354 1583 99
2: 652 919 1218 99
3: 645 713 934 99
4: 690 3 3 99
5: 694 1 4 99
6: 720 3 4 99
7: 747 0 1 100
Which shows a even bigger change. The big difference between task 3
and task 4 is because we have only 4 CPUs on the machine, causing
the 4 highest prio tasks to always have preference.
Although I did not measure cache misses, and I'm sure there would
be little to measure since the test was not data intensive, I could
imagine large improvements for higher priority tasks when dealing
with lower priority tasks. Thus, I'm satisfied with making the
change and agreeing with what Gregory Haskins argued a few years
ago when we first had this discussion.
One final note. All tasks in the above tests were RT tasks. Any RT
task will always preempt a non RT task that is running on the CPU
the RT task wants to run on.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Gregory Haskins <ghaskins@novell.com>
LKML-Reference: <20100921024138.605460343@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There's a situation where the nohz balancer will try to wake itself:
cpu-x is idle which is also ilb_cpu
got a scheduler tick during idle
and the nohz_kick_needed() in trigger_load_balance() checks for
rq_x->nr_running which might not be zero (because of someone waking a
task on this rq etc) and this leads to the situation of the cpu-x
sending a kick to itself.
And this can cause a lockup.
Avoid this by not marking ourself eligible for kicking.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1284400941.2684.19.camel@sbsiddha-MOBL3.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Hardware breakpoints can't be registered within pid namespaces
because tsk->pid is passed rather than the pid in the current
namespace.
(See https://bugzilla.kernel.org/show_bug.cgi?id=17281 )
This is a quick fix demonstrating the problem but is not the
best method of solving the problem since passing pids internally
is not the best way to avoid pid namespace bugs. Subsequent patches
will show a better solution.
Much thanks to Frederic Weisbecker <fweisbec@gmail.com> for doing
the bulk of the work finding this bug.
Reported-by: Robin Green <greenrd@greenrd.org>
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: 2.6.33-2.6.35 <stable@kernel.org>
LKML-Reference: <f63454af09fb1915717251570423eb9ddd338340.1284407762.git.matthltc@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
With 710390d9 "sched: Optimize branch hint in context_switch()"
the branch hint logic within context_switch() got inversed.
In fact the hints "if (likely(!mm))" and "if (likely(!prev->mm))"
mean that it is likely that the previous and next task are kernel
threads.
That assumption is certainly counter intuitive, but Tim has shown
that at least with his workload this is true. Nevertheless the
truth is: it depends on the current workload. So just remove the
annotations which also improves readability.
Reported-by: Tim Blechmann <tim@klingt.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20100916124225.GA2209@osiris.boeblingen.de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We have 32-bit variable overflow possibility when multiply in
task_times() and thread_group_times() functions. When the
overflow happens then the scaled utime value becomes erroneously
small and the scaled stime becomes i erroneously big.
Reported here:
https://bugzilla.redhat.com/show_bug.cgi?id=633037https://bugzilla.kernel.org/show_bug.cgi?id=16559
Reported-by: Michael Chapman <redhat-bugzilla@very.puzzling.org>
Reported-by: Ciriaco Garcia de Celis <sysman@etherpilot.com>
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: <stable@kernel.org> # 2.6.32.19+ (partially) and 2.6.33+
LKML-Reference: <20100914143513.GB8415@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
compat_alloc_user_space() expects the caller to independently call
access_ok() to verify the returned area. A missing call could
introduce problems on some architectures.
This patch incorporates the access_ok() check into
compat_alloc_user_space() and also adds a sanity check on the length.
The existing compat_alloc_user_space() implementations are renamed
arch_compat_alloc_user_space() and are used as part of the
implementation of the new global function.
This patch assumes NULL will cause __get_user()/__put_user() to either
fail or access userspace on all architectures. This should be
followed by checking the return value of compat_access_user_space()
for NULL in the callers, at which time the access_ok() in the callers
can also be removed.
Reported-by: Ben Hawkes <hawkes@sota.gen.nz>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <jejb@parisc-linux.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: <stable@kernel.org>
Fix incorrect handling of the following case:
INTERACTIVE
INTERACTIVE_SOMETHING_ELSE
The comparison only checks up to each element's length.
Changelog since v1:
- Embellish using some Rostedtisms.
[ mingo: ^^ == smaller and cleaner ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Lindgren <tony@atomide.com>
LKML-Reference: <20100913214700.GB16118@Krystal>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mathieu reported bad latencies with make -j10 kind of kbuild
workloads - which is mostly caused by us scheduling with a
too coarse granularity.
Reduce the minimum granularity some more, to make sure we
can meet the latency target.
I got the following results (make -j10 kbuild load, average of 3
runs):
vanilla:
maximum latency: 38278.9 µs
average latency: 7730.1 µs
patched:
maximum latency: 22702.1 µs
average latency: 6684.8 µs
Mathieu also measured it:
|
| * wakeup-latency.c (SIGEV_THREAD) with make -j10
|
| - Mainline 2.6.35.2 kernel
|
| maximum latency: 45762.1 µs
| average latency: 7348.6 µs
|
| - With only Peter's smaller min_gran (shown below):
|
| maximum latency: 29100.6 µs
| average latency: 6684.1 µs
|
Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <AANLkTi=8m4g01wZPacySoF7U0PevTNVgJoZZrHiUD-pN@mail.gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a problem in hibernate_preallocate_memory() that it calls
preallocate_image_memory() with an argument that may be greater than
the total number of available non-highmem memory pages. If that's
the case, the OOM condition is guaranteed to trigger, which in turn
can cause significant slowdown to occur during hibernation.
To avoid that, make preallocate_image_memory() adjust its argument
before calling preallocate_image_pages(), so that the total number of
saveable non-highem pages left is not less than the minimum size of
a hibernation image. Change hibernate_preallocate_memory() to try to
allocate from highmem if the number of pages allocated by
preallocate_image_memory() is too low.
Modify free_unnecessary_pages() to take all possible memory
allocation patterns into account.
Reported-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Tested-by: M. Vefa Bicakci <bicave@superonline.com>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, tsc: Fix a preemption leak in restore_sched_clock_state()
sched: Move sched_avg_update() to update_cpu_load()
Correct some pr_debug() misuse and add a stronger parameter check to
pm_qos_write() for the ASCII hex value case. Thanks to Dan Carpenter
for pointing out the problem!
Signed-off-by: mark gross <markgross@thegnar.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Just got my 6 way machine to a state where cpu 0 is in an
endless loop within __smp_call_function_single.
All other cpus are idle.
The call trace on cpu 0 looks like this:
__smp_call_function_single
scheduler_tick
update_process_times
tick_sched_timer
__run_hrtimer
hrtimer_interrupt
clock_comparator_work
do_extint
ext_int_handler
----> timer irq
cpu_idle
__smp_call_function_single() got called from nohz_balancer_kick()
(inlined) with the remote cpu being 1, wait being 0 and the per
cpu variable remote_sched_softirq_cb (call_single_data) of the
current cpu (0).
Then it loops forever when it tries to grab the lock of the
call_single_data, since it is already locked and enqueued on cpu 0.
My theory how this could have happened: for some reason the
scheduler decided to call __smp_call_function_single() on it's own
cpu, and sends an IPI to itself. The interrupt stays pending
since IRQs are disabled. If then the hypervisor schedules the
cpu away it might happen that upon rescheduling both the IPI and
the timer IRQ are pending. If then interrupts are enabled again
it depends which one gets scheduled first.
If the timer interrupt gets delivered first we end up with the
local deadlock as seen in the calltrace above.
Let's make __smp_call_function_single() check if the target cpu is
the current cpu and execute the function immediately just like
smp_call_function_single does. That should prevent at least the
scenario described here.
It might also be that the scheduler is not supposed to call
__smp_call_function_single with the remote cpu being the current
cpu, but that is a different issue.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Jens Axboe <jaxboe@fusionio.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100910114729.GB2827@osiris.boeblingen.de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: t_start: reset FTRACE_ITER_HASH in case of seek/pread
perf symbols: Fix multiple initialization of symbol system
perf: Fix CPU hotplug
perf, trace: Fix module leak
tracing/kprobe: Fix handling of C-unlike argument names
tracing/kprobes: Fix handling of argument names
perf probe: Fix handling of arguments names
perf probe: Fix return probe support
tracing/kprobe: Fix a memory leak in error case
tracing: Do not allow llseek to set_ftrace_filter
Be sure to avoid entering t_show() with FTRACE_ITER_HASH set without
having properly started the iterator to iterate the hash. This case is
degenerate and, as discovered by Robert Swiecki, can cause t_hash_show()
to misuse a pointer. This causes a NULL ptr deref with possible security
implications. Tracked as CVE-2010-3079.
Cc: Robert Swiecki <swiecki@google.com>
Cc: Eugene Teo <eugene@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Please revert 2.6.36-rc commit d2997b1042
"hibernation: freeze swap at hibernation". It complicated matters by
adding a second swap allocation path, just for hibernation; without in any
way fixing the issue that it was intended to address - page reclaim after
fixing the hibernation image might free swap from a page already imaged as
swapcache, letting its swap be reallocated to store a different page of
the image: resulting in data corruption if the imaged page were freed as
clean then swapped back in. Pages freed to si->swap_map were still in
danger of being reallocated by the alternative allocation path.
I guess it inadvertently fixed slow SSD swap allocation for hibernation,
as reported by Nigel Cunningham: by missing out the discards that occur on
the usual swap allocation path; but that was unintentional, and needs a
separate fix.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ondrej Zary <linux@rainbow-software.org>
Cc: Andrea Gelmini <andrea.gelmini@gmail.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nigel Cunningham <nigel@tuxonice.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
gid_t is a unsigned int. If group_info contains a gid greater than
MAX_INT, groups_search() function may look on the wrong side of the search
tree.
This solves some unfair "permission denied" problems.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add cgroup_attach_task_all()
The existing cgroup_attach_task_current_cg() API is called by a thread to
attach another thread to all of its cgroups; this is unsuitable for cases
where a privileged task wants to attach itself to the cgroups of a less
privileged one, since the call must be made from the context of the target
task.
This patch adds a more generic cgroup_attach_task_all() API that allows
both the source task and to-be-moved task to be specified.
cgroup_attach_task_current_cg() becomes a specialization of the more
generic new function.
[menage@google.com: rewrote changelog]
[akpm@linux-foundation.org: address reviewer comments]
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Ben Blum <bblum@google.com>
Cc: Sridhar Samudrala <sri@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The gcov-kernel infrastructure expects that each object file is loaded
only once. This may not be true, e.g. when loading multiple kernel
modules which are linked to the same object file. As a result, loading
such kernel modules will result in incorrect gcov results while unloading
will cause a null-pointer dereference.
This patch fixes these problems by changing the gcov-kernel infrastructure
so that multiple profiling data sets can be associated with one debugfs
entry. It applies to 2.6.36-rc1.
Signed-off-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Reported-by: Werner Spies <werner.spies@thalesgroup.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On top of the SMT and MC scheduling domains this adds the BOOK scheduling
domain. This is useful for NUMA like machines which do not have an interface
which tells which piece of memory is attached to which node or where the
hardware performs striping.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100831082844.253053798@de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Merge and simplify the two cpu_to_core_group variants so that the
resulting function follows the same pattern like cpu_to_phys_group.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100831082843.953617555@de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently sched_avg_update() (which updates rt_avg stats in the rq)
is getting called from scale_rt_power() (in the load balance context)
which doesn't take rq->lock.
Fix it by moving the sched_avg_update() to more appropriate
update_cpu_load() where the CFS load gets updated as well.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1282596171.2694.3.camel@sbsiddha-MOBL3>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since we have UP_PREPARE, we should also have UP_CANCELED.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>