If err is true, the function will be returned, but mutex_lock isn't
released.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Lv Ruyi <lv.ruyi@zte.com.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
The driver doesn't support RX timestamping for non-PTP packets, but it
declares that it does. Restrict the reported RX filters to PTP v2 over
L2 and over L4.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
IEEE 1588 support was declared too soon for the Ocelot switch. Out of
reset, this switch does not apply any special treatment for PTP packets,
i.e. when an event message is received, the natural tendency is to
forward it by MAC DA/VLAN ID. This poses a problem when the ingress port
is under a bridge, since user space application stacks (written
primarily for endpoint ports, not switches) like ptp4l expect that PTP
messages are always received on AF_PACKET / AF_INET sockets (depending
on the PTP transport being used), and never being autonomously
forwarded. Any forwarding, if necessary (for example in Transparent
Clock mode) is handled in software by ptp4l. Having the hardware forward
these packets too will cause duplicates which will confuse endpoints
connected to these switches.
So PTP over L2 barely works, in the sense that PTP packets reach the CPU
port, but they reach it via flooding, and therefore reach lots of other
unwanted destinations too. But PTP over IPv4/IPv6 does not work at all.
This is because the Ocelot switch have a separate destination port mask
for unknown IP multicast (which PTP over IP is) flooding compared to
unknown non-IP multicast (which PTP over L2 is) flooding. Specifically,
the driver allows the CPU port to be in the PGID_MC port group, but not
in PGID_MCIPV4 and PGID_MCIPV6. There are several presentations from
Allan Nielsen which explain that the embedded MIPS CPU on Ocelot
switches is not very powerful at all, so every penny they could save by
not allowing flooding to the CPU port module matters. Unknown IP
multicast did not make it.
The de facto consensus is that when a switch is PTP-aware and an
application stack for PTP is running, switches should have some sort of
trapping mechanism for PTP packets, to extract them from the hardware
data path. This avoids both problems:
(a) PTP packets are no longer flooded to unwanted destinations
(b) PTP over IP packets are no longer denied from reaching the CPU since
they arrive there via a trap and not via flooding
It is not the first time when this change is attempted. Last time, the
feedback from Allan Nielsen and Andrew Lunn was that the traps should
not be installed by default, and that PTP-unaware switching may be
desired for some use cases:
https://patchwork.ozlabs.org/project/netdev/patch/20190813025214.18601-5-yangbo.lu@nxp.com/
To address that feedback, the present patch adds the necessary packet
traps according to the RX filter configuration transmitted by user space
through the SIOCSHWTSTAMP ioctl. Trapping is done via VCAP IS2, where we
keep 5 filters, which are amended each time RX timestamping is enabled
or disabled on a port:
- 1 for PTP over L2
- 2 for PTP over IPv4 (UDP ports 319 and 320)
- 2 for PTP over IPv6 (UDP ports 319 and 320)
The cookie by which these filters (invisible to tc) are identified is
strategically chosen such that it does not collide with the filters used
for the ocelot-8021q tagging protocol by the Felix driver, or with the
MRP traps set up by the Ocelot library.
Other alternatives were considered, like patching user space to do
something, but there are so many ways in which PTP packets could be made
to reach the CPU, generically speaking, that "do what?" is a very valid
question. The ptp4l program from the linuxptp stack already attempts to
do something: it calls setsockopt(IP_ADD_MEMBERSHIP) (and
PACKET_ADD_MEMBERSHIP, respectively) which translates in both cases into
a dev_mc_add() on the interface, in the kernel:
https://github.com/richardcochran/linuxptp/blob/v3.1.1/udp.c#L73https://github.com/richardcochran/linuxptp/blob/v3.1.1/raw.c
Reality shows that this is not sufficient in case the interface belongs
to a switchdev driver, as dev_mc_add() does not show the intention to
trap a packet to the CPU, but rather the intention to not drop it (it is
strictly for RX filtering, same as promiscuous does not mean to send all
traffic to the CPU, but to not drop traffic with unknown MAC DA). This
topic is a can of worms in itself, and it would be great if user space
could just stay out of it.
On the other hand, setting up PTP traps privately within the driver is
not new by any stretch of the imagination:
https://elixir.bootlin.com/linux/v5.16-rc2/source/drivers/net/ethernet/mellanox/mlxsw/spectrum_ptp.c#L833https://elixir.bootlin.com/linux/v5.16-rc2/source/drivers/net/dsa/hirschmann/hellcreek.c#L1050https://elixir.bootlin.com/linux/v5.16-rc2/source/include/linux/dsa/sja1105.h#L21
So this is the approach taken here as well. The difference here being
that we prepare and destroy the traps per port, dynamically at runtime,
as opposed to driver init time, because apparently, PTP-unaware
forwarding is a use case.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Reported-by: Po Liu <po.liu@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
VCAP (Versatile Content Aware Processor) is the TCAM-based engine behind
tc flower offload on ocelot, among other things. The ingress port mask
on which VCAP rules match is present as a bit field in the actual key of
the rule. This means that it is possible for a rule to be shared among
multiple source ports. When the rule is added one by one on each desired
port, that the ingress port mask of the key must be edited and rewritten
to hardware.
But the API in ocelot_vcap.c does not allow for this. For one thing,
ocelot_vcap_filter_add() and ocelot_vcap_filter_del() are not symmetric,
because ocelot_vcap_filter_add() works with a preallocated and
prepopulated filter and programs it to hardware, and
ocelot_vcap_filter_del() does both the job of removing the specified
filter from hardware, as well as kfreeing it. That is to say, the only
option of editing a filter in place, which is to delete it, modify the
structure and add it back, does not work because it results in
use-after-free.
This patch introduces ocelot_vcap_filter_replace, which trivially
reprograms a VCAP entry to hardware, at the exact same index at which it
existed before, without modifying any list or allocating any memory.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The ocelot driver, when asked to timestamp all receiving packets, 1588
v1 or NTP, says "nah, here's 1588 v2 for you".
According to this discussion:
https://patchwork.kernel.org/project/netdevbpf/patch/20211104133204.19757-8-martin.kaistra@linutronix.de/#24577647
drivers that downgrade from a wider request to a narrower response (or
even a response where the intersection with the request is empty) are
buggy, and should return -ERANGE instead. This patch fixes that.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Suggested-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The VSC9959 switch embedded within NXP LS1028A (and that version of
Ocelot switches only) supports cut-through forwarding - meaning it can
start the process of looking up the destination ports for a packet, and
forward towards those ports, before the entire packet has been received
(as opposed to the store-and-forward mode).
The up side is having lower forwarding latency for large packets. The
down side is that frames with FCS errors are forwarded instead of being
dropped. However, erroneous frames do not result in incorrect updates of
the FDB or incorrect policer updates, since these processes are deferred
inside the switch to the end of frame. Since the switch starts the
cut-through forwarding process after all packet headers (including IP,
if any) have been processed, packets with large headers and small
payload do not see the benefit of lower forwarding latency.
There are two cases that need special attention.
The first is when a packet is multicast (or flooded) to multiple
destinations, one of which doesn't have cut-through forwarding enabled.
The switch deals with this automatically by disabling cut-through
forwarding for the frame towards all destination ports.
The second is when a packet is forwarded from a port of lower link speed
towards a port of higher link speed. This is not handled by the hardware
and needs software intervention.
Since we practically need to update the cut-through forwarding domain
from paths that aren't serialized by the rtnl_mutex (phylink
mac_link_down/mac_link_up ops), this means we need to serialize physical
link events with user space updates of bonding/bridging domains.
Enabling cut-through forwarding is done per {egress port, traffic class}.
I don't see any reason why this would be a configurable option as long
as it works without issues, and there doesn't appear to be any user
space configuration tool to toggle this on/off, so this patch enables
cut-through forwarding on all eligible ports and traffic classes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The only called takes ocelot_port->bridge and passes it as the "bridge"
argument to this function, which then compares it with
ocelot_port->bridge. This is not useful.
Instead, we would like this function to return 0 if ocelot_port->bridge
is not present, which is what this patch does.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
PSFP rules take effect on the streams from any port of VSC9959 switch.
This patch use ingress port to limit the rule only active on this port.
Each stream can only match two ingress source ports in VSC9959. Streams
from lowest port gets the configuration of SFID pointed by MAC Table
lookup and streams from highest port gets the configuration of (SFID+1)
pointed by MAC Table lookup. This patch defines the PSFP rule on highest
port as dummy rule, which means that it does not modify the MAC table.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Policer was previously automatically assigned from the highest index to
the lowest index from policer pool. But police action of tc flower now
uses index to set an police entry. This patch uses the police index to
set vcap policers, so that one policer can be shared by multiple rules.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
PSFP support gate and police action. This patch add the gate and police
action to flower parse action, check chain ID to determine which block
to offload. Adding psfp callback functions to add, delete and update gate
and police in PSFP table if hardware supports it.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some chips in the ocelot series such as VSC9959 support Per-Stream
Filtering and Policing(PSFP), which is processing after VCAP blocks.
We set this block on chain 30000 and set vcap IS2 chain to goto PSFP
chain if hardware support.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_mact_learn_streamdata() can be used in VSC9959 to overwrite an
FDB entry with stream data. The stream data includes SFID and SSID which
can be used for PSFP and FRER set.
ocelot_mact_lookup() can be used to check if the given {DMAC, VID} FDB
entry is exist, and also can retrieve the DEST_IDX and entry type for
the FDB entry.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_net has no special behaviour in its validation implementation, so
can be switched to phylink_generic_validate().
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
As phylink checks the interface mode against the supported_interfaces
bitmap, we no longer need to validate the interface mode in the
validation function. Remove this to simplify it.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Populate the phy interface mode bitmap for the MSCC Ocelot driver with
the interface modes supported by the MAC.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA would like to remove the rtnl_lock from its
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE handlers, and the felix driver uses
the same MAC table functions as ocelot.
This means that the MAC table functions will no longer be implicitly
serialized with respect to each other by the rtnl_mutex, we need to add
a dedicated lock in ocelot for the non-atomic operations of selecting a
MAC table row, reading/writing what we want and polling for completion.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA would like to remove the rtnl_lock from its
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE handlers, and the felix driver uses
the same MAC table functions as ocelot.
This means that the MAC table functions will no longer be implicitly
serialized with respect to each other by the rtnl_mutex, we need to add
a dedicated lock in ocelot for the non-atomic operations of selecting a
MAC table row, reading/writing what we want and polling for completion.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that we have a list of struct ocelot_bridge_vlan entries, we can
rewrite the pvid logic to simply point to one of those structures,
instead of having a separate structure with a "bool valid".
The NULL pointer will represent the lack of a bridge pvid (not to be
confused with the lack of a hardware pvid on the port, that is present
at all times).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot switchdev driver does not include the CPU port in the list of
flooding destinations for unknown traffic, instead that traffic is
supposed to match FDB entries to reach the CPU.
The addresses it installs are:
(a) the station MAC address, in ocelot_probe_port() and later during
runtime in ocelot_port_set_mac_address(). These are the VLAN-unaware
addresses. The VLAN-aware addresses are in ocelot_vlan_vid_add().
(b) multicast addresses added with dev_mc_add() (not bridge host MDB
entries) in ocelot_mc_sync()
(c) multicast destination MAC addresses for MRP in ocelot_mrp_save_mac(),
to make sure those are dropped (not forwarded) by the bridging
service, just trapped to the CPU
So we can see that the logic is slightly buggy ever since the initial
commit a556c76adc ("net: mscc: Add initial Ocelot switch support").
This is because, when ocelot_probe_port() runs, the port pvid is 0.
Then we join a VLAN-aware bridge, the pvid becomes 1, we call
ocelot_port_set_mac_address(), this learns the new MAC address in VID 1
(also fails to forget the old one, since it thinks it's in VID 1, but
that's not so important). Then when we leave the VLAN-aware bridge,
outside world is unable to ping our new MAC address because it isn't
learned in VID 0, the VLAN-unaware pvid.
[ note: this is strictly based on static analysis, I don't have hardware
to test. But there are also many more corner cases ]
The basic idea is that we should have a separation of concerns, and the
FDB entries used for standalone operation should be managed by the
driver, and the FDB entries used by the bridging service should be
managed by the bridge. So the standalone and VLAN-unaware bridge FDB
entries should not follow the bridge PVID, because that will only be
active when the bridge is VLAN-aware. So since the port pvid is
coincidentally zero during probe time, just make those entries
statically go to VID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At present, the ocelot driver accepts a single egress-untagged bridge
VLAN, meaning that this sequence of operations:
ip link add br0 type bridge vlan_filtering 1
ip link set swp0 master br0
bridge vlan add dev swp0 vid 2 pvid untagged
fails because the bridge automatically installs VID 1 as a pvid & untagged
VLAN, and vid 2 would be the second untagged VLAN on this port. It is
necessary to delete VID 1 before proceeding to add VID 2.
This limitation comes from the fact that we operate the port tag, when
it has an egress-untagged VID, in the OCELOT_PORT_TAG_NATIVE mode.
The ocelot switches do not have full flexibility and can either have one
single VID as egress-untagged, or all of them.
There are use cases for having all VLANs as egress-untagged as well, and
this patch adds support for that.
The change rewrites ocelot_port_set_native_vlan() into a more generic
ocelot_port_manage_port_tag() function. Because the software bridge's
state, transmitted to us via switchdev, can become very complex, we
don't attempt to track all possible state transitions, but instead take
a more declarative approach and just make ocelot_port_manage_port_tag()
figure out which more to operate in:
- port is VLAN-unaware: the classified VLAN (internal, unrelated to the
802.1Q header) is not inserted into packets on egress
- port is VLAN-aware:
- port has tagged VLANs:
-> port has no untagged VLAN: set up as pure trunk
-> port has one untagged VLAN: set up as trunk port + native VLAN
-> port has more than one untagged VLAN: this is an invalid config
which is rejected by ocelot_vlan_prepare
- port has no tagged VLANs
-> set up as pure egress-untagged port
We don't keep the number of tagged and untagged VLANs, we just count the
structures we keep.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
First and foremost, the driver currently allocates a constant sized
4K * u32 (16KB memory) array for the VLAN masks. However, a typical
application might not need so many VLANs, so if we dynamically allocate
the memory as needed, we might actually save some space.
Secondly, we'll need to keep more advanced bookkeeping of the VLANs we
have, notably we'll have to check how many untagged and how many tagged
VLANs we have. This will have to stay in a structure, and allocating
another 16 KB array for that is again a bit too much.
So refactor the bridge VLANs in a linked list of structures.
The hook points inside the driver are ocelot_vlan_member_add() and
ocelot_vlan_member_del(), which previously used to operate on the
ocelot->vlan_mask[vid] array element.
ocelot_vlan_member_add() and ocelot_vlan_member_del() used to call
ocelot_vlan_member_set() to commit to the ocelot->vlan_mask.
Additionally, we had two calls to ocelot_vlan_member_set() from outside
those callers, and those were directly from ocelot_vlan_init().
Those calls do not set up bridging service VLANs, instead they:
- clear the VLAN table on reset
- set the port pvid to the value used by this driver for VLAN-unaware
standalone port operation (VID 0)
So now, when we have a structure which represents actual bridge VLANs,
VID 0 doesn't belong in that structure, since it is not part of the
bridging layer.
So delete the middle man, ocelot_vlan_member_set(), and let
ocelot_vlan_init() call directly ocelot_vlant_set_mask() which forgoes
any data structure and writes directly to hardware, which is all that we
need.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a cosmetic patch which clarifies what are the port tagging
options for Ocelot switches.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 406f42fa0d ("net-next: When a bond have a massive amount
of VLANs...") introduced a rbtree for faster Ethernet address look
up. To maintain netdev->dev_addr in this tree we need to make all
the writes to it got through appropriate helpers.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix following coccicheck warning:
./drivers/net/ethernet/mscc/ocelot_vsc7514.c:946:1-33: WARNING: Function
for_each_available_child_of_node should have of_node_put() before goto.
Early exits from for_each_available_child_of_node should decrement the
node reference counter.
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tools/testing/selftests/net/ioam6.sh
7b1700e009 ("selftests: net: modify IOAM tests for undef bits")
bf77b1400a ("selftests: net: Test for the IOAM encapsulation with IPv6")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
As explained here:
https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
DSA tagging protocol drivers cannot depend on symbols exported by switch
drivers, because this creates a circular dependency that breaks module
autoloading.
The tag_ocelot.c file depends on the ocelot_ptp_rew_op() function
exported by the common ocelot switch lib. This function looks at
OCELOT_SKB_CB(skb) and computes how to populate the REW_OP field of the
DSA tag, for PTP timestamping (the command: one-step/two-step, and the
TX timestamp identifier).
None of that requires deep insight into the driver, it is quite
stateless, as it only depends upon the skb->cb. So let's make it a
static inline function and put it in include/linux/dsa/ocelot.h, a
file that despite its name is used by the ocelot switch driver for
populating the injection header too - since commit 40d3f295b5 ("net:
mscc: ocelot: use common tag parsing code with DSA").
With that function declared as static inline, its body is expanded
inside each call site, so the dependency is broken and the DSA tagger
can be built without the switch library, upon which the felix driver
depends.
Fixes: 39e5308b32 ("net: mscc: ocelot: support PTP Sync one-step timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The sad reality is that when a PTP frame with a TX timestamping request
is transmitted, it isn't guaranteed that it will make it all the way to
the wire (due to congestion inside the switch), and that a timestamp
will be taken by the hardware and placed in the timestamp FIFO where an
IRQ will be raised for it.
The implication is that if enough PTP frames are silently dropped by the
hardware such that the timestamp ID has rolled over, it is possible to
match a timestamp to an old skb.
Furthermore, nobody will match on the real skb corresponding to this
timestamp, since we stupidly matched on a previous one that was stale in
the queue, and stopped there.
So PTP timestamping will be broken and there will be no way to recover.
It looks like the hardware parses the sequenceID from the PTP header,
and also provides that metadata for each timestamp. The driver currently
ignores this, but it shouldn't.
As an extra resiliency measure, do the following:
- check whether the PTP sequenceID also matches between the skb and the
timestamp, treat the skb as stale otherwise and free it
- if we see a stale skb, don't stop there and try to match an skb one
more time, chances are there's one more skb in the queue with the same
timestamp ID, otherwise we wouldn't have ever found the stale one (it
is by timestamp ID that we matched it).
While this does not prevent PTP packet drops, it at least prevents
the catastrophic consequences of incorrect timestamp matching.
Since we already call ptp_classify_raw in the TX path, save the result
in the skb->cb of the clone, and just use that result in the interrupt
code path.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
It appears that Ocelot switches cannot timestamp non-PTP frames,
I tested this using the isochron program at:
https://github.com/vladimiroltean/tsn-scripts
with the result that the driver increments the ocelot_port->ts_id
counter as expected, puts it in the REW_OP, but the hardware seems to
not timestamp these packets at all, since no IRQ is emitted.
Therefore check whether we are sending PTP frames, and refuse to
populate REW_OP otherwise.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When skb_match is NULL, it means we received a PTP IRQ for a timestamp
ID that the kernel has no idea about, since there is no skb in the
timestamping queue with that timestamp ID.
This is a grave error and not something to just "continue" over.
So print a big warning in case this happens.
Also, move the check above ocelot_get_hwtimestamp(), there is no point
in reading the full 64-bit current PTP time if we're not going to do
anything with it anyway for this skb.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
PTP packets with 2-step TX timestamp requests are matched to packets
based on the egress port number and a 6-bit timestamp identifier.
All PTP timestamps are held in a common FIFO that is 128 entry deep.
This patch ensures that back-to-back timestamping requests cannot exceed
the hardware FIFO capacity. If that happens, simply send the packets
without requesting a TX timestamp to be taken (in the case of felix,
since the DSA API has a void return code in ds->ops->port_txtstamp) or
drop them (in the case of ocelot).
I've moved the ts_id_lock from a per-port basis to a per-switch basis,
because we need separate accounting for both numbers of PTP frames in
flight. And since we need locking to inc/dec the per-switch counter,
that also offers protection for the per-port counter and hence there is
no reason to have a per-port counter anymore.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
At present, there is a problem when user space bombards a port with PTP
event frames which have TX timestamping requests (or when a tc-taprio
offload is installed on a port, which delays the TX timestamps by a
significant amount of time). The driver will happily roll over the 2-bit
timestamp ID and this will cause incorrect matches between an skb and
the TX timestamp collected from the FIFO.
The Ocelot switches have a 6-bit PTP timestamp identifier, and the value
63 is reserved, so that leaves identifiers 0-62 to be used.
The timestamp identifiers are selected by the REW_OP packet field, and
are actually shared between CPU-injected frames and frames which match a
VCAP IS2 rule that modifies the REW_OP. The hardware supports
partitioning between the two uses of the REW_OP field through the
PTP_ID_LOW and PTP_ID_HIGH registers, and by default reserves the PTP
IDs 0-3 for CPU-injected traffic and the rest for VCAP IS2.
The driver does not use VCAP IS2 to set REW_OP for 2-step timestamping,
and it also writes 0xffffffff to both PTP_ID_HIGH and PTP_ID_LOW in
ocelot_init_timestamp() which makes all timestamp identifiers available
to CPU injection.
Therefore, we can make use of all 63 timestamp identifiers, which should
allow more timestampable packets to be in flight on each port. This is
only part of the solution, more issues will be addressed in future changes.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Fix the following coccicheck warning:
drivers/net/ethernet/mscc/ocelot.c:474:duplicated argument to & or |
drivers/net/ethernet/mscc/ocelot.c:476:duplicated argument to & or |
drivers/net/ethernet/mscc/ocelot_net.c:1627:duplicated argument
to & or |
These DEV_CLOCK_CFG_MAC_TX_RST are duplicate here.
Here should be DEV_CLOCK_CFG_MAC_RX_RST.
Fixes: e6e12df625 ("net: mscc: ocelot: convert to phylink")
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rob suggests to move of_net.c from under drivers/of/ somewhere
to the networking code.
Suggested-by: Rob Herring <robh@kernel.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert Ethernet from ether_addr_copy() to eth_hw_addr_set():
@@
expression dev, np;
@@
- ether_addr_copy(dev->dev_addr, np)
+ eth_hw_addr_set(dev, np)
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert all Ethernet drivers from memcpy(... ETH_ADDR)
to eth_hw_addr_set():
@@
expression dev, np;
@@
- memcpy(dev->dev_addr, np, ETH_ALEN)
+ eth_hw_addr_set(dev, np)
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The VLAN TCI contains more than the VLAN ID, it also has the VLAN PCP
and Drop Eligibility Indicator.
If the ocelot driver is going to write the VLAN header inside the DSA
tag, it could just as well write the entire TCI.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently the ocelot driver does support the 'vlan modify' action, but
in the ingress chain, and it is offloaded to VCAP IS1. This action
changes the classified VLAN before the packet enters the bridging
service, and the bridging works with the classified VLAN modified by
VCAP IS1.
That is good for some use cases, but there are others where the VLAN
must be modified at the stage of the egress port, after the packet has
exited the bridging service. One example is simulating IEEE 802.1CB
active stream identification filters ("active" means that not only the
rule matches on a packet flow, but it is also able to change some
headers). For example, a stream is replicated on two egress ports, but
they must have different VLAN IDs on egress ports A and B.
This seems like a task for the VCAP ES0, but that currently only
supports pushing the ES0 tag A, which is specified in the rule. Pushing
another VLAN header is not what we want, but rather overwriting the
existing one.
It looks like when we push the ES0 tag A, it is actually possible to not
only take the ES0 tag A's value from the rule itself (VID_A_VAL), but
derive it from the following formula:
ES0_TAG_A = Classified VID + VID_A_VAL
Otherwise said, ES0_TAG_A can be used to increment with a given value
the VLAN ID that the packet was already classified to, and the packet
will have this value as an outer VLAN tag. This new VLAN ID value then
gets stripped on egress (or not) according to the value of the native
VLAN from the bridging service.
While the hardware will happily increment the classified VLAN ID for all
packets that match the ES0 rule, in practice this would be rather
insane, so we only allow this kind of ES0 action if the ES0 filter
contains a VLAN ID too, so as to restrict the matching on a known
classified VLAN. If we program VID_A_VAL with the delta between the
desired final VLAN (ES0_TAG_A) and the classified VLAN, we obtain the
desired behavior.
It doesn't look like it is possible with the tc-vlan action to modify
the VLAN ID but not the PCP. In hardware it is possible to leave the PCP
to the classified value, but we unconditionally program it to overwrite
it with the PCP value from the rule.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When ocelot_flower.c calls ocelot_vcap_filter_add(), the filter has a
given filter->id.cookie. This filter is added to the block->rules list.
However, when ocelot_flower.c calls ocelot_vcap_block_find_filter_by_id()
which passes the cookie as argument, the filter is never found by
filter->id.cookie when searching through the block->rules list.
This is unsurprising, since the filter->id.cookie is an unsigned long,
but the cookie argument provided to ocelot_vcap_block_find_filter_by_id()
is a signed int, and the comparison fails.
Fixes: 50c6cc5b92 ("net: mscc: ocelot: store a namespaced VCAP filter ID")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20210930125330.2078625-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Open access to the devlink interface when the driver fully initialized.
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
net/mptcp/protocol.c
977d293e23 ("mptcp: ensure tx skbs always have the MPTCP ext")
efe686ffce ("mptcp: ensure tx skbs always have the MPTCP ext")
same patch merged in both trees, keep net-next.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The blamed commit made the fatally incorrect assumption that ports which
aren't in the FORWARDING STP state should not have packets forwarded
towards them, and that is all that needs to be done.
However, that logic alone permits BLOCKING ports to forward to
FORWARDING ports, which of course allows packet storms to occur when
there is an L2 loop.
The ocelot_get_bridge_fwd_mask should not only ask "what can the bridge
do for you", but "what can you do for the bridge". This way, only
FORWARDING ports forward to the other FORWARDING ports from the same
bridging domain, and we are still compatible with the idea of multiple
bridges.
Fixes: df291e54cc ("net: ocelot: support multiple bridges")
Suggested-by: Colin Foster <colin.foster@in-advantage.com>
Reported-by: Colin Foster <colin.foster@in-advantage.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
devlink_register() can't fail and always returns success, but all drivers
are obligated to check returned status anyway. This adds a lot of boilerplate
code to handle impossible flow.
Make devlink_register() void and simplify the drivers that use that
API call.
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Acked-by: Simon Horman <simon.horman@corigine.com>
Acked-by: Vladimir Oltean <olteanv@gmail.com> # dsa
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When updating ocelot to use phylink, a second write to DEV_CLOCK_CFG was
mistakenly left in. It used the variable "speed" which, previously, would
would have been assigned a value of OCELOT_SPEED_1000. In phylink the
variable is be SPEED_1000, which is invalid for the
DEV_CLOCK_LINK_SPEED macro. Removing it as unnecessary and buggy.
Fixes: e6e12df625 ("net: mscc: ocelot: convert to phylink")
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A useless write to ANA_PFC_PFC_CFG was left in while refactoring ocelot to
phylink. Since priority flow control is disabled, writing the speed has no
effect.
Further, it was using ethtool.h SPEED_ instead of OCELOT_SPEED_ macros,
which are incorrectly offset for GENMASK.
Lastly, for priority flow control to properly function, some scenarios
would rely on the rate adaptation from the PCS while the MAC speed would
be fixed. So it isn't used, and even if it was, neither "speed" nor
"mac_speed" are necessarily the correct values to be used.
Fixes: e6e12df625 ("net: mscc: ocelot: convert to phylink")
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
NXP Legal insists that the following are not fine:
- Saying "NXP Semiconductors" instead of "NXP", since the company's
registered name is "NXP"
- Putting a "(c)" sign in the copyright string
- Putting a comma in the copyright string
The only accepted copyright string format is "Copyright <year-range> NXP".
This patch changes the copyright headers in the networking files that
were sent by me, or derived from code sent by me.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a mostly cosmetic patch that creates some helpers for accessing
the VLAN table. These helpers are also a bit more careful in that they
do not modify the ocelot->vlan_mask unless the hardware operation
succeeded.
Not all callers check the return value (the init code doesn't), but anyway.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need to transmit more restrictions in future patches, convert this
one to netlink extack.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need to reject some more configurations in future patches, convert
the existing one to netlink extack.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The existing ocelot device trees, like ocelot_pcb123.dts for example,
have SERDES ports (ports 4 and higher) that do not have status = "disabled";
but on the other hand do not have a phy-handle or a fixed-link either.
So from the perspective of phylink, they have broken DT bindings.
Since the blamed commit, probing for the entire switch will fail when
such a device tree binding is encountered on a port. There used to be
this piece of code which skipped ports without a phy-handle:
phy_node = of_parse_phandle(portnp, "phy-handle", 0);
if (!phy_node)
continue;
but now it is gone.
Anyway, fixed-link setups are a thing which should work out of the box
with phylink, so it would not be in the best interest of the driver to
add that check back.
Instead, let's look at what other drivers do. Since commit 86f8b1c01a
("net: dsa: Do not make user port errors fatal"), DSA continues after a
switch port fails to register, and works only with the ports that
succeeded.
We can achieve the same behavior in ocelot by unregistering the devlink
port for ports where ocelot_port_phylink_create() failed (called via
ocelot_probe_port), and clear the bit in devlink_ports_registered for
that port. This will make the next iteration reconsider the port that
failed to probe as an unused port, and re-register a devlink port of
type UNUSED for it. No other cleanup should need to be performed, since
ocelot_probe_port() should be self-contained when it fails.
Fixes: e6e12df625 ("net: mscc: ocelot: convert to phylink")
Reported-and-tested-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are cases where we would like to continue probing the switch even
if one port has failed to probe. When that happens, we need to
unregister a devlink_port of type DEVLINK_PORT_FLAVOUR_PHYSICAL and
re-register it of type DEVLINK_PORT_FLAVOUR_UNUSED.
This is fine, except when calling devlink_port_attrs_set on a structure
on which devlink_port_register has been previously called, there is a
WARN_ON in devlink_port_attrs_set that devlink_port->devlink must be
NULL.
So don't assume that the memory behind dlp is clean when calling
ocelot_port_devlink_init, just zero-initialize it.
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently we are unable to ping a bridge on top of a felix switch which
uses the ocelot-8021q tagger. The packets are dropped on the ingress of
the user port and the 'drop_local' counter increments (the counter which
denotes drops due to no valid destinations).
Dumping the PGID tables, it becomes clear that the PGID_SRC of the user
port is zero, so it has no valid destinations.
But looking at the code, the cpu_fwd_mask (the bit mask of DSA tag_8021q
ports) is clearly missing from the forwarding mask of ports that are
under a bridge. So this has always been broken.
Looking at the version history of the patch, in v7
https://patchwork.kernel.org/project/netdevbpf/patch/20210125220333.1004365-12-olteanv@gmail.com/
the code looked like this:
/* Standalone ports forward only to DSA tag_8021q CPU ports */
unsigned long mask = cpu_fwd_mask;
(...)
} else if (ocelot->bridge_fwd_mask & BIT(port)) {
mask |= ocelot->bridge_fwd_mask & ~BIT(port);
while in v8 (the merged version)
https://patchwork.kernel.org/project/netdevbpf/patch/20210129010009.3959398-12-olteanv@gmail.com/
it looked like this:
unsigned long mask;
(...)
} else if (ocelot->bridge_fwd_mask & BIT(port)) {
mask = ocelot->bridge_fwd_mask & ~BIT(port);
So the breakage was introduced between v7 and v8 of the patch.
Fixes: e21268efbe ("net: dsa: felix: perform switch setup for tag_8021q")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20210817160425.3702809-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The felix DSA driver, which is a wrapper over the same hardware class as
ocelot, is integrated with phylink, but ocelot is using the plain PHY
library. It makes sense to bring together the two implementations, which
is what this patch achieves.
This is a large patch and hard to break up, but it does the following:
The existing ocelot_adjust_link writes some registers, and
felix_phylink_mac_link_up writes some registers, some of them are
common, but both functions write to some registers to which the other
doesn't.
The main reasons for this are:
- Felix switches so far have used an NXP PCS so they had no need to
write the PCS1G registers that ocelot_adjust_link writes
- Felix switches have the MAC fixed at 1G, so some of the MAC speed
changes actually break the link and must be avoided.
The naming conventions for the functions introduced in this patch are:
- vsc7514_phylink_{mac_config,validate} are specific to the Ocelot
instantiations and placed in ocelot_net.c which is built only for the
ocelot switchdev driver.
- ocelot_phylink_mac_link_{up,down} are shared between the ocelot
switchdev driver and the felix DSA driver (they are put in the common
lib).
One by one, the registers written by ocelot_adjust_link are:
DEV_MAC_MODE_CFG - felix_phylink_mac_link_up had no need to write this
register since its out-of-reset value was fine and
did not need changing. The write is moved to the
common ocelot_phylink_mac_link_up and on felix it is
guarded by a quirk bit that makes the written value
identical with the out-of-reset one
DEV_PORT_MISC - runtime invariant, was moved to vsc7514_phylink_mac_config
PCS1G_MODE_CFG - same as above
PCS1G_SD_CFG - same as above
PCS1G_CFG - same as above
PCS1G_ANEG_CFG - same as above
PCS1G_LB_CFG - same as above
DEV_MAC_ENA_CFG - both ocelot_adjust_link and ocelot_port_disable
touched this. felix_phylink_mac_link_{up,down} also
do. We go with what felix does and put it in
ocelot_phylink_mac_link_up.
DEV_CLOCK_CFG - ocelot_adjust_link and felix_phylink_mac_link_up both
write this, but to different values. Move to the common
ocelot_phylink_mac_link_up and make sure via the quirk
that the old values are preserved for both.
ANA_PFC_PFC_CFG - ocelot_adjust_link wrote this, felix_phylink_mac_link_up
did not. Runtime invariant, speed does not matter since
PFC is disabled via the RX_PFC_ENA bits which are cleared.
Move to vsc7514_phylink_mac_config.
QSYS_SWITCH_PORT_MODE_PORT_ENA - both ocelot_adjust_link and
felix_phylink_mac_link_{up,down} wrote
this. Ocelot also wrote this register
from ocelot_port_disable. Keep what
felix did, move in ocelot_phylink_mac_link_{up,down}
and delete ocelot_port_disable.
ANA_POL_FLOWC - same as above
SYS_MAC_FC_CFG - same as above, except slight behavior change. Whereas
ocelot always enabled RX and TX flow control, felix
listened to phylink (for the most part, at least - see
the 2500base-X comment).
The registers which only felix_phylink_mac_link_up wrote are:
SYS_PAUSE_CFG_PAUSE_ENA - this is why I am not sure that flow control
worked on ocelot. Not it should, since the
code is shared with felix where it does.
ANA_PORT_PORT_CFG - this is a Frame Analyzer block register, phylink
should be the one touching them, deleted.
Other changes:
- The old phylib registration code was in mscc_ocelot_init_ports. It is
hard to work with 2 levels of indentation already in, and with hard to
follow teardown logic. The new phylink registration code was moved
inside ocelot_probe_port(), right between alloc_etherdev() and
register_netdev(). It could not be done before (=> outside of)
ocelot_probe_port() because ocelot_probe_port() allocates the struct
ocelot_port which we then use to assign ocelot_port->phy_mode to. It
is more preferable to me to have all PHY handling logic inside the
same function.
- On the same topic: struct ocelot_port_private :: serdes is only used
in ocelot_port_open to set the SERDES protocol to Ethernet. This is
logically a runtime invariant and can be done just once, when the port
registers with phylink. We therefore don't even need to keep the
serdes reference inside struct ocelot_port_private, or to use the devm
variant of of_phy_get().
- Phylink needs a valid phy-mode for phylink_create() to succeed, and
the existing device tree bindings in arch/mips/boot/dts/mscc/ocelot_pcb120.dts
don't define one for the internal PHY ports. So we patch
PHY_INTERFACE_MODE_NA into PHY_INTERFACE_MODE_INTERNAL.
- There was a strategically placed:
switch (priv->phy_mode) {
case PHY_INTERFACE_MODE_NA:
continue;
which made the code skip the serdes initialization for the internal
PHY ports. Frankly that is not all that obvious, so now we explicitly
initialize the serdes under an "if" condition and not rely on code
jumps, so everything is clearer.
- There was a write of OCELOT_SPEED_1000 to DEV_CLOCK_CFG for QSGMII
ports. Since that is in fact the default value for the register field
DEV_CLOCK_CFG_LINK_SPEED, I can only guess the intention was to clear
the adjacent fields, MAC_TX_RST and MAC_RX_RST, aka take the port out
of reset, which does match the comment. I don't even want to know why
this code is placed there, but if there is indeed an issue that all
ports that share a QSGMII lane must all be up, then this logic is
already buggy, since mscc_ocelot_init_ports iterates using
for_each_available_child_of_node, so nobody prevents the user from
putting a 'status = "disabled";' for some QSGMII ports which would
break the driver's assumption.
In any case, in the eventuality that I'm right, we would have yet
another issue if ocelot_phylink_mac_link_down would reset those ports
and that would be forbidden, so since the ocelot_adjust_link logic did
not do that (maybe for a reason), add another quirk to preserve the
old logic.
The ocelot driver teardown goes through all ports in one fell swoop.
When initialization of one port fails, the ocelot->ports[port] pointer
for that is reset to NULL, and teardown is done only for non-NULL ports,
so there is no reason to do partial teardowns, let the central
mscc_ocelot_release_ports() do its job.
Tested bind, unbind, rebind, link up, link down, speed change on mock-up
hardware (modified the driver to probe on Felix VSC9959). Also
regression tested the felix DSA driver. Could not test the Ocelot
specific bits (PCS1G, SERDES, device tree bindings).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_port_enable touches ANA_PORT_PORT_CFG, which has the following
fields:
- LOCKED_PORTMOVE_CPU, LEARNDROP, LEARNCPU, LEARNAUTO, RECV_ENA, all of
which are written with their hardware default values, also runtime
invariants. So it makes no sense to write these during every .ndo_open.
- PORTID_VAL: this field has an out-of-reset value of zero for all ports
and must be initialized by software. Additionally, the
ocelot_setup_logical_port_ids() code path sets up different logical
port IDs for the ports in a hardware LAG, and we absolutely don't want
.ndo_open to interfere there and reset those values.
So in fact the write from ocelot_port_enable can better be moved to
ocelot_init_port, and the .ndo_open hook deleted.
ocelot_port_disable touches DEV_MAC_ENA_CFG and QSYS_SWITCH_PORT_MODE_PORT_ENA,
in an attempt to undo what ocelot_adjust_link did. But since .ndo_stop
does not get called each time the link falls (i.e. this isn't a
substitute for .phylink_mac_link_down), felix already does better at
this by writing those registers already in felix_phylink_mac_link_down.
So keep ocelot_port_disable (for now, until ocelot is converted to
phylink too), and just delete the felix call to it, which is not
necessary.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The 'imply' keyword does not do what most people think it does, it only
politely asks Kconfig to turn on another symbol, but does not prevent
it from being disabled manually or built as a loadable module when the
user is built-in. In the ICE driver, the latter now causes a link failure:
aarch64-linux-ld: drivers/net/ethernet/intel/ice/ice_main.o: in function `ice_eth_ioctl':
ice_main.c:(.text+0x13b0): undefined reference to `ice_ptp_get_ts_config'
ice_main.c:(.text+0x13b0): relocation truncated to fit: R_AARCH64_CALL26 against undefined symbol `ice_ptp_get_ts_config'
aarch64-linux-ld: ice_main.c:(.text+0x13bc): undefined reference to `ice_ptp_set_ts_config'
ice_main.c:(.text+0x13bc): relocation truncated to fit: R_AARCH64_CALL26 against undefined symbol `ice_ptp_set_ts_config'
aarch64-linux-ld: drivers/net/ethernet/intel/ice/ice_main.o: in function `ice_prepare_for_reset':
ice_main.c:(.text+0x31fc): undefined reference to `ice_ptp_release'
ice_main.c:(.text+0x31fc): relocation truncated to fit: R_AARCH64_CALL26 against undefined symbol `ice_ptp_release'
aarch64-linux-ld: drivers/net/ethernet/intel/ice/ice_main.o: in function `ice_rebuild':
This is a recurring problem in many drivers, and we have discussed
it several times befores, without reaching a consensus. I'm providing
a link to the previous email thread for reference, which discusses
some related problems.
To solve the dependency issue better than the 'imply' keyword, introduce a
separate Kconfig symbol "CONFIG_PTP_1588_CLOCK_OPTIONAL" that any driver
can depend on if it is able to use PTP support when available, but works
fine without it. Whenever CONFIG_PTP_1588_CLOCK=m, those drivers are
then prevented from being built-in, the same way as with a 'depends on
PTP_1588_CLOCK || !PTP_1588_CLOCK' dependency that does the same trick,
but that can be rather confusing when you first see it.
Since this should cover the dependencies correctly, the IS_REACHABLE()
hack in the header is no longer needed now, and can be turned back
into a normal IS_ENABLED() check. Any driver that gets the dependency
wrong will now cause a link time failure rather than being unable to use
PTP support when that is in a loadable module.
However, the two recently added ptp_get_vclocks_index() and
ptp_convert_timestamp() interfaces are only called from builtin code with
ethtool and socket timestamps, so keep the current behavior by stubbing
those out completely when PTP is in a loadable module. This should be
addressed properly in a follow-up.
As Richard suggested, we may want to actually turn PTP support into a
'bool' option later on, preventing it from being a loadable module
altogether, which would be one way to solve the problem with the ethtool
interface.
Fixes: 06c16d89d2 ("ice: register 1588 PTP clock device object for E810 devices")
Link: https://lore.kernel.org/netdev/20210804121318.337276-1-arnd@kernel.org/
Link: https://lore.kernel.org/netdev/CAK8P3a06enZOf=XyZ+zcAwBczv41UuCTz+=0FMf2gBz1_cOnZQ@mail.gmail.com/
Link: https://lore.kernel.org/netdev/CAK8P3a3=eOxE-K25754+fB_-i_0BZzf9a9RfPTX3ppSwu9WZXw@mail.gmail.com/
Link: https://lore.kernel.org/netdev/20210726084540.3282344-1-arnd@kernel.org/
Acked-by: Shannon Nelson <snelson@pensando.io>
Acked-by: Jacob Keller <jacob.e.keller@intel.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20210812183509.1362782-1-arnd@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The ocelot driver makes use of regmap, wrapping it with driver specific
operations that are thin wrappers around the core regmap APIs. These are
exported with EXPORT_SYMBOL, dropping the _GPL from the core regmap
exports which is frowned upon. Add _GPL suffixes to at least the APIs that
are doing register I/O.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot driver makes use of regmap, wrapping it with driver specific
operations that are thin wrappers around the core regmap APIs. These are
exported with EXPORT_SYMBOL, dropping the _GPL from the core regmap
exports which is frowned upon. Add _GPL suffixes to at least the APIs that
are doing register I/O.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210810123748.47871-1-broonie@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
All kernel devlink implementations call to devlink_alloc() during
initialization routine for specific device which is used later as
a parent device for devlink_register().
Such late device assignment causes to the situation which requires us to
call to device_register() before setting other parameters, but that call
opens devlink to the world and makes accessible for the netlink users.
Any attempt to move devlink_register() to be the last call generates the
following error due to access to the devlink->dev pointer.
[ 8.758862] devlink_nl_param_fill+0x2e8/0xe50
[ 8.760305] devlink_param_notify+0x6d/0x180
[ 8.760435] __devlink_params_register+0x2f1/0x670
[ 8.760558] devlink_params_register+0x1e/0x20
The simple change of API to set devlink device in the devlink_alloc()
instead of devlink_register() fixes all this above and ensures that
prior to call to devlink_register() everything already set.
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most users of ndo_do_ioctl are ethernet drivers that implement
the MII commands SIOCGMIIPHY/SIOCGMIIREG/SIOCSMIIREG, or hardware
timestamping with SIOCSHWTSTAMP/SIOCGHWTSTAMP.
Separate these from the few drivers that use ndo_do_ioctl to
implement SIOCBOND, SIOCBR and SIOCWANDEV commands.
This is a purely cosmetic change intended to help readers find
their way through the implementation.
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jay Vosburgh <j.vosburgh@gmail.com>
Cc: Veaceslav Falico <vfalico@gmail.com>
Cc: Andy Gospodarek <andy@greyhouse.net>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: Vivien Didelot <vivien.didelot@gmail.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Vladimir Oltean <olteanv@gmail.com>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: linux-rdma@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow switchdevs to forward frames from the CPU in accordance with the
bridge configuration in the same way as is done between bridge
ports. This means that the bridge will only send a single skb towards
one of the ports under the switchdev's control, and expects the driver
to deliver the packet to all eligible ports in its domain.
Primarily this improves the performance of multicast flows with
multiple subscribers, as it allows the hardware to perform the frame
replication.
The basic flow between the driver and the bridge is as follows:
- When joining a bridge port, the switchdev driver calls
switchdev_bridge_port_offload() with tx_fwd_offload = true.
- The bridge sends offloadable skbs to one of the ports under the
switchdev's control using skb->offload_fwd_mark = true.
- The switchdev driver checks the skb->offload_fwd_mark field and lets
its FDB lookup select the destination port mask for this packet.
v1->v2:
- convert br_input_skb_cb::fwd_hwdoms to a plain unsigned long
- introduce a static key "br_switchdev_fwd_offload_used" to minimize the
impact of the newly introduced feature on all the setups which don't
have hardware that can make use of it
- introduce a check for nbp->flags & BR_FWD_OFFLOAD to optimize cache
line access
- reorder nbp_switchdev_frame_mark_accel() and br_handle_vlan() in
__br_forward()
- do not strip VLAN on egress if forwarding offload on VLAN-aware bridge
is being used
- propagate errors from .ndo_dfwd_add_station() if not EOPNOTSUPP
v2->v3:
- replace the solution based on .ndo_dfwd_add_station with a solution
based on switchdev_bridge_port_offload
- rename BR_FWD_OFFLOAD to BR_TX_FWD_OFFLOAD
v3->v4: rebase
v4->v5:
- make sure the static key is decremented on bridge port unoffload
- more function and variable renaming and comments for them:
br_switchdev_fwd_offload_used to br_switchdev_tx_fwd_offload
br_switchdev_accels_skb to br_switchdev_frame_uses_tx_fwd_offload
nbp_switchdev_frame_mark_tx_fwd to nbp_switchdev_frame_mark_tx_fwd_to_hwdom
nbp_switchdev_frame_mark_accel to nbp_switchdev_frame_mark_tx_fwd_offload
fwd_accel to tx_fwd_offload
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Starting with commit 4f2673b3a2 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef7 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
The point with a *dev and a *brport_dev is that when we have a LAG net
device that is a bridge port, *dev is an ocelot net device and
*brport_dev is the bonding/team net device. The ocelot net device
beneath the LAG does not exist from the bridge's perspective, so we need
to sync the switchdev objects belonging to the brport_dev and not to the
dev.
Fixes: e4bd44e89d ("net: ocelot: replay switchdev events when joining bridge")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a switchdev port leaves a LAG that is a bridge port, the switchdev
objects and port attributes offloaded to that port are not removed:
ip link add br0 type bridge
ip link add bond0 type bond mode 802.3ad
ip link set swp0 master bond0
ip link set bond0 master br0
bridge vlan add dev bond0 vid 100
ip link set swp0 nomaster
VLAN 100 will remain installed on swp0 despite it going into standalone
mode, because as far as the bridge is concerned, nothing ever happened
to its bridge port.
Let's extend the bridge vlan, fdb and mdb replay functions to take a
'bool adding' argument, and make DSA and ocelot call the replay
functions with 'adding' as false from the switchdev unsync path, for the
switch port that leaves the bridge.
Note that this patch in itself does not salvage anything, because in the
current pull mode of operation, DSA still needs to call the replay
helpers with adding=false. This will be done in another patch.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is a slight inconvenience in the switchdev replay helpers added
recently, and this is when:
ip link add br0 type bridge
ip link add bond0 type bond
ip link set bond0 master br0
bridge vlan add dev bond0 vid 100
ip link set swp0 master bond0
ip link set swp1 master bond0
Since the underlying driver (currently only DSA) asks for a replay of
VLANs when swp0 and swp1 join the LAG because it is bridged, what will
happen is that DSA will try to react twice on the VLAN event for swp0.
This is not really a huge problem right now, because most drivers accept
duplicates since the bridge itself does, but it will become a problem
when we add support for replaying switchdev object deletions.
Let's fix this by adding a blank void *ctx in the replay helpers, which
will be passed on by the bridge in the switchdev notifications. If the
context is NULL, everything is the same as before. But if the context is
populated with a valid pointer, the underlying switchdev driver
(currently DSA) can use the pointer to 'see through' the bridge port
(which in the example above is bond0) and 'know' that the event is only
for a particular physical port offloading that bridge port, and not for
all of them.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the case where the driver asks for a replay of a certain type of
event (port object or attribute) for a bridge port that is a LAG, it may
do so because this port has just joined the LAG.
But there might already be other switchdev ports in that LAG, and it is
preferable that those preexisting switchdev ports do not act upon the
replayed event.
The solution is to add a context to switchdev events, which is NULL most
of the time (when the bridge layer initiates the call) but which can be
set to a value controlled by the switchdev driver when a replay is
requested. The driver can then check the context to figure out if all
ports within the LAG should act upon the switchdev event, or just the
ones that match the context.
We have to modify all switchdev_handle_* helper functions as well as the
prototypes in the drivers that use these helpers too, because these
helpers hide the underlying struct switchdev_notifier_info from us and
there is no way to retrieve the context otherwise.
The context structure will be populated and used in later patches.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Not using this driver, I did not realize it doesn't react to
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE notifications, but it implements just
the bridge bypass operations (.ndo_fdb_{add,del}). So the call to
br_fdb_replay just produces notifications that are ignored, delete it
for now.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Because flow control is set up statically in ocelot_init_port(), and not
in phylink_mac_link_up(), what happens is that after the blamed commit,
the flow control remains disabled after the port flushing procedure.
Fixes: eb4733d7cf ("net: dsa: felix: implement port flushing on .phylink_mac_link_down")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Although HWTSTAMP_TX_ONESTEP_SYNC existed in ioctl for hardware timestamp
configuration, the PTP Sync one-step timestamping had never been supported.
This patch is to truely support it.
- ocelot_port_txtstamp_request()
This function handles tx timestamp request by storing
ptp_cmd(tx timestamp type) in OCELOT_SKB_CB(skb)->ptp_cmd,
and additionally for two-step timestamp storing ts_id in
OCELOT_SKB_CB(clone)->ptp_cmd.
- ocelot_ptp_rew_op()
During xmit, this function is called to get rew_op (rewriter option) by
checking skb->cb for tx timestamp request, and configure to transmitting.
Non-onestep-Sync packet with one-step timestamp request falls back to use
two-step timestamp.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert to a common ocelot_port_txtstamp_request() for TX timestamp
request handling.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Free skb->cb usage in core driver and let device drivers decide to
use or not. The reason having a DSA_SKB_CB(skb)->clone was because
dsa_skb_tx_timestamp() which may set the clone pointer was called
before p->xmit() which would use the clone if any, and the device
driver has no way to initialize the clone pointer.
This patch just put memset(skb->cb, 0, sizeof(skb->cb)) at beginning
of dsa_slave_xmit(). Some new features in the future, like one-step
timestamp may need more bytes of skb->cb to use in
dsa_skb_tx_timestamp(), and p->xmit().
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We have currently three users of the PSEC_PER_SEC each of them defining it
individually. Instead, move it to time64.h to be available for everyone.
There is a new user coming with the same constant in use. It will also
make its life easier.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use a tralling */ on a separate line for block comments.
Signed-off-by: Yixing Liu <liuyixing1@huawei.com>
Signed-off-by: Weihang Li <liweihang@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that the driver will always be notified that the role is deleted
before the ring is deleted, then we don't need to duplicate the logic of
cleaning the resources also in the delete function.
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The premise of this change is that the switchdev port attributes and
objects offloaded by ocelot might have been missed when we are joining
an already existing bridge port, such as a bonding interface.
The patch pulls these switchdev attributes and objects from the bridge,
on behalf of the 'bridge port' net device which might be either the
ocelot switch interface, or the bonding upper interface.
The ocelot_net.c belongs strictly to the switchdev ocelot driver, while
ocelot.c is part of a library shared with the DSA felix driver.
The ocelot_port_bridge_leave function (part of the common library) used
to call ocelot_port_vlan_filtering(false), something which is not
necessary for DSA, since the framework deals with that already there.
So we move this function to ocelot_switchdev_unsync, which is specific
to the switchdev driver.
The code movement described above makes ocelot_port_bridge_leave no
longer return an error code, so we change its type from int to void.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Similar to the DSA situation, ocelot supports LAG offload but treats
this scenario improperly:
ip link add br0 type bridge
ip link add bond0 type bond
ip link set bond0 master br0
ip link set swp0 master bond0
We do the same thing as we do there, which is to simulate a 'bridge join'
on 'lag join', if we detect that the bonding upper has a bridge upper.
Again, same as DSA, ocelot supports software fallback for LAG, and in
that case, we should avoid calling ocelot_netdevice_changeupper.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot switches are a bit odd in that they do not have an STP state
to put the ports into. Instead, the forwarding configuration is delayed
from the typical port_bridge_join into stp_state_set, when the port enters
the BR_STATE_FORWARDING state.
I can only guess that the implementation of this quirk is the reason that
led to the simplification of the driver such that only one bridge could
be offloaded at a time.
We can simplify the data structures somewhat, and introduce a per-port
bridge device pointer and STP state, similar to how the LAG offload
works now (there we have a per-port bonding device pointer and TX
enabled state). This allows offloading multiple bridges with relative
ease, while still keeping in place the quirk to delay the programming of
the PGIDs.
We actually need this change now because we need to remove the bogus
restriction from ocelot_bridge_stp_state_set that ocelot->bridge_mask
needs to contain BIT(port), otherwise that function is a no-op.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a MRP ring was deleted or disabled, the driver was iterating over
the ports to detect if any other MPR rings exists and in case it didn't
exist it would delete the MAC table entry. But the problem was that it
used the last iterated port to delete the MAC table entry and this could
be a NULL port.
The fix consists of using the port on which the function was called.
Fixes: 7c588c3e96 ("net: ocelot: Extend MRP")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now when extracting frames from CPU the cpuq is not used anymore so
remove it.
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch extends MRP support for Ocelot. It allows to have multiple
rings and when the node has the MRC role it forwards MRP Test frames in
HW. For MRM there is no change.
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a new PGID that is used not to forward frames anywhere. It is used
by MRP to make sure that MRP Test frames will not reach CPU port.
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A follow-up patch will allow users to configures packet-per-second policing
in the software datapath. In preparation for this, teach all drivers that
support offload of the policer action to reject such configuration as
currently none of them support it.
Signed-off-by: Baowen Zheng <baowen.zheng@corigine.com>
Signed-off-by: Simon Horman <simon.horman@netronome.com>
Signed-off-by: Louis Peens <louis.peens@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation to enable -Wimplicit-fallthrough for Clang, fix a warning
by explicitly adding a break statement instead of just letting the code
fall through to the next case.
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://github.com/KSPP/linux/issues/115
Signed-off-by: David S. Miller <davem@davemloft.net>
An attempt is made to warn the user about the fact that VCAP IS1 cannot
offload keys matching on destination IP (at least given the current half
key format), but sadly that warning fails miserably in practice, due to
the fact that it operates on an uninitialized "match" variable. We must
first decode the keys from the flow rule.
Fixes: 75944fda1d ("net: mscc: ocelot: offload ingress skbedit and vlan actions to VCAP IS1")
Reported-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Without this option, the driver fails to link:
ld.lld: error: undefined symbol: devlink_sb_register
>>> referenced by ocelot_devlink.c
>>> net/ethernet/mscc/ocelot_devlink.o:(ocelot_devlink_sb_register) in archive drivers/built-in.a
>>> referenced by ocelot_devlink.c
>>> net/ethernet/mscc/ocelot_devlink.o:(ocelot_devlink_sb_register) in archive drivers/built-in.a
Fixes: f59fd9cab7 ("net: mscc: ocelot: configure watermarks using devlink-sb")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20210225143910.3964364-1-arnd@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Ocelot now uses include/linux/dsa/ocelot.h which makes use of
CONFIG_PACKING to pack/unpack bits into the Injection/Extraction Frame
Headers. So it needs to explicitly select it, otherwise there might be
build errors due to the missing dependency.
Fixes: 40d3f295b5 ("net: mscc: ocelot: use common tag parsing code with DSA")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add basic support for MRP. The HW will just trap all MRP frames on the
ring ports to CPU and allow the SW to process them. In this way it is
possible to for this node to behave both as MRM and MRC.
Current limitations are:
- it doesn't support Interconnect roles.
- it supports only a single ring.
- the HW should be able to do forwarding of MRP Test frames so the SW
will not need to do this. So it would be able to have the role MRC
without SW support.
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Smatch is confused by the fact that a 32-bit BIT(port) macro is passed
as argument to the ocelot_ifh_set_dest function and warns:
ocelot_xmit() warn: should '(((1))) << (dp->index)' be a 64 bit type?
seville_xmit() warn: should '(((1))) << (dp->index)' be a 64 bit type?
The destination port mask is copied into a 12-bit field of the packet,
starting at bit offset 67 and ending at 56.
So this DSA tagging protocol supports at most 12 bits, which is clearly
less than 32. Attempting to send to a port number > 12 will cause the
packing() call to truncate way before there will be 32-bit truncation
due to type promotion of the BIT(port) argument towards u64.
Therefore, smatch's fears that BIT(port) will do the wrong thing and
cause unexpected truncation for "port" values >= 32 are unfounded.
Nonetheless, let's silence the warning by explicitly passing an u64
value to ocelot_ifh_set_dest, such that the compiler does not need to do
a questionable type promotion.
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For TX timestamping, we use the felix_txtstamp method which is common
with the regular (non-8021q) ocelot tagger. This method says that skb
deferral is needed, prepares a timestamp request ID, and puts a clone of
the skb in a queue waiting for the timestamp IRQ.
felix_txtstamp is called by dsa_skb_tx_timestamp() just before the
tagger's xmit method. In the tagger xmit, we divert the packets
classified by dsa_skb_tx_timestamp() as PTP towards the MMIO-based
injection registers, and we declare them as dead towards dsa_slave_xmit.
If not PTP, we proceed with normal tag_8021q stuff.
Then the timestamp IRQ fires, the clone queued up from felix_txtstamp is
matched to the TX timestamp retrieved from the switch's FIFO based on
the timestamp request ID, and the clone is delivered to the stack.
On RX, thanks to the VCAP IS2 rule that redirects the frames with an
EtherType for 1588 towards two destinations:
- the CPU port module (for MMIO based extraction) and
- if the "no XTR IRQ" workaround is in place, the dsa_8021q CPU port
the relevant data path processing starts in the ptp_classify_raw BPF
classifier installed by DSA in the RX data path (post tagger, which is
completely unaware that it saw a PTP packet).
This time we can't reuse the same implementation of .port_rxtstamp that
also works with the default ocelot tagger. That is because felix_rxtstamp
is given an skb with a freshly stripped DSA header, and it says "I don't
need deferral for its RX timestamp, it's right in it, let me show you";
and it just points to the header right behind skb->data, from where it
unpacks the timestamp and annotates the skb with it.
The same thing cannot happen with tag_ocelot_8021q, because for one
thing, the skb did not have an extraction frame header in the first
place, but a VLAN tag with no timestamp information. So the code paths
in felix_rxtstamp for the regular and 8021q tagger are completely
independent. With tag_8021q, the timestamp must come from the packet's
duplicate delivered to the CPU port module, but there is potentially
complex logic to be handled [ and prone to reordering ] if we were to
just start reading packets from the CPU port module, and try to match
them to the one we received over Ethernet and which needs an RX
timestamp. So we do something simple: we tell DSA "give me some time to
think" (we request skb deferral by returning false from .port_rxtstamp)
and we just drop the frame we got over Ethernet with no attempt to match
it to anything - we just treat it as a notification that there's data to
be processed from the CPU port module's queues. Then we proceed to read
the packets from those, one by one, which we deliver up the stack,
timestamped, using netif_rx - the same function that any driver would
use anyway if it needed RX timestamp deferral. So the assumption is that
we'll come across the PTP packet that triggered the CPU extraction
notification eventually, but we don't know when exactly. Thanks to the
VCAP IS2 trap/redirect rule and the exclusion of the CPU port module
from the flooding replicators, only PTP frames should be present in the
CPU port module's RX queues anyway.
There is just one conflict between the VCAP IS2 trapping rule and the
semantics of the BPF classifier. Namely, ptp_classify_raw() deems
general messages as non-timestampable, but still, those are trapped to
the CPU port module since they have an EtherType of ETH_P_1588. So, if
the "no XTR IRQ" workaround is in place, we need to run another BPF
classifier on the frames extracted over MMIO, to avoid duplicates being
sent to the stack (once over Ethernet, once over MMIO). It doesn't look
like it's possible to install VCAP IS2 rules based on keys extracted
from the 1588 frame headers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since the felix DSA driver will need to poll the CPU port module for
extracted frames as well, let's create some common functions that read
an Extraction Frame Header, and then an skb, from a CPU extraction
group.
We abuse the struct ocelot_ops :: port_to_netdev function a little bit,
in order to retrieve the DSA port net_device or the ocelot switchdev
net_device based on the source port information from the Extraction
Frame Header, but it's all in the benefit of code simplification -
netdev_alloc_skb needs it. Originally, the port_to_netdev method was
intended for parsing act->dev from tc flower offload code.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Injection Frame Header and Extraction Frame Header that the switch
prepends to frames over the NPI port is also prepended to frames
delivered over the CPU port module's queues.
Let's unify the handling of the frame headers by making the ocelot
driver call some helpers exported by the DSA tagger. Among other things,
this allows us to get rid of the strange cpu_to_be32 when transmitting
the Injection Frame Header on ocelot, since the packing API uses
network byte order natively (when "quirks" is 0).
The comments above ocelot_gen_ifh talk about setting pop_cnt to 3, and
the cpu extraction queue mask to something, but the code doesn't do it,
so we don't do it either.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The felix DSA driver will inject some frames through register MMIO, same
as ocelot switchdev currently does. So we need to be able to reuse the
common code.
Also create some shim definitions, since the DSA tagger can be compiled
without support for the switch driver.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This looks a bit nicer than the open-coded "(x + 3) % 4" idiom.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot_rx_frame_word() function can return a negative error code,
however this isn't being checked for consistently. Errors being ignored
have not been seen in practice though.
Also, some constructs can be simplified by using "goto" instead of
repeated "break" statements.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It appears that the intention of this snippet of code is to not exit
ocelot_xtr_irq_handler() while in the middle of extracting a frame.
The problem in extracting it word by word is that future extraction
attempts are really easy to get desynchronized, since the IRQ handler
assumes that the first 16 bytes are the IFH, which give further
information about the frame, such as frame length.
But during normal operation, "err" will not be 0, but 4, set from here:
for (i = 0; i < OCELOT_TAG_LEN / 4; i++) {
err = ocelot_rx_frame_word(ocelot, grp, true, &ifh[i]);
if (err != 4)
break;
}
if (err != 4)
break;
In that case, draining the extraction queue is a no-op. So explicitly
make this code execute only on negative err.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>