Use an enum for the APICv inhibit reasons, there is no meaning behind
their values and they most definitely are not "unsigned longs". Rename
the various params to "reason" for consistency and clarity (inhibit may
be confused as a command, i.e. inhibit APICv, instead of the reason that
is getting toggled/checked).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are two kinds of implicit supervisor access
implicit supervisor access when CPL = 3
implicit supervisor access when CPL < 3
Current permission_fault() handles only the first kind for SMAP.
But if the access is implicit when SMAP is on, data may not be read
nor write from any user-mode address regardless the current CPL.
So the second kind should be also supported.
The first kind can be detect via CPL and access mode: if it is
supervisor access and CPL = 3, it must be implicit supervisor access.
But it is not possible to detect the second kind without extra
information, so this patch adds an artificial PFERR_EXPLICIT_ACCESS
into @access. This extra information also works for the first kind, so
the logic is changed to use this information for both cases.
The value of PFERR_EXPLICIT_ACCESS is deliberately chosen to be bit 48
which is in the most significant 16 bits of u64 and less likely to be
forced to change due to future hardware uses it.
This patch removes the call to ->get_cpl() for access mode is determined
by @access. Not only does it reduce a function call, but also remove
confusions when the permission is checked for nested TDP. The nested
TDP shouldn't have SMAP checking nor even the L2's CPL have any bearing
on it. The original code works just because it is always user walk for
NPT and SMAP fault is not set for EPT in update_permission_bitmask.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Comments above the variable says the bit is set when SMAP is overridden
or the same meaning in update_permission_bitmask(): it is not subjected
to SMAP restriction.
Renaming it to reflect the negative implication and make the code better
readability.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The commit 09f037aa48 ("KVM: MMU: speedup update_permission_bitmask")
refactored the code of update_permission_bitmask() and change the
comments. It added a condition into a list to match the new code,
so the number/order for conditions in the comments should be updated
too.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change the type of access u32 to u64 for FNAME(walk_addr) and
->gva_to_gpa().
The kinds of accesses are usually combinations of UWX, and VMX/SVM's
nested paging adds a new factor of access: is it an access for a guest
page table or for a final guest physical address.
And SMAP relies a factor for supervisor access: explicit or implicit.
So @access in FNAME(walk_addr) and ->gva_to_gpa() is better to include
all these information to do the walk.
Although @access(u32) has enough bits to encode all the kinds, this
patch extends it to u64:
o Extra bits will be in the higher 32 bits, so that we can
easily obtain the traditional access mode (UWX) by converting
it to u32.
o Reuse the value for the access kind defined by SVM's nested
paging (PFERR_GUEST_FINAL_MASK and PFERR_GUEST_PAGE_MASK) as
@error_code in kvm_handle_page_fault().
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It isn't OK to cache the dirty status of a page in internal structures
for an indefinite period of time.
Any time a vCPU exits the run loop to userspace might be its last; the
VMM might do its final check of the dirty log, flush the last remaining
dirty pages to the destination and complete a live migration. If we
have internal 'dirty' state which doesn't get flushed until the vCPU
is finally destroyed on the source after migration is complete, then
we have lost data because that will escape the final copy.
This problem already exists with the use of kvm_vcpu_unmap() to mark
pages dirty in e.g. VMX nesting.
Note that the actual Linux MM already considers the page to be dirty
since we have a writeable mapping of it. This is just about the KVM
dirty logging.
For the nesting-style use cases (KVM_GUEST_USES_PFN) we will need to
track which gfn_to_pfn_caches have been used and explicitly mark the
corresponding pages dirty before returning to userspace. But we would
have needed external tracking of that anyway, rather than walking the
full list of GPCs to find those belonging to this vCPU which are dirty.
So let's rely *solely* on that external tracking, and keep it simple
rather than laying a tempting trap for callers to fall into.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the guest_uses_pa and kernel_map booleans in the PFN cache code
with a unified enum/bitmask. Using explicit names makes it easier to
review and audit call sites.
Opportunistically add a WARN to prevent passing garbage; instantating a
cache without declaring its usage is either buggy or pointless.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Include kvm_cache_regs.h to pick up the definition of is_guest_mode(),
which is referenced by nested_svm_virtualize_tpr() in svm.h. Remove
include from svm_onhpyerv.c which was done only because of lack of
include in svm.h.
Fixes: 883b0a91f4 ("KVM: SVM: Move Nested SVM Implementation to nested.c")
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Peter Gonda <pgonda@google.com>
Message-Id: <20220304161032.2270688-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The third nybble of AMD's event select overlaps with Intel's IN_TX and
IN_TXCP bits. Therefore, we can't use AMD64_RAW_EVENT_MASK on Intel
platforms that support TSX.
Declare a raw_event_mask in the kvm_pmu structure, initialize it in
the vendor-specific pmu_refresh() functions, and use that mask for
PERF_TYPE_RAW configurations in reprogram_gp_counter().
Fixes: 710c476514 ("KVM: x86/pmu: Use AMD64_RAW_EVENT_MASK for PERF_TYPE_RAW")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220308012452.3468611-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Re-introduce zapping only leaf SPTEs in kvm_zap_gfn_range() and
kvm_tdp_mmu_unmap_gfn_range(), this time without losing a pending TLB
flush when processing multiple roots (including nested TDP shadow roots).
Dropping the TLB flush resulted in random crashes when running Hyper-V
Server 2019 in a guest with KSM enabled in the host (or any source of
mmu_notifier invalidations, KSM is just the easiest to force).
This effectively revert commits 873dd12217
and fcb93eb6d0, and thus restores commit
cf3e26427c, plus this delta on top:
bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end,
struct kvm_mmu_page *root;
for_each_tdp_mmu_root_yield_safe(kvm, root, as_id)
- flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, false);
+ flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush);
return flush;
}
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325230348.2587437-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If kvm->arch.tdp_mmu_zap_wq cannot be created, the failure has
to be propagated up to kvm_mmu_init_vm and kvm_arch_init_vm.
kvm_arch_init_vm also has to undo all the initialization, so
group all the MMU initialization code at the beginning and
handle cleaning up of kvm_page_track_init.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Setting non-zero values to SYNIC/STIMER MSRs activates certain features,
this should not happen when KVM_CAP_HYPERV_SYNIC{,2} was not activated.
Note, it would've been better to forbid writing anything to SYNIC/STIMER
MSRs, including zeroes, however, at least QEMU tries clearing
HV_X64_MSR_STIMER0_CONFIG without SynIC. HV_X64_MSR_EOM MSR is somewhat
'special' as writing zero there triggers an action, this also should not
happen when SynIC wasn't activated.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325132140.25650-4-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When kvm_irq_delivery_to_apic_fast() is called with APIC_DEST_SELF
shorthand, 'src' must not be NULL. Crash the VM with KVM_BUG_ON()
instead of crashing the host.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325132140.25650-3-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM_CAP_HYPERV_SYNIC{,2} is activated, KVM already checks for
irqchip_in_kernel() so normally SynIC irqs should never be set. It is,
however, possible for a misbehaving VMM to write to SYNIC/STIMER MSRs
causing erroneous behavior.
The immediate issue being fixed is that kvm_irq_delivery_to_apic()
(kvm_irq_delivery_to_apic_fast()) crashes when called with
'irq.shorthand = APIC_DEST_SELF' and 'src == NULL'.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325132140.25650-2-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clang warns:
arch/x86/kvm/cpuid.c:739:2: error: unannotated fall-through between switch labels [-Werror,-Wimplicit-fallthrough]
default:
^
arch/x86/kvm/cpuid.c:739:2: note: insert 'break;' to avoid fall-through
default:
^
break;
1 error generated.
Clang is a little more pedantic than GCC, which does not warn when
falling through to a case that is just break or return. Clang's version
is more in line with the kernel's own stance in deprecated.rst, which
states that all switch/case blocks must end in either break,
fallthrough, continue, goto, or return. Add the missing break to silence
the warning.
Fixes: f144c49e8c ("KVM: x86: synthesize CPUID leaf 0x80000021h if useful")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Message-Id: <20220322152906.112164-1-nathan@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of using array_size, use a function that takes care of the
multiplication. While at it, switch to kvcalloc since this allocation
should not be very large.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_CAP_DISABLE_QUIRKS is irrevocably broken. The capability does not
advertise the set of quirks which may be disabled to userspace, so it is
impossible to predict the behavior of KVM. Worse yet,
KVM_CAP_DISABLE_QUIRKS will tolerate any value for cap->args[0], meaning
it fails to reject attempts to set invalid quirk bits.
The only valid workaround for the quirky quirks API is to add a new CAP.
Actually advertise the set of quirks that can be disabled to userspace
so it can predict KVM's behavior. Reject values for cap->args[0] that
contain invalid bits.
Finally, add documentation for the new capability and describe the
existing quirks.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220301060351.442881-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Non constant TSC is a nightmare on bare metal already, but with
virtualization it becomes a complete disaster because the workarounds
are horrible latency wise. That's also a preliminary for running RT in
a guest on top of a RT host.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Message-Id: <Yh5eJSG19S2sjZfy@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Guests X86_BUG_NULL_SEG if and only if the host has them. Use the info
from static_cpu_has_bug to form the 0x80000021 CPUID leaf that was
defined for Zen3. Userspace can then set the bit even on older CPUs
that do not have the bug, such as Zen2.
Do the same for X86_FEATURE_LFENCE_RDTSC as well, since various processors
have had very different ways of detecting it and not all of them are
available to userspace.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CPUID leaf 0x80000021 defines some features (or lack of bugs) of AMD
processors. Expose the ones that make sense via KVM_GET_SUPPORTED_CPUID.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_X86_OP_OPTIONAL_RET0 can only be used with 32-bit return values on 32-bit
systems, because unsigned long is only 32-bits wide there and 64-bit values
are returned in edx:eax.
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit cf3e26427c.
Multi-vCPU Hyper-V guests started crashing randomly on boot with the
latest kvm/queue and the problem can be bisected the problem to this
particular patch. Basically, I'm not able to boot e.g. 16-vCPU guest
successfully anymore. Both Intel and AMD seem to be affected. Reverting
the commit saves the day.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
is going to be reverted, it's not going to be true anymore that
the zap-page flow does not free any 'struct kvm_mmu_page'. Introduce
an early flush before tdp_mmu_zap_leafs() returns, to preserve
bisectability.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand KVM's mask for the AVIC host physical ID to the full 12 bits defined
by the architecture. The number of bits consumed by hardware is model
specific, e.g. early CPUs ignored bits 11:8, but there is no way for KVM
to enumerate the "true" size. So, KVM must allow using all bits, else it
risks rejecting completely legal x2APIC IDs on newer CPUs.
This means KVM relies on hardware to not assign x2APIC IDs that exceed the
"true" width of the field, but presumably hardware is smart enough to tie
the width to the max x2APIC ID. KVM also relies on hardware to support at
least 8 bits, as the legacy xAPIC ID is writable by software. But, those
assumptions are unavoidable due to the lack of any way to enumerate the
"true" width.
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Fixes: 44a95dae1d ("KVM: x86: Detect and Initialize AVIC support")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220211000851.185799-1-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow calling tdp_mmu_set_spte_atomic() with a REMOVED "old" SPTE.
This solves a conundrum introduced by commit 3255530ab1 ("KVM: x86/mmu:
Automatically update iter->old_spte if cmpxchg fails"); if the helper
doesn't update old_spte in the REMOVED case, then theoretically the
caller could get stuck in an infinite loop as it will fail indefinitely
on the REMOVED SPTE. E.g. until recently, clear_dirty_gfn_range() didn't
check for a present SPTE and would have spun until getting rescheduled.
In practice, only the page fault path should "create" a new SPTE, all
other paths should only operate on existing, a.k.a. shadow present,
SPTEs. Now that the page fault path pre-checks for a REMOVED SPTE in all
cases, require all other paths to indirectly pre-check by verifying the
target SPTE is a shadow-present SPTE.
Note, this does not guarantee the actual SPTE isn't REMOVED, nor is that
scenario disallowed. The invariant is only that the caller mustn't
invoke tdp_mmu_set_spte_atomic() if the SPTE was REMOVED when last
observed by the caller.
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check for a REMOVED leaf SPTE prior to attempting to map
the final SPTE when handling a TDP MMU fault. Functionally, this is a
nop as tdp_mmu_set_spte_atomic() will eventually detect the frozen SPTE.
Pre-checking for a REMOVED SPTE is a minor optmization, but the real goal
is to allow tdp_mmu_set_spte_atomic() to have an invariant that the "old"
SPTE is never a REMOVED SPTE.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap defunct roots, a.k.a. roots that have been invalidated after their
last reference was initially dropped, asynchronously via the existing work
queue instead of forcing the work upon the unfortunate task that happened
to drop the last reference.
If a vCPU task drops the last reference, the vCPU is effectively blocked
by the host for the entire duration of the zap. If the root being zapped
happens be fully populated with 4kb leaf SPTEs, e.g. due to dirty logging
being active, the zap can take several hundred seconds. Unsurprisingly,
most guests are unhappy if a vCPU disappears for hundreds of seconds.
E.g. running a synthetic selftest that triggers a vCPU root zap with
~64tb of guest memory and 4kb SPTEs blocks the vCPU for 900+ seconds.
Offloading the zap to a worker drops the block time to <100ms.
There is an important nuance to this change. If the same work item
was queued twice before the work function has run, it would only
execute once and one reference would be leaked. Therefore, now that
queueing and flushing items is not anymore protected by kvm->slots_lock,
kvm_tdp_mmu_invalidate_all_roots() has to check root->role.invalid and
skip already invalid roots. On the other hand, kvm_mmu_zap_all_fast()
must return only after those skipped roots have been zapped as well.
These two requirements can be satisfied only if _all_ places that
change invalid to true now schedule the worker before releasing the
mmu_lock. There are just two, kvm_tdp_mmu_put_root() and
kvm_tdp_mmu_invalidate_all_roots().
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping a TDP MMU root, perform the zap in two passes to avoid
zapping an entire top-level SPTE while holding RCU, which can induce RCU
stalls. In the first pass, zap SPTEs at PG_LEVEL_1G, and then
zap top-level entries in the second pass.
With 4-level paging, zapping a PGD that is fully populated with 4kb leaf
SPTEs take up to ~7 or so seconds (time varies based on kernel config,
number of (v)CPUs, etc...). With 5-level paging, that time can balloon
well into hundreds of seconds.
Before remote TLB flushes were omitted, the problem was even worse as
waiting for all active vCPUs to respond to the IPI introduced significant
overhead for VMs with large numbers of vCPUs.
By zapping 1gb SPTEs (both shadow pages and hugepages) in the first pass,
the amount of work that is done without dropping RCU protection is
strictly bounded, with the worst case latency for a single operation
being less than 100ms.
Zapping at 1gb in the first pass is not arbitrary. First and foremost,
KVM relies on being able to zap 1gb shadow pages in a single shot when
when repacing a shadow page with a hugepage. Zapping a 1gb shadow page
that is fully populated with 4kb dirty SPTEs also triggers the worst case
latency due writing back the struct page accessed/dirty bits for each 4kb
page, i.e. the two-pass approach is guaranteed to work so long as KVM can
cleany zap a 1gb shadow page.
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 52-....: (20999 ticks this GP) idle=7be/1/0x4000000000000000
softirq=15759/15759 fqs=5058
(t=21016 jiffies g=66453 q=238577)
NMI backtrace for cpu 52
Call Trace:
...
mark_page_accessed+0x266/0x2f0
kvm_set_pfn_accessed+0x31/0x40
handle_removed_tdp_mmu_page+0x259/0x2e0
__handle_changed_spte+0x223/0x2c0
handle_removed_tdp_mmu_page+0x1c1/0x2e0
__handle_changed_spte+0x223/0x2c0
handle_removed_tdp_mmu_page+0x1c1/0x2e0
__handle_changed_spte+0x223/0x2c0
zap_gfn_range+0x141/0x3b0
kvm_tdp_mmu_zap_invalidated_roots+0xc8/0x130
kvm_mmu_zap_all_fast+0x121/0x190
kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10
kvm_page_track_flush_slot+0x5c/0x80
kvm_arch_flush_shadow_memslot+0xe/0x10
kvm_set_memslot+0x172/0x4e0
__kvm_set_memory_region+0x337/0x590
kvm_vm_ioctl+0x49c/0xf80
Reported-by: David Matlack <dmatlack@google.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow yielding when zapping SPTEs after the last reference to a valid
root is put. Because KVM must drop all SPTEs in response to relevant
mmu_notifier events, mark defunct roots invalid and reset their refcount
prior to zapping the root. Keeping the refcount elevated while the zap
is in-progress ensures the root is reachable via mmu_notifier until the
zap completes and the last reference to the invalid, defunct root is put.
Allowing kvm_tdp_mmu_put_root() to yield fixes soft lockup issues if the
root in being put has a massive paging structure, e.g. zapping a root
that is backed entirely by 4kb pages for a guest with 32tb of memory can
take hundreds of seconds to complete.
watchdog: BUG: soft lockup - CPU#49 stuck for 485s! [max_guest_memor:52368]
RIP: 0010:kvm_set_pfn_dirty+0x30/0x50 [kvm]
__handle_changed_spte+0x1b2/0x2f0 [kvm]
handle_removed_tdp_mmu_page+0x1a7/0x2b8 [kvm]
__handle_changed_spte+0x1f4/0x2f0 [kvm]
handle_removed_tdp_mmu_page+0x1a7/0x2b8 [kvm]
__handle_changed_spte+0x1f4/0x2f0 [kvm]
tdp_mmu_zap_root+0x307/0x4d0 [kvm]
kvm_tdp_mmu_put_root+0x7c/0xc0 [kvm]
kvm_mmu_free_roots+0x22d/0x350 [kvm]
kvm_mmu_reset_context+0x20/0x60 [kvm]
kvm_arch_vcpu_ioctl_set_sregs+0x5a/0xc0 [kvm]
kvm_vcpu_ioctl+0x5bd/0x710 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x44/0xae
KVM currently doesn't put a root from a non-preemptible context, so other
than the mmu_notifier wrinkle, yielding when putting a root is safe.
Yield-unfriendly iteration uses for_each_tdp_mmu_root(), which doesn't
take a reference to each root (it requires mmu_lock be held for the
entire duration of the walk).
tdp_mmu_next_root() is used only by the yield-friendly iterator.
tdp_mmu_zap_root_work() is explicitly yield friendly.
kvm_mmu_free_roots() => mmu_free_root_page() is a much bigger fan-out,
but is still yield-friendly in all call sites, as all callers can be
traced back to some combination of vcpu_run(), kvm_destroy_vm(), and/or
kvm_create_vm().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the system worker threads to zap the roots invalidated
by the TDP MMU's "fast zap" mechanism, implemented by
kvm_tdp_mmu_invalidate_all_roots().
At this point, apart from allowing some parallelism in the zapping of
roots, the workqueue is a glorified linked list: work items are added and
flushed entirely within a single kvm->slots_lock critical section. However,
the workqueue fixes a latent issue where kvm_mmu_zap_all_invalidated_roots()
assumes that it owns a reference to all invalid roots; therefore, no
one can set the invalid bit outside kvm_mmu_zap_all_fast(). Putting the
invalidated roots on a linked list... erm, on a workqueue ensures that
tdp_mmu_zap_root_work() only puts back those extra references that
kvm_mmu_zap_all_invalidated_roots() had gifted to it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer TLB flushes to the caller when freeing TDP MMU shadow pages instead
of immediately flushing. Because the shadow pages are freed in an RCU
callback, so long as at least one CPU holds RCU, all CPUs are protected.
For vCPUs running in the guest, i.e. consuming TLB entries, KVM only
needs to ensure the caller services the pending TLB flush before dropping
its RCU protections. I.e. use the caller's RCU as a proxy for all vCPUs
running in the guest.
Deferring the flushes allows batching flushes, e.g. when installing a
1gb hugepage and zapping a pile of SPs. And when zapping an entire root,
deferring flushes allows skipping the flush entirely (because flushes are
not needed in that case).
Avoiding flushes when zapping an entire root is especially important as
synchronizing with other CPUs via IPI after zapping every shadow page can
cause significant performance issues for large VMs. The issue is
exacerbated by KVM zapping entire top-level entries without dropping
RCU protection, which can lead to RCU stalls even when zapping roots
backing relatively "small" amounts of guest memory, e.g. 2tb. Removing
the IPI bottleneck largely mitigates the RCU issues, though it's likely
still a problem for 5-level paging. A future patch will further address
the problem by zapping roots in multiple passes to avoid holding RCU for
an extended duration.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When yielding in the TDP MMU iterator, service any pending TLB flush
before dropping RCU protections in anticipation of using the caller's RCU
"lock" as a proxy for vCPUs in the guest.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap only leaf SPTEs in the TDP MMU's zap_gfn_range(), and rename various
functions accordingly. When removing mappings for functional correctness
(except for the stupid VFIO GPU passthrough memslots bug), zapping the
leaf SPTEs is sufficient as the paging structures themselves do not point
at guest memory and do not directly impact the final translation (in the
TDP MMU).
Note, this aligns the TDP MMU with the legacy/full MMU, which zaps only
the rmaps, a.k.a. leaf SPTEs, in kvm_zap_gfn_range() and
kvm_unmap_gfn_range().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that all callers of zap_gfn_range() hold mmu_lock for write, drop
support for zapping with mmu_lock held for read. That all callers hold
mmu_lock for write isn't a random coincidence; now that the paths that
need to zap _everything_ have their own path, the only callers left are
those that need to zap for functional correctness. And when zapping is
required for functional correctness, mmu_lock must be held for write,
otherwise the caller has no guarantees about the state of the TDP MMU
page tables after it has run, e.g. the SPTE(s) it zapped can be
immediately replaced by a vCPU faulting in a page.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a dedicated helper for zapping a TDP MMU root, and use it in the three
flows that do "zap_all" and intentionally do not do a TLB flush if SPTEs
are zapped (zapping an entire root is safe if and only if it cannot be in
use by any vCPU). Because a TLB flush is never required, unconditionally
pass "false" to tdp_mmu_iter_cond_resched() when potentially yielding.
Opportunistically document why KVM must not yield when zapping roots that
are being zapped by kvm_tdp_mmu_put_root(), i.e. roots whose refcount has
reached zero, and further harden the flow to detect improper KVM behavior
with respect to roots that are supposed to be unreachable.
In addition to hardening zapping of roots, isolating zapping of roots
will allow future simplification of zap_gfn_range() by having it zap only
leaf SPTEs, and by removing its tricky "zap all" heuristic. By having
all paths that truly need to free _all_ SPs flow through the dedicated
root zapper, the generic zapper can be freed of those concerns.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't flush the TLBs when zapping all TDP MMU pages, as the only time KVM
uses the slow version of "zap everything" is when the VM is being
destroyed or the owning mm has exited. In either case, KVM_RUN is
unreachable for the VM, i.e. the guest TLB entries cannot be consumed.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-15-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When recovering a potential hugepage that was shattered for the iTLB
multihit workaround, precisely zap only the target page instead of
iterating over the TDP MMU to find the SP that was passed in. This will
allow future simplification of zap_gfn_range() by having it zap only
leaf SPTEs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor __tdp_mmu_set_spte() to work with raw values instead of a
tdp_iter objects so that a future patch can modify SPTEs without doing a
walk, and without having to synthesize a tdp_iter.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-13-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if the new_spte being set by __tdp_mmu_set_spte() is a REMOVED_SPTE,
which is called out by the comment as being disallowed but not actually
checked. Keep the WARN on the old_spte as well, because overwriting a
REMOVED_SPTE in the non-atomic path is also disallowed (as evidence by
lack of splats with the existing WARN).
Fixes: 08f07c800e ("KVM: x86/mmu: Flush TLBs after zap in TDP MMU PF handler")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-12-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add helpers to read and write TDP MMU SPTEs instead of open coding
rcu_dereference() all over the place, and to provide a convenient
location to document why KVM doesn't exempt holding mmu_lock for write
from having to hold RCU (and any future changes to the rules).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-11-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop RCU protection after processing each root when handling MMU notifier
hooks that aren't the "unmap" path, i.e. aren't zapping. Temporarily
drop RCU to let RCU do its thing between roots, and to make it clear that
there's no special behavior that relies on holding RCU across all roots.
Currently, the RCU protection is completely superficial, it's necessary
only to make rcu_dereference() of SPTE pointers happy. A future patch
will rely on holding RCU as a proxy for vCPUs in the guest, e.g. to
ensure shadow pages aren't freed before all vCPUs do a TLB flush (or
rather, acknowledge the need for a flush), but in that case RCU needs to
be held until the flush is complete if and only if the flush is needed
because a shadow page may have been removed. And except for the "unmap"
path, MMU notifier events cannot remove SPs (don't toggle PRESENT bit,
and can't change the PFN for a SP).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-10-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Batch TLB flushes (with other MMUs) when handling ->change_spte()
notifications in the TDP MMU. The MMU notifier path in question doesn't
allow yielding and correcty flushes before dropping mmu_lock.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-9-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Look for a !leaf=>leaf conversion instead of a PFN change when checking
if a SPTE change removed a TDP MMU shadow page. Convert the PFN check
into a WARN, as KVM should never change the PFN of a shadow page (except
when its being zapped or replaced).
From a purely theoretical perspective, it's not illegal to replace a SP
with a hugepage pointing at the same PFN. In practice, it's impossible
as that would require mapping guest memory overtop a kernel-allocated SP.
Either way, the check is odd.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-8-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the "shared" argument of for_each_tdp_mmu_root_yield_safe, thus ensuring
that readers do not ever acquire a reference to an invalid root. After this
patch, all readers except kvm_tdp_mmu_zap_invalidated_roots() treat
refcount=0/valid, refcount=0/invalid and refcount=1/invalid in exactly the
same way. kvm_tdp_mmu_zap_invalidated_roots() is different but it also
does not acquire a reference to the invalid root, and it cannot see
refcount=0/invalid because it is guaranteed to run after
kvm_tdp_mmu_invalidate_all_roots().
Opportunistically add a lockdep assertion to the yield-safe iterator.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Eager page splitting is an optimization; it does not have to be performed on
invalid roots. It is also the only case in which a reader might acquire
a reference to an invalid root, so after this change we know that readers
will skip both dying and invalid roots.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Assert that mmu_lock is held for write by users of the yield-unfriendly
TDP iterator. The nature of a shared walk means that the caller needs to
play nice with other tasks modifying the page tables, which is more or
less the same thing as playing nice with yielding. Theoretically, KVM
could gain a flow where it could legitimately take mmu_lock for read in
a non-preemptible context, but that's highly unlikely and any such case
should be viewed with a fair amount of scrutiny.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the misleading flush "handling" when zapping invalidated TDP MMU
roots, and document that flushing is unnecessary for all flavors of MMUs
when zapping invalid/obsolete roots/pages. The "handling" in the TDP MMU
is dead code, as zap_gfn_range() is called with shared=true, in which
case it will never return true due to the flushing being handled by
tdp_mmu_zap_spte_atomic().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly ignore the result of zap_gfn_range() when putting the last
reference to a TDP MMU root, and add a pile of comments to formalize the
TDP MMU's behavior of deferring TLB flushes to alloc/reuse. Note, this
only affects the !shared case, as zap_gfn_range() subtly never returns
true for "flush" as the flush is handled by tdp_mmu_zap_spte_atomic().
Putting the root without a flush is ok because even if there are stale
references to the root in the TLB, they are unreachable because KVM will
not run the guest with the same ASID without first flushing (where ASID
in this context refers to both SVM's explicit ASID and Intel's implicit
ASID that is constructed from VPID+PCID+EPT4A+etc...).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-5-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix misleading and arguably wrong comments in the TDP MMU's fast zap
flow. The comments, and the fact that actually zapping invalid roots was
added separately, strongly suggests that zapping invalid roots is an
optimization and not required for correctness. That is a lie.
KVM _must_ zap invalid roots before returning from kvm_mmu_zap_all_fast(),
because when it's called from kvm_mmu_invalidate_zap_pages_in_memslot(),
KVM is relying on it to fully remove all references to the memslot. Once
the memslot is gone, KVM's mmu_notifier hooks will be unable to find the
stale references as the hva=>gfn translation is done via the memslots.
If KVM doesn't immediately zap SPTEs and userspace unmaps a range after
deleting a memslot, KVM will fail to zap in response to the mmu_notifier
due to not finding a memslot corresponding to the notifier's range, which
leads to a variation of use-after-free.
The other misleading comment (and code) explicitly states that roots
without a reference should be skipped. While that's technically true,
it's also extremely misleading as it should be impossible for KVM to
encounter a defunct root on the list while holding mmu_lock for write.
Opportunistically add a WARN to enforce that invariant.
Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Fixes: 4c6654bd16 ("KVM: x86/mmu: Tear down roots before kvm_mmu_zap_all_fast returns")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>